The Cephalopod Arm Crown: Appendage Formation and Differentiation in the Hawaiian Bobtail Squid Euprymna Scolopes

Total Page:16

File Type:pdf, Size:1020Kb

The Cephalopod Arm Crown: Appendage Formation and Differentiation in the Hawaiian Bobtail Squid Euprymna Scolopes The cephalopod arm crown appendage formation and differentiation in the Hawaiian bobtail squid Euprymna scolopes Nödl, Marie-Therese; Kerbl, Alexandra; Walzl, Manfred G.; Müller, Gerd B.; de Couet, Heinz Gert Published in: Frontiers in Zoology DOI: 10.1186/s12983-016-0175-8 Publication date: 2016 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Nödl, M-T., Kerbl, A., Walzl, M. G., Müller, G. B., & de Couet, H. G. (2016). The cephalopod arm crown: appendage formation and differentiation in the Hawaiian bobtail squid Euprymna scolopes. Frontiers in Zoology, 13, [44]. https://doi.org/10.1186/s12983-016-0175-8 Download date: 08. Apr. 2020 Nödl et al. Frontiers in Zoology (2016) 13:44 DOI 10.1186/s12983-016-0175-8 RESEARCH Open Access The cephalopod arm crown: appendage formation and differentiation in the Hawaiian bobtail squid Euprymna scolopes Marie-Therese Nödl1,4* , Alexandra Kerbl2, Manfred G. Walzl3, Gerd B. Müller1 and Heinz Gert de Couet4 Abstract Background: Cephalopods are a highly derived class of molluscs that adapted their body plan to a more active and predatory lifestyle. One intriguing adaptation is the modification of the ventral foot to form a bilaterally symmetric arm crown, which constitutes a true morphological novelty in evolution. In addition, this structure shows many diversifications within the class of cephalopods and therefore offers an interesting opportunity to study the molecular underpinnings of the emergence of phenotypic novelties and their diversification. Here we use the sepiolid Euprymna scolopes as a model to study the formation and differentiation of the decabrachian arm crown, which consists of four pairs of sessile arms and one pair of retractile tentacles. We provide a detailed description of arm crown formation in order to understand the basic morphology and the developmental dynamics of this structure. Results: We show that the morphological formation of the cephalopod appendages occurs during distinct phases, including outgrowth, elongation, and tissue differentiation. Early outgrowth is characterized by uniform cell proliferation, while the elongation of the appendages initiates tissue differentiation. The latter progresses in a gradient from proximal to distal, whereas cell proliferation becomes restricted to the distal-most end of the arm. Differences in the formation of arms and tentacles exist, with the tentacles showing an expedite growth rate and higher complexity at younger stages. Conclusion: The early outgrowth and differentiation of the E. scolopes arm crown shows similarities to the related, yet derived cephalopod Octopus vulgaris. Parallels in the growth and differentiation of appendages seem to exist throughout the animal kingdom, raising the question of whether these similarities reflect a recruitment of similar molecular patterning pathways. Keywords: Cephalopod, Euprymna scolopes, Bobtail squid, Lophotrochozoa, Arm crown, Appendage, Evolution, Development, Tentacle Background organism to a free-swimming, active predator was Cephalopods represent a highly derived and very accompanied by the appearance of a series of features successful class within the phylum Mollusca, showing that cannot be found in any other molluscan class and adaptations to all marine ecosystems from the deep sea are therefore considered morphological novelties [2]. to marine estuaries. They are thought to have evolved One of the most intriguing innovations is the evolution from a limpet-like monoplacophoran ancestor during of the cephalopod arm crown, which is thought to have the late Cambrian about 500 million years ago [1]. The either derived in part [3, 4] or entirely [5–7] from the foot eventual transition from a shell-bearing, bottom dwelling of molluscan ancestors. Due to its capacity to enable predatory life styles, it qualifies as a “key innovation” in * Correspondence: [email protected] cephalopod diversification [8]. 