Design of an Inversion Mechanism

Total Page:16

File Type:pdf, Size:1020Kb

Design of an Inversion Mechanism Design of an Inversion Mechanism A Major Qualifying Project proposal to be submitted to the faculty of Worcester Polytechnic Institute in partial fulfillment of the requirements for the Degree of Bachelor of Science Submitted by: Chelsea Brown Matthew Dooman Sarah Lax Submitted to: Project Advisor: Professor Robert Norton Project Sponsor: Corey Maynard April 2011 Abstract The goal of this project was to create a mechanism that picks up a part, inverts it 180 degrees, and places it in a new location in its new orientation. This task was completed through the use of the design process. Ideas were brainstormed, drawn up, and evaluated. One design that was deemed a viable option was then modeled using Pro/ENGINEER. After modeling, the design was analyzed for various attributes such as stress, deflection, and fatigue failure. The result of this work is the creation of an inverting mechanism that uses a system of bevel gears with grippers attached to hold, rotate, and move the part. With the part in the grippers, as the rotating gear moves along the stationary gear, the part is flipped over 180 degrees. The part is brought to the grippers and removed from the grippers by the use of tooling that is stationary above the pick-up and drop-off locations. This mechanism provides a new way to access both sides of the part being moved as well as new tooling that could be modified and applied in several other applications. 2 Table of Contents Abstract ......................................................................................................................................................... 2 List of Figures ............................................................................................................................................... 5 List of Tables ................................................................................................................................................ 6 Introduction ................................................................................................................................................... 7 Problem Statement ........................................................................................................................................ 7 Task Specifications ....................................................................................................................................... 7 Background ................................................................................................................................................... 8 Grippers ..................................................................................................................................................... 8 Gear Backlash ............................................................................................................................................ 9 Preliminary Designs................................................................................................................................... 9 Linkages ................................................................................................................................................ 9 Carousel .............................................................................................................................................. 12 Final Design ................................................................................................................................................ 14 Description ............................................................................................................................................... 14 Annotated Pictures and Parts List ....................................................................................................... 14 Gripper Assembly .................................................................................................................................... 19 Solenoid and Rail Assembly .................................................................................................................... 27 Solenoid .............................................................................................................................................. 27 Rail and Guide Block .......................................................................................................................... 27 Activator Assembly ................................................................................................................................. 30 Rail Attachment .................................................................................................................................. 32 Leveling Slider .................................................................................................................................... 33 Vacuum Slider .................................................................................................................................... 35 Gripper Interaction Cam ..................................................................................................................... 37 Gear Assembly ........................................................................................................................................ 37 Gears ................................................................................................................................................... 37 Arms .................................................................................................................................................... 39 Bearings .............................................................................................................................................. 39 Manufacturing ............................................................................................................................................. 40 Assembly .................................................................................................................................................... 43 Results and Analysis ................................................................................................................................... 54 Bolts, Screws and Pin .............................................................................................................................. 55 Other Parts ............................................................................................................................................... 57 Springs ..................................................................................................................................................... 58 Timing ..................................................................................................................................................... 58 Conclusions ................................................................................................................................................. 60 3 Recommendations ....................................................................................................................................... 61 Bibliography ............................................................................................................................................... 62 Appendix A: Calculations ........................................................................................................................... 63 Gear Arm Bolt Analysis .......................................................................................................................... 63 Gripper Pin Clearance.............................................................................................................................. 65 Gripper Base Bolts ................................................................................................................................... 67 Vacuum Slider Pin ................................................................................................................................... 68 Leveling Slider Pin .................................................................................................................................. 69 Yoke-to-Rail Bolt .................................................................................................................................... 71 Gear Arms ................................................................................................................................................ 72 Gear Backlash .......................................................................................................................................... 86 Gripper Arms Analysis ............................................................................................................................ 88 Activator – Bending due to Leveling Slider .......................................................................................... 108 Appendix B: Standard Parts ...................................................................................................................... 111 Bearings ................................................................................................................................................. 111 Outside gear arm bearing .................................................................................................................. 111 Inside gear arm bearing ....................................................................................................................