1Department of Theoretical Biology, University of Vienna, Althanstrasse 14, The arm crown of modern cephalopods (coleoids) is a 1090 Vienna, Austria bilaterally symmetric structure, consisting of four pairs 4Department of Biology, University of Hawaii at Manoa, 2538 McCarthy Mall, Edmondson Hall 413, Honolulu, HI 96822, USA of prehensile arms with an additional pair of retractable Full list of author information is available at the end of the article cirri in Vampyroteuthis and extensible tentacles in the © 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Nödl et al. Frontiers in Zoology (2016) 13:44 Page 2 of 16 decabrachian cephalopods. The homologies of the arms the long axis of the arm. It is located adjacent to the in the cephalopod orders have not been definitively longitudinal muscle layer and interdigitates with bundles resolved. In a study examining a more ancestral, shell- thereof, forming so-called trabeculae. Two layers of bearing cephalopod, Nautilus pompilius, Shigeno et al. obliquely oriented musculature enclose the longitudinal [9] have shown that five distinct pairs of arm fields are muscle layer and are each surrounded by one oral and formed during embryonic development, which give rise two lateral layers of superficial longitudinal musculature. to part of the head complex and a multitude of digital The latter incorporate six intramuscular nerve fibers, tentacles. Despite the differences in the adult structure that are connected to the axial nerve cord by connective of nautiloid and coleoid appendages, it seems therefore fibers and to each other by anastomoses [15]. The arm is likely that five pairs of arm were already present in a covered by a loose connective tissue dermis and is common ancestor. Studies based on anatomical and enclosed by a simple cuboidal epithelium. This combin- embryological comparisons suggest that the second arm ation of musculature is specifically adapted to the pair was then lost in the octobrachian cephalopods and bending movement and torsion of the manipulative and modified in Vampyroteuthis [7, 9–12]. In the decabra- inextensible arm [17]. chian lineage, however, presumably the fourth arm pair In contrast, the decabrachian cylindrical tentacles are was modified into retractile tentacles and optimized for specialized structures, which are mostly optimized for prey capture (Additional file 1). Individual arms and prey capture. Contrary to the arms, tentacle suckers are tentacles of the decabrachian arm crown are composed only present on their distal club, and associated gangli- of a dense three-dimensional array of muscle fibers, onic structures as well as most neuronal cell bodies are connective tissue and a central axial nerve cord. These restricted to this area. Similar to the arms, a large trans- structures were termed muscular hydrostats by Kier and verse muscle layer surrounds the tentacle’s axial nerve Smith [13] because their musculature serves a dual cord. However, an additional layer of circular muscula- purpose of providing the appendage with skeletal ture outlines the adjacent longitudinal muscle fibers. support and the force for movement. The motor control Next to the circular musculature, two thin layers of for the arm’s musculature and suckers is provided by the helical muscle tissue border a superficial longitudinal axial nerve cord, which comprises the largest component muscle layer, which incorporates the intramuscular of the peripheral nervous system [14, 15]. Despite the nerve cords. As with the arm, the tentacle’s musculature similarities in the gross anatomy of arms and tentacles, is covered in a loose connective tissue dermis and is significant differences in form and function exist, which surrounded by a simple cuboidal epithelium [17–19, 21]. have been comprehensively studied in a number of As an evolutionary novelty with such diversity the decabrachian species [13, 16–19] (Fig. 1). cephalopod arm crown offers an interesting opportunity In particular, the tapered, sessile arms are equipped to address the molecular underpinnings of a number of with suckers from the base to their distal tip and are fundamental evolutionary problems. These include (i) used for a variety of tasks including prey handling, which key changes in gene regulation are associated with behavioral display, locomotion and reproduction [20]. the emergence of morphological novelties and (ii) to the The arm’s central axial nerve cord consists of a series of diversification of serially homologous structures respect- ganglia, each corresponding to one sucker on the oral ively, as well as (iii) whether shared molecular mecha- side of the arm. A transverse muscle layer surrounds the nisms in appendage patterning exist throughout the central nerve cord and is positioned perpendicular to animal kingdom. The latter has recently been addressed Fig. 1 Schematic illustration of transverse sections through an adult squid’s arm and tentacle. anc, axial nerve cord; ar, artery; o, oblique muscle; tr, trabeculae;
Recommended publications
  • Applied Zoology