Recommended publications
  • TEE Final Report
    Project Number: AHH – 1171 Pseudo‐Fluid Control Extension System A Major Qualifying Project Submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements for the Degree of Bachelor of Science In Mechanical Engineering by John Dunbar ______________________________ Christopher Farren ______________________________ Mari Freitas ______________________________ Date: April 26, 2012 Approved: Keywords ______________________________ Professor Allen H. Hoffman, Major Advisor 1. Transducer 2. TEE 3. Pseudo‐fluid ______________________________ Professor Holly K. Ault, Co‐Advisor Abstract An interventional cardiologist (IC) performs procedures using a transesophageal echocardiogram transducer (TEE). The TEE is positioned by an echo cardiologist who is present for the entirety of the procedures. The purpose of this project was to redesign the user interface of the TEE in order to minimize the role of the echo cardiologist and give more control to the IC. This was accomplished by creating an extension of the TEE control system that can remotely control the TEE from a distance of five feet. Preliminary designs were created using cable and fluid hydraulic systems; however, both types of systems were problematic. A pseudo‐fluid system consisting of tubes filled with steel balls was developed to capture the positive aspects of the cable and fluid systems. The user interface of the new system consisted of two rotatable knobs that actuate rack and pinion gear sets, which push the pseudo‐ fluid balls through tubes. At the distal ends of the tubes, the balls move the racks of rack and pinion gear sets that in turn rotate shafts in the current TEE. The resulting user interface has similar ergonomic and mechanical properties as the original TEE.
    [Show full text]
  • Novel Mechanical Mechanisms for the Development of Undergraduate Knowledge
    Novel Mechanical Mechanisms for the Development of Undergraduate Knowledge by Michael L. Stern Submitted to the Department of Mechanical Engineering in Partial Fulfillment of the Requirements for the degree of Bachelor of Science in Mechanical Engineering at the Massachusetts Institute of Technology June 2009 2009 Michael Stern All rights reserved The Author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created. Signature of Author ……………………………………………………………………………… Department of Mechanical Engineering May 19, 2009 Certified by ...……………………………………………………………………………………… Barbara Hughey, PhD Thesis Supervisor Instructor Accepted by ……..………………………………………………………………………………… Professor J. Lienhard V Collins Professor of Mechanical Engineering Chairman, Undergraduate Thesis Committee Acknowledgements I would like to give special thanks to Dr. Barbara Hughey for the enormous amount of help she provided both in developing the idea for this thesis and the execution of the thesis itself. She helped me take the idea from a neat project and turn it into an academic thesis, enduring my daily bothering throughout the semester, for advice, troubleshooting and writing recommendations. I would also like to thank Michael Tarkanian for allowing me to use his laser cutter. The ease of access made a world of difference in completing my thesis and doing so in a timely manner. Finally, I would like to thank my mom for helping me proofread the drafts, catching my grammatical foolishness. 2 Novel Mechanical Mechanisms for the Development of Undergraduate Knowledge by Michael L. Stern Submitted to the Department of Mechanical Engineering on May 19th, 2009 in Partial Fulfillment of the Requirements for the degree of Bachelor of Science in Mechanical Engineering Abstract: Although MIT Students have been taught an enormous amount of theory and design, they are not exposed to simple machine elements and designs from the past.
    [Show full text]
  • 1700 Animated Linkages
    Nguyen Duc Thang 1700 ANIMATED MECHANICAL MECHANISMS With Images, Brief explanations and Youtube links. Part 1 Transmission of continuous rotation Renewed on 31 December 2014 1 This document is divided into 3 parts. Part 1: Transmission of continuous rotation Part 2: Other kinds of motion transmission Part 3: Mechanisms of specific purposes Autodesk Inventor is used to create all videos in this document. They are available on Youtube channel “thang010146”. To bring as many as possible existing mechanical mechanisms into this document is author’s desire. However it is obstructed by author’s ability and Inventor’s capacity. Therefore from this document may be absent such mechanisms that are of complicated structure or include flexible and fluid links. This document is periodically renewed because the video building is continuous as long as possible. The renewed time is shown on the first page. This document may be helpful for people, who - have to deal with mechanical mechanisms everyday - see mechanical mechanisms as a hobby Any criticism or suggestion is highly appreciated with the author’s hope to make this document more useful. Author’s information: Name: Nguyen Duc Thang Birth year: 1946 Birth place: Hue city, Vietnam Residence place: Hanoi, Vietnam Education: - Mechanical engineer, 1969, Hanoi University of Technology, Vietnam - Doctor of Engineering, 1984, Kosice University of Technology, Slovakia Job history: - Designer of small mechanical engineering enterprises in Hanoi. - Retirement in 2002. Contact Email: [email protected] 2 Table of Contents 1. Continuous rotation transmission .................................................................................4 1.1. Couplings ....................................................................................................................4 1.2. Clutches ....................................................................................................................13 1.2.1. Two way clutches...............................................................................................13 1.2.1.
    [Show full text]
  • Integrated Circuit Design Macmillan New Electronics Series Series Editor: Paul A
    Integrated Circuit Design Macmillan New Electronics Series Series Editor: Paul A. Lynn Paul A. Lynn, Radar Systems A. F. Murray and H. M. Reekie, Integrated Circuit Design Integrated Circuit Design Alan F. Murray and H. Martin Reekie Department of' Electrical Engineering Edinhurgh Unit·ersity Macmillan New Electronics Introductions to Advanced Topics M MACMILLAN EDUCATION ©Alan F. Murray and H. Martin Reekie 1987 All rights reserved. No reproduction, copy or transmission of this publication may be made without written permission. No paragraph of this publication may be reproduced, copied or transmitted save with written permission or in accordance with the provisions of the Copyright Act 1956 (as amended), or under the terms of any licence permitting limited copying issued by the Copyright Licensing Agency, 7 Ridgmount Street, London WC1E 7AE. Any person who does any unauthorised act in relation to this publication may be liable to criminal prosecution and civil claims for damages. First published 1987 Published by MACMILLAN EDUCATION LTD Houndmills, Basingstoke, Hampshire RG21 2XS and London Companies and representatives throughout the world British Library Cataloguing in Publication Data Murray, A. F. Integrated circuit design.-(Macmillan new electronics series). 1. Integrated circuits-Design and construction I. Title II. Reekie, H. M. 621.381'73 TK7874 ISBN 978-0-333-43799-5 ISBN 978-1-349-18758-4 (eBook) DOI 10.1007/978-1-349-18758-4 To Glynis and Christa Contents Series Editor's Foreword xi Preface xii Section I 1 General Introduction
    [Show full text]
  • Four-Bar Linkage Synthesis for a Combination of Motion and Path-Point Generation
    FOUR-BAR LINKAGE SYNTHESIS FOR A COMBINATION OF MOTION AND PATH-POINT GENERATION Thesis Submitted to The School of Engineering of the UNIVERSITY OF DAYTON In Partial Fulfillment of the Requirements for The Degree of Master of Science in Mechanical Engineering By Yuxuan Tong UNIVERSITY OF DAYTON Dayton, Ohio May, 2013 FOUR-BAR LINKAGE SYNTHESIS FOR A COMBINATION OF MOTION AND PATH-POINT GENERATION Name: Tong, Yuxuan APPROVED BY: Andrew P. Murray, Ph.D. David Myszka, Ph.D. Advisor Committee Chairman Committee Member Professor, Dept. of Mechanical and Associate Professor, Dept. of Aerospace Engineering Mechanical and Aerospace Engineering A. Reza Kashani, Ph.D. Committee Member Professor, Dept. of Mechanical and Aerospace Engineering John Weber, Ph.D. Tony E. Saliba, Ph.D. Associate Dean Dean, School of Engineering School of Engineering & Wilke Distinguished Professor ii c Copyright by Yuxuan Tong All rights reserved 2013 ABSTRACT FOUR-BAR LINKAGE SYNTHESIS FOR A COMBINATION OF MOTION AND PATH-POINT GENERATION Name: Tong, Yuxuan University of Dayton Advisor: Dr. Andrew P. Murray This thesis develops techniques that address the design of planar four-bar linkages for tasks common to pick-and-place devices, used in assembly and manufacturing operations. The analysis approaches relate to two common kinematic synthesis tasks, motion generation and path-point gen- eration. Motion generation is a task that guides a rigid body through prescribed task positions which include position and orientation. Path-point generation is a task that requires guiding a reference point on a rigid body to move along a prescribed trajectory. Pick-and-place tasks often require the exact position and orientation of an object (motion generation) at the end points of the task.