    Animal Diversity- I (Non-Chordates) Phylum Platyhelminthes Ranjana Saxena Associate Professor, Department of Zoology, Dyal Singh College, University of Delhi Delhi – 110 007 e-mail: [email protected] Contents: PLATYHELMINTHES DUGESIA (EUPLANARIA) Fasciola hepatica SCHISTOSOMA OR SPLIT BODY Schistosoma japonicum Diphyllobothrium latum Echinococcus granulosus EVOLUTION OF PARASITISM IN HELMINTHES PARASITIC ADAPTATION IN HELMINTHES CLASSIFICATION Class Turbellaria Class Monogenea Class Trematoda Class Cestoda PLATYHELMINTHES IN GREEK:PLATYS means FLAT; HELMINTHES means WORM The term platyhelminthes was first proposed by Gaugenbaur in 1859 and include all flatworms. They are soft bodied, unsegmented, dorsoventrally flattened worms having a bilateral symmetry, with organ grade of organization. Flatworms are acoelomate and triploblastic. The majority of these are parasitic. The free living forms are generally aquatic, either marine or fresh water. Digestive system is either absent or incomplete with a single opening- the mouth, anus is absent. Circulatory, respiratory and skeletal system are absent. Excretion and osmoregulation is brought about by protonephridia or flame cells. Ammonia is the chief excretory waste product. Nervous system is of the primitive type having a pair of cerebral ganglia and longitudinal nerves connected by transverse commissures. Sense organs are poorly developed, present only in the free living forms. Basically hermaphrodite with a complex reproductive system. Development is either direct or indirect with one or more larval stages. Flatworms have a remarkable power of regeneration. The phylum includes about 13,000 species. Here Dugesia and Fasciola hepatica will be described as the type study to understand the phylum. Some of the medically important parasitic helminthes will also be discussed. Evolution of parasitism and parasitic adaptations is of utmost importance for the endoparasitic platyhelminthes and will also be discussed here.
    [Show full text]
  • Sepiola Trirostrata Voss, 1962 Fig
    Cephalopods of the World 169 Sepiola trirostrata Voss, 1962 Fig. 245 Sepiola trirostrata Voss, 1962a, Proceedings of the Biological Society of Washington, 75: 172 [type locality: Philippines]. Frequent Synonyms: None. Misidentifications: None. FAO Names: En – Knobby bobtail squid; Fr – Sépiole bosselée; Sp – Sepiola nudosa. tentacle II left hectocotylus III left I right I left IV left male arm arrangement (after Voss, 1963) dorsal view of male Fig. 245 Sepiola trirostrata Diagnostic Features: Fins short, do not exceed length of mantle anteriorly or posteriorly. Arms III in both sexes stout and strongly curved inward, more obviously so in males. Suckers in ventral series of right arm I and arms II of males larger than dorsal suckers. Hectocotylus present, left dorsal arm modified: proximal end with 2 slender fleshy papillae (anteriormost papilla longest) and dorsolateral to these a blunt tongue-like lobe, all formed from enlarged and elongate sucker pedicels; 2 rows of suckers on arm proximal to fleshy pad; distal end of hectocotylized arm with sucker pedicels enlarged and tightly packed to form 2 double rows of columnar structures; suckers reduced with tiny, fleshy, slit-like openings. Club with 4 large suckers in transverse rows; suckers differ in size; dorsal marginal longitudinal series of suckers larger than those in ventral marginal series. Paired kidney-shaped light organs present inside mantle cavity on each side of ink sac. Colour: Mantle and head with many minute brown or black chromatophores; arms III deep pink, arms I to III each with single longitudinal row of large chromatophores, arms IV with double row of small chromatophores.
    [Show full text]
  • Life History, Mating Behavior, and Multiple Paternity in Octopus
    LIFE HISTORY, MATING BEHAVIOR, AND MULTIPLE PATERNITY IN OCTOPUS OLIVERI (BERRY, 1914) (CEPHALOPODA: OCTOPODIDAE) A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI´I AT MĀNOA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN ZOOLOGY DECEMBER 2014 By Heather Anne Ylitalo-Ward Dissertation Committee: Les Watling, Chairperson Rob Toonen James Wood Tom Oliver Jeff Drazen Chuck Birkeland Keywords: Cephalopod, Octopus, Sexual Selection, Multiple Paternity, Mating DEDICATION To my family, I would not have been able to do this without your unending support and love. Thank you for always believing in me. ii ACKNOWLEDGMENTS I would like to thank all of the people who helped me collect the specimens for this study, braving the rocks and the waves in the middle of the night: Leigh Ann Boswell, Shannon Evers, and Steffiny Nelson, you were the hard core tako hunters. I am eternally grateful that you sacrificed your evenings to the octopus gods. Also, thank you to David Harrington (best bucket boy), Bert Tanigutchi, Melanie Hutchinson, Christine Ambrosino, Mark Royer, Chelsea Szydlowski, Ily Iglesias, Katherine Livins, James Wood, Seth Ylitalo-Ward, Jessica Watts, and Steven Zubler. This dissertation would not have happened without the support of my wonderful advisor, Dr. Les Watling. Even though I know he wanted me to study a different kind of “octo” (octocoral), I am so thankful he let me follow my foolish passion for cephalopod sexual selection. Also, he provided me with the opportunity to ride in a submersible, which was one of the most magical moments of my graduate career.