    [Show full text]
  • Glossary Definitions
    TC 9-524 GLOSSARY ACRONYMS AND ABBREVIATIONS TC - Training Circular sd - small diameter TM - Technical Manual Id - large diameter AR - Army Regulation ID - inside diameter DA - Department of the Army TOS- Intentional Organization for Standardization RPM - revolutions per minute LH - left hand SAE - Society of Automotive Engineers NC - National Coarse SFPM - surface feet per minute NF - National Fine tpf -taper per foot OD - outside diameter tpi taper per inch RH - right hand UNC - Unified National Coarse CS - cutting speed UNF - Unified National Fine AA - aluminum alloys SF -standard form IPM - feed rate in inches per minute Med - medical FPM - feet per minute of workpiece WRPM - revolutions per minute of workpiece pd - pitch diameter FF - fraction of finish tan L - tangent angle formula WW - width of wheel It - length of taper TT - table travel in feet per minute DEFINITIONS abrasive - natural - (sandstone, emery, corundum. accurate - Conforms to a standard or tolerance. diamonds) or artificial (silicon carbide, aluminum oxide) material used for making grinding wheels, Acme thread - A screw thread having a 29 degree sandpaper, abrasive cloth, and lapping compounds. included angle. Used largely for feed and adjusting screws on machine tools. abrasive wheels - Wheels of a hard abrasive, such as Carborundum used for grinding. acute angle - An angle that is less than 90 degrees. Glossary - 1 TC 9-524 adapter - A tool holding device for fitting together automatic stop - A device which may be attached to various types or sizes of cutting tools to make them any of several parts of a machine tool to stop the interchangeable on different machines.
    [Show full text]
  • A New Method for Teaching the Fourbar Linkage and Its Application to Other Linkages
    Paper ID #24648 A New Method for Teaching The Fourbar Linkage and its Application to Other Linkages Dr. Eric Constans, Rose-Hulman Institute of Technology Eric Constans is a Professor in Mechanical Engineering at the Rose-Hulman Institute of Technology. His research interests include engineering education, mechanical design and acoustics and vibration. Mr. Karl Dyer, Rowan University Dr. Shraddha Sangelkar, Rose-Hulman Institute of Technology Shraddha Sangelkar is an Assistant Professor in Mechanical Engineering at Rose-Hulman Institute of Technology. She received her M.S. (2010) and Ph.D. (2013) in Mechanical Engineering from Texas A&M University. She completed the B. Tech (2008) in Mechanical Engineering from Veermata Jijabai Technological Institute (V.J.T.I.), Mumbai, India. She taught for 5 years at Penn State Behrend prior to joining Rose-Hulman. c American Society for Engineering Education, 2019 A New Method for Teaching the Fourbar Linkage to Engineering Students Abstract The fourbar linkage is one of the first mechanisms that a student encounters in a machine kinematics or mechanism design course and teaching the position analysis of the fourbar has always presented a challenge to instructors. Position analysis of the fourbar linkage has a long history, dating from the 1800s to the present day. Here position analysis is taken to mean 1) finding the two remaining unknown angles on the linkage with an input angle given and 2) finding the path of a point on the linkage once all angles are known. The efficiency of position analysis has taken on increasing importance in recent years with the widespread use of path optimization software for robotic and mechanism design applications.
    [Show full text]
  • Engineering Information Spur Gears Gear Nomenclature
    Engineering Information Spur Gears Gear Nomenclature ADDENDUM (a) is the height by which a tooth projects GEAR is a machine part with gear teeth. When two gears beyond the pitch circle or pitch line. run together, the one with the larger number of teeth is called the gear. BASE DIAMETER (Db) is the diameter of the base cylinder from which the involute portion of a tooth profile is generated. HUB DIAMETER is outside diameter of a gear, sprocket or coupling hub. BACKLASH (B) is the amount by which the width of a tooth space exceeds the thickness of the engaging tooth on the HUB PROJECTION is the distance the hub extends beyond pitch circles. As actually indicated by measuring devices, the gear face. backlash may be determined variously in the transverse, normal, or axial-planes, and either in the direction of the pitch INVOLUTE TEETH of spur gears, helical gears and worms circles or on the line of action. Such measurements should be are those in which the active portion of the profile in the corrected to corresponding values on transverse pitch circles transverse plane is the involute of a circle. for general comparisons. LONG- AND SHORT-ADDENDUM TEETH are those of BORE LENGTH is the total length through a gear, sprocket, engaging gears (on a standard designed center distance) or coupling bore. one of which has a long addendum and the other has a short addendum. CIRCULAR PITCH (p) is the distance along the pitch circle or pitch line between corresponding profiles of adjacent teeth. KEYWAY is the machined groove running the length of the bore.
    [Show full text]
  • Theory of Machines
    Theory of Machines Dr. Anwar Abu-Zarifa . Islamic University of Gaza . Department of Mechanical Engineering . © 2012 1 Syllabus and Course Outline Faculty of Engineering Department of Mechanical Engineering EMEC 3302, Theory of Machines Instructor: Dr. Anwar Abu-Zarifa Office: IT Building, Room: I413 Tel: 2821 eMail: [email protected] Website: http://site.iugaza.edu.ps/abuzarifa Office Hrs: see my website SAT 09:30 – 11:00 Q412 MON 09:30 – 11:00 Q412 Dr. Anwar Abu-Zarifa . Islamic University of Gaza . Department of Mechanical Engineering . © 2012 2 Text Book: R. L. Norton, Design of Machinery “An Introduction to the Synthesis and Analysis of Mechanisms and Machines”, McGraw Hill Higher Education; 3rd edition Reference Books: . John J. Uicker, Gordon R. Pennock, Joseph E. Shigley, Theory of Machines and Mechanisms . R.S. Khurmi, J.K. Gupta,Theory of Machines . Thomas Bevan, The Theory of Machines . The Theory of Machines by Robert Ferrier McKay . Engineering Drawing And Design, Jensen ect., McGraw-Hill Science, 7th Edition, 2007 . Mechanical Design of Machine Elements and Machines, Collins ect., Wiley, 2 Edition, 2009 Dr. Anwar Abu-Zarifa . Islamic University of Gaza . Department of Mechanical Engineering . © 2012 3 Grading: Attendance 5% Design Project 25% Midterm 30% Final exam 40% Course Description: The course provides students with instruction in the fundamentals of theory of machines. The Theory of Machines and Mechanisms provides the foundation for the study of displacements, velocities, accelerations, and static and dynamic forces required for the proper design of mechanical linkages, cams, and geared systems. Dr. Anwar Abu-Zarifa . Islamic University of Gaza . Department of Mechanical Engineering .
    [Show full text]
  • 1.0 Simple Mechanism 1.1 Link ,Kinematic Chain
    SYLLABUS 1.0 Simple mechanism 1.1 Link ,kinematic chain, mechanism, machine 1.2 Inversion, four bar link mechanism and its inversion 1.3 Lower pair and higher pair 1.4 Cam and followers 2.0 Friction 2.1 Friction between nut and screw for square thread, screw jack 2.2 Bearing and its classification, Description of roller, needle roller& ball bearings. 2.3 Torque transmission in flat pivot& conical pivot bearings. 2.4 Flat collar bearing of single and multiple types. 2.5 Torque transmission for single and multiple clutches 2.6 Working of simple frictional brakes.2.7 Working of Absorption type of dynamometer 3.0 Power Transmission 3.1 Concept of power transmission 3.2 Type of drives, belt, gear and chain drive. 3.3 Computation of velocity ratio, length of belts (open and cross)with and without slip. 3.4 Ratio of belt tensions, centrifugal tension and initial tension. 3.5 Power transmitted by the belt. 3.6 Determine belt thickness and width for given permissible stress for open and crossed belt considering centrifugal tension. 3.7 V-belts and V-belts pulleys. 3.8 Concept of crowning of pulleys. 3.9 Gear drives and its terminology. 3.10 Gear trains, working principle of simple, compound, reverted and epicyclic gear trains. 4.0 Governors and Flywheel 4.1 Function of governor 4.2 Classification of governor 4.3 Working of Watt, Porter, Proel and Hartnell governors. 4.4 Conceptual explanation of sensitivity, stability and isochronisms. 4.5 Function of flywheel. 4.6 Comparison between flywheel &governor.