    [Show full text]
  • Husbandry Manual for BLUE-RINGED OCTOPUS Hapalochlaena Lunulata (Mollusca: Octopodidae)
    Husbandry Manual for BLUE-RINGED OCTOPUS Hapalochlaena lunulata (Mollusca: Octopodidae) Date By From Version 2005 Leanne Hayter Ultimo TAFE v 1 T A B L E O F C O N T E N T S 1 PREFACE ................................................................................................................................ 5 2 INTRODUCTION ...................................................................................................................... 6 2.1 CLASSIFICATION .............................................................................................................................. 8 2.2 GENERAL FEATURES ....................................................................................................................... 8 2.3 HISTORY IN CAPTIVITY ..................................................................................................................... 9 2.4 EDUCATION ..................................................................................................................................... 9 2.5 CONSERVATION & RESEARCH ........................................................................................................ 10 3 TAXONOMY ............................................................................................................................12 3.1 NOMENCLATURE ........................................................................................................................... 12 3.2 OTHER SPECIES ...........................................................................................................................
    [Show full text]
  • Giant Pacific Octopus (Enteroctopus Dofleini) Care Manual
    Giant Pacific Octopus Insert Photo within this space (Enteroctopus dofleini) Care Manual CREATED BY AZA Aquatic Invertebrate Taxonomic Advisory Group IN ASSOCIATION WITH AZA Animal Welfare Committee Giant Pacific Octopus (Enteroctopus dofleini) Care Manual Giant Pacific Octopus (Enteroctopus dofleini) Care Manual Published by the Association of Zoos and Aquariums in association with the AZA Animal Welfare Committee Formal Citation: AZA Aquatic Invertebrate Taxon Advisory Group (AITAG) (2014). Giant Pacific Octopus (Enteroctopus dofleini) Care Manual. Association of Zoos and Aquariums, Silver Spring, MD. Original Completion Date: September 2014 Dedication: This work is dedicated to the memory of Roland C. Anderson, who passed away suddenly before its completion. No one person is more responsible for advancing and elevating the state of husbandry of this species, and we hope his lifelong body of work will inspire the next generation of aquarists towards the same ideals. Authors and Significant Contributors: Barrett L. Christie, The Dallas Zoo and Children’s Aquarium at Fair Park, AITAG Steering Committee Alan Peters, Smithsonian Institution, National Zoological Park, AITAG Steering Committee Gregory J. Barord, City University of New York, AITAG Advisor Mark J. Rehling, Cleveland Metroparks Zoo Roland C. Anderson, PhD Reviewers: Mike Brittsan, Columbus Zoo and Aquarium Paula Carlson, Dallas World Aquarium Marie Collins, Sea Life Aquarium Carlsbad David DeNardo, New York Aquarium Joshua Frey Sr., Downtown Aquarium Houston Jay Hemdal, Toledo
    [Show full text]
  • BIOLÓGICA VENEZUELICA Es Editada Por Dirección Postal De Los Mismos
    7 M BIOLÓGICA II VENEZUELICA ^^.«•r-íí-yííT"1 VP >H wv* "V-i-, •^nru-wiA ">^:^;iW SWv^X/^ií. UN I VE RSIDA P CENTRAL DÉ VENEZUELA ^;."rK\'':^>:^:;':••'': ; .-¥•-^>v^:v- ^ACUITAD DE CIENCIAS INSilTÜTO DÉ Z00LOGIA TROPICAL: •RITiTRnTOrr ACTA BIOLÓGICA VENEZUELICA es editada por Dirección postal de los mismos. Deberá suministrar­ el Instituto de Zoología Tropical, Facultad, de Ciencias se en página aparte el título del trabajo en inglés en de la Universidad Central de Venezuela y tiene por fi­ caso de no estar el manuscritp elaborado en ese nalidad la publicación de trabajos originales sobre zoo­ idioma. logía, botánica y ecología. Las descripciones de espe­ cies nuevas de la flora y fauna venezolanas tendrán Resúmenes: Cada resumen no debe exceder 2 pági­ prioridad de publicación. Los artículos enviados no de­ nas tamaño carta escritas a doble espacio. Deberán berán haber sido publicados previamente ni estar sien­ elaborarse en castellano e ingles, aparecer en este do considerados para tal fin en otras revistas. Los ma­ mismo orden y en ellos deberá indicarse el objetivo nuscritos deberán elaborarse en castellano o inglés y y los principales resultados y conclusiones de la co­ no deberán exceder 40 páginas tamaño carta, escritas municación. a doble espacio, incluyendo bibliografía citada, tablas y figuras. Ilustraciones: Todas las ilustraciones deberán ser llamadas "figuras" y numeradas en orden consecuti­ ACTA BIOLÓGICA VENEZUELICA se edita en vo (Ejemplo Fig. 1. Fig 2a. Fig 3c.) el número, así co­ cuatro números que constituyen un volumen, sin nin­ mo también el nombre del autor deberán ser escritos gún compromiso de fecha fija de publicación.
    [Show full text]
  • Ecological Diversification of Vibrio Fischeri Serially Passaged for 500 Generations in Novel Squid Host Euprymna Tasmanica
    Microb Ecol DOI 10.1007/s00248-013-0356-3 HOST MICROBE INTERACTIONS Ecological Diversification of Vibrio fischeri Serially Passaged for 500 Generations in Novel Squid Host Euprymna tasmanica William Soto & Ferdinand M. Rivera & Michele K. Nishiguchi Received: 4 June 2013 /Accepted: 16 December 2013 # Springer Science+Business Media New York 2014 Abstract Vibrio fischeri isolated from Euprymna scolopes V. fischeri ecotypes, and complex changes in biolumines- (Cephalopoda: Sepiolidae) was used to create 24 lines that cence. Our data demonstrate that numerous alternate fitness were serially passaged through the non-native host Euprymna optima or peaks are available to V. fi sc he ri in host adaptive tasmanica for 500 generations. These derived lines were char- landscapes, where novel host squids serve as habitat islands. acterized for biofilm formation, swarming motility, carbon Thus, V. fischeri founder flushes occur during the initiation of source utilization, and in vitro bioluminescence. Phenotypic light organ colonization that ultimately trigger founder effect assays were compared between “ES” (E. scolopes)and“ET” diversification. (E. tasmanica) V. fischeri wild isolates to determine if conver- gent evolution was apparent between E. tasmanica evolved lines and ET V. fischeri. Ecological diversification was ob- Introduction served in utilization of most carbon sources examined. Con- vergent evolution was evident in motility, biofilm formation, The Sepiolid Squid–Vibrio Mutualism and select carbon sources displaying hyperpolymorphic usage in V. fischeri. Convergence in bioluminescence (a 2.5-fold Sepiolid squids in the genera Sepiola and Euprymna form light increase in brightness) was collectively evident in the derived organ mutualisms with marine bioluminescent bacteria from lines relative to the ancestor.