    [Show full text]
  • Mechatronic Mechanism Design and Implementation Process Applied in Se- Nior Mechanical Engineering Capstone Design
    Paper ID #26215 Mechatronic Mechanism Design and Implementation Process Applied in Se- nior Mechanical Engineering Capstone Design Dr. Edward H. Currie, Hofstra University Edward H. Currie holds a BSEE, Masters and Ph.D. in Physics from the University of Miami and is an Associate Professor in the Fred DeMatteis School of Engineering and Applied Science where and teaches Electrical Engineering and Computer Science and serves as a Co-Director of Hofstra’s Center for Innovation. Research interests include Additive manufacturing plastic and magnetic technology, robotic systems, color night-vision, autonomous wound closure systems, microchannel plate applications, thermal imaging, programmable systems on a chip (PSoC) and spatial laser measurement systems. His current research is focused on the development of autonomous wound closure systems based on recent advances in magnetic technology. Dr. Kevin C. Craig, Hofstra University Kevin Craig attended the United States Military Academy at West Point, NY, earned varsity letters in football and baseball, and graduated with a B.S. degree and a commission as an officer in the U.S. Army. After honing his leadership and administrative skills serving in the military, he attended Columbia Uni- versity and received the M.S., M.Phil., and Ph.D. degrees. While in graduate school, he worked in the mechanical-nuclear design department of Ebasco Services, Inc., a major engineering firm in NYC, and taught and received tenure at both the U.S. Merchant Marine Academy and Hofstra University. While at Hofstra, he worked as a research engineer at the U.S. Army Armament Research, Development, and Engineering Center (ARDEC) Automation and Robotics Laboratory.
    [Show full text]
  • Using the Singularity Trace to Understand Linkage Motion Characteristics
    USING THE SINGULARITY TRACE TO UNDERSTAND LINKAGE MOTION CHARACTERISTICS Thesis Submitted to The School of Engineering of the UNIVERSITY OF DAYTON In Partial Fulfillment of the Requirements for The Degree of Master of Science in Mechanical Engineering By Lin Li UNIVERSITY OF DAYTON Dayton, Ohio May, 2013 USING THE SINGULARITY TRACE TO UNDERSTAND LINKAGE MOTION CHARACTERISTICS Name: Li, Lin APPROVED BY: Andrew Murray, Ph.D. David Myszka, Ph.D. Advisor Committee Chairman Committee Member Professor, Mechanical and Aerospace Associate Professor, Mechanical and Engineering Department Aerospace Engineering Department Ahmad Kashani, Ph.D. Committee Member Professor, Mechanical and Aerospace Engineering Department John Weber, Ph.D. Tony E. Saliba, Ph.D. Associate Dean Dean, School of Engineering School of Engineering & Wilke Distinguished Professor ii c Copyright by Lin Li All rights reserved 2013 ABSTRACT USING THE SINGULARITY TRACE TO UNDERSTAND LINKAGE MOTION CHARACTERISTICS Name: Li, Lin University of Dayton Advisor: Dr. Andrew Murray This thesis provides examples of a new method used to analyze the motion characteristics of single-degree-of-freedom, closed-loop linkages with a designated input angle and one or two design parameters. The method involves the construction of a singularity trace, which is a plot that reveals changes in the number of geometric inversions, singularities, and changes in the number of branches as a design parameter is varied. This thesis applies the method to planar linkages such as the Watt II, Stephenson III and double butterfly, and spatial linkages such as spherical four-bar and Revolute- Cylindrical-Cylindrical-Cylindrical (RCCC) linkages. Results from this investigation include the following. Special instances of the singularity trace for the Watt II linkage include multiple coincident projections of the singularity curve and symmet- ric characteristics of the singularity trace for special design parameters.
    [Show full text]