    [Show full text]
  • Spaceflight Imposes Numerous Adaptive Challenges for Terrestrial Life
    Astrobiology Science Conference 2017 (LPI Contrib. No. 1965) 3032.pdf Transcriptomic changes in an animal-bacterial symbiosis under modeled microgravity conditions. Giorgio Casaburi1, Irina Goncharenko-Foster1 and Jamie S. Foster1, 1Department of Microbiology and Cell Science, University of Florida, Space Life Science Lab, Merritt Island, FL, USA. Introduction: Spaceflight imposes numerous adaptive challenges for terrestrial life. The reduction in gravity, or microgravity, represents a novel environ- ment that can disrupt homeostasis of many physiologi- cal processes. Additionally, it is becoming increasingly clear that an organism’s microbiome is critical for host health and examining its resiliency in microgravity represents a new frontier for space biology research. In this study, we examine the impact of microgravity on the interactions between the squid Euprymna scolopes and its beneficial symbiont Vibrio fischeri, which form a highly specific binary mutualism. First, animals in- oculated with V. fischeri aboard the space shuttle showed effective colonization of the host light organ, the site of the symbiosis, during space flight. Second, RNA-Seq analysis of squid exposed to modeled mi- crogravity conditions exhibited extensive differential gene expression in the presence and absence of the symbiotic partner. Transcriptomic analyses revealed in the absence of the symbiont during modeled micro- gravity there was an enrichment of genes and pathways associated with the innate immune and oxidative stress response. The results suggest that V. fischeri may help modulate the host stress responses under modeled mi- crogravity. This study provides a window into the adaptive responses that the host animal and its symbi- ont use during modeled microgravity. .
    [Show full text]
  • Octopus Insularis</Italic> As a New Marine Model for Evolutionary
    © 2019. Published by The Company of Biologists Ltd | Biology Open (2019) 8, bio046086. doi:10.1242/bio.046086 RESEARCH ARTICLE Octopus insularis as a new marine model for evolutionary developmental biology Ernesto Maldonado1,*, Emma Rangel-Huerta1,2, Roberto González-Gómez3,4, Gabriel Fajardo-Alvarado3,4 and Piedad S. Morillo-Velarde4,5,* ABSTRACT of aquatic animal eggs and embryos guarantees the observation of Octopuses are intriguing organisms that, together with squids and every developmental stage using microscopy and allows detailed cuttlefishes, form the extant coleoid cephalopods. This group includes experimental analysis from the first cell division through to the many species that can potentially be used as models in the fields of formation of embryonic germ layers and organogenesis (Boletzky biomedicine, developmental biology, evolution, neuroscience and et al., 2006). Finally, small embryos allow reasonable sample sizes even for robotics research. The purpose of this work is to first to be tested together using multi-well plates to provide multiple present a simple method for maintaining Octopus insularis embryos experimental replicates at the same time, making them cost- under a laboratory setup. Second, we show that these embryos are effective animal models (Hill et al., 2005). suitable for detailed analyses of specific traits that appear during Coleoid cephalopods (octopus, squid and cuttlefish) exhibit the developmental stages, including the eyes, hearts, arms, suckers, largest nervous systems found among invertebrates (Young, 1971) chromatophores and Kölliker’s organs. Similar complex traits between and a sophisticated visual system controlling body color changes for cephalopods and vertebrates such as the visual, cardiovascular, communication, camouflage and mimicry (Hanlon et al., 2011; neural and pigmentation systems are generally considered to be a Robin et al., 2014).
    [Show full text]
  • Counterillumination in the Hawaiian Bobtail Squid, Euprymna Scolopes Berry (Mollusca: Cephalopoda)
    Marine Biology (2004) 144: 1151–1155 DOI 10.1007/s00227-003-1285-3 RESEARCH ARTICLE B. W. Jones Æ M. K. Nishiguchi Counterillumination in the Hawaiian bobtail squid, Euprymna scolopes Berry (Mollusca: Cephalopoda) Received: 27 May 2003 / Accepted: 24 November 2003 / Published online: 10 January 2004 Ó Springer-Verlag 2004 Abstract The mutualism between the Hawaiian bobtail 1999), predator evasion (Hartline et al. 1999), and squid Euprymna scolopes and the luminescent symbiont counterillumination, an antipredatory behavior com- Vibrio fischeri has been used extensively as a model mon to many midwater cephalopods, decapod crusta- system for studies ranging from co-speciation and bio- ceans, and fishes (Young 1977; Harper and Case 1999; geography to gene regulation and the evolution of Lindsay et al. 1999). Animals exhibiting counterillumi- pathogenesis. In this association, the luminescent bac- nation reduce their silhouette by producing biolumi- terium V. fischeri is housed in a complex light organ nescence in an attempt to match the intensity and within the mantle cavity of E. scolopes. Prior hypotheses wavelength of down-welling light (Young and Roper have assumed that sepiolid squids in general utilize the 1977), providing a mechanism that allows them to evade bioluminescence produced by their V. fischeri symbionts predators by camouflage. The light produced can either for counterillumination, a behavior that helps squid be autogenic (luminescence produced intrinsically by the camouflage themselves by matching down-welling animal itself), or bacteriogenic (produced by bacterial moonlight via silhouette reduction. This assumption, symbionts). based solely on the morphology of the squid light organ, Establishing a morphological design for efficient has never been empirically tested for Euprymna in the counterillumination has resulted in the evolution of a laboratory.
    [Show full text]
  • Cephalopoda: Sepiolidae)
    Invertebrate Biology 137(3): 240–249. © 2018, The American Microscopical Society, Inc. DOI: 10.1111/ivb.12223 Vascular architecture in the bacteriogenic light organ of Euprymna tasmanica (Cephalopoda: Sepiolidae) Anthony J. Patelunas and Michele K. Nishiguchia Department of Biology, New Mexico State University, Las Cruces, New Mexico 88003-8001, USA Abstract. Symbiosis between southern dumpling squid, Euprymna tasmanica (Cephalopoda: Sepiolidae), and its luminescent symbiont, the bacterium Vibrio fischeri, provides an experi- mentally tractable system to examine interactions between the eukaryotic host and its bacte- rial partner. Luminescence emitted by the symbiotic bacteria provides light for the squid in a behavior termed “counter-illumination,” which allows the squid to mask its shadow amidst downwelling moonlight. Although this association is beneficial, light generated from the bacteria requires large quantities of oxygen to maintain this energy-consuming reaction. Therefore, we examined the vascular network within the light organ of juveniles of E. tas- manica with and without V. fischeri. Vessel type, diameter, and location of vessels were measured. Although differences between symbiotic and aposymbiotic squid demonstrated that the presence of V. fischeri does not significantly influence the extent of vascular branch- ing at early stages of symbiotic development, these finding do provide an atlas of blood ves- sel distribution in the organ. Thus, these results provide a framework to understand how beneficial bacteria influence the development of a eukaryotic closed vascular network and provide insight to the evolutionary developmental dynamics that form during mutualistic interactions. Additional key words: symbiosis, squid, vasculature, aerobic Symbiotic relationships between bacteria and mul- physiological changes during infection and colonization ticellular organisms are very common in nature by bacteria of the genus Vibrio from the environment (Hirsch & McFall-Ngai 2000; Baker 2003; Wang (Montgomery & McFall-Ngai 1998; Foster et al.
    [Show full text]
  • Shallow-Water Palaemonoid Shrimps from New Caledonia (Crustacea : Decapoda)
    SHALLOW-WATER PALmMONOID SHRIMPS 22 1 3 Shallow-water Palaemonoid shrimps from New Caledonia (Crustacea : Decapoda) ,I A. J. BRUCE Division of Natural Sciences, Northern Territory Museum, P.O. Box 4646, Dxwin, Australia 0801 ABSTRACT A collection of palaemonoid shrimps from New Caledonian waters less than 100 m depth has been examined and found to include 39 species, including three new species, Palemonella dolichodactylus, Periclimenes ischiospìnusus and P. tenuirostris, and fourteen species new to the New Caledonian fauna, increasing to 67 the number of marine palaemonoid shrimps known from New Caledonia. RESUME Une collection de crevettes palaemonides trouvees dans les eaux de moins de 100 m de profondeur en Nouvelle-Cal6donie a CtC examinee et 39 espèces ont Ct6 identifiees, trois d'entres elles sont nouvelles pour la science, Palaemonella dolichodactylus, Periclimenes ischiospinosus, P. tenuirostris, et quatorze espèces sont nouvelles pour la faune de Nouvelle-Caledonie. Le nombre des espèces de crevettes palaemonides marines est maintenant port6 h soixante-sept. La zoogeographie de ces espèces est brièvement diScutCe. INTRODUCTION The marine palaemonoid shrimps of New Caledonia have not attracted a great deal of study. Early collections were made by Abbe CULLIERETin 1890 and deposited in the collections of the Museum national d'Histoire naturelle, Paris, some of which were reported upon by KEMP (1922). HOLTHUIs (1953) recorded the presence of Stegopontonia commensalis. BRUCE (1968, 1970 a, 1970 c) added nine further species to the New Caledonian fauna list and more recently a series of papers by MONOD (1969,1972,1973,1976 a, 1976 b) provided data on a further nine species.
    [Show full text]