Lack of Effect of Tyrosine Depletion on Mood in Recovered Depressed Women
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Neurotransmitter Resource Guide
NEUROTRANSMITTER RESOURCE GUIDE Science + Insight doctorsdata.com Doctor’s Data, Inc. Neurotransmitter RESOURCE GUIDE Table of Contents Sample Report Sample Report ........................................................................................................................................................................... 1 Analyte Considerations Phenylethylamine (B-phenylethylamine or PEA) ................................................................................................. 1 Tyrosine .......................................................................................................................................................................................... 3 Tyramine ........................................................................................................................................................................................4 Dopamine .....................................................................................................................................................................................6 3, 4-Dihydroxyphenylacetic Acid (DOPAC) ............................................................................................................... 7 3-Methoxytyramine (3-MT) ............................................................................................................................................... 9 Norepinephrine ........................................................................................................................................................................ -
THE BIOSYNTHESIS of SOME PHENOLIC ALKALOIDS a Thesis Submitted by GEOFFREY MELVILLE THOMAS for the Degree of DOCTOR of PHILOSOPH
/1 THE BIOSYNTHESIS OF SOME PHENOLIC ALKALOIDS a thesis submitted by GEOFFREY MELVILLE THOMAS for the degree of DOCTOR OF PHILOSOPHY of THE UNIVERSITY OF LONDON Imperial College, June 1963. London, S. W.7. ABSTRACT A brief review of the biosynthesis of alkaloids, other than those of the Amaryllidaceae and morphine groups, is given. The biosynthesis of these two groups is discussed more fully with particular reference to the evidence for the Barton and Cohen concept of phenol oxidation as a biogenetic mechanism. The incorporation of labelled phenolic precursors, derivatives of norbelladine, has been shown and by means of multiple labelled experiments incorporation as a whole, without degradation, has been proved. Other experiments described have thrown light on the earlier stages of biogenesis. The norlaudanosine derivative, (±) reticuline, has been shown to be incorporated into morphine, and an in vitro synthesis of thebaine from (±) reticuline using a radiochemical dilution method is de-scribed. I am deeply grateful to Professor D. H. R. Barton and Dr. G. W. Kirby for the privilege and pleasure of working under their supervision and for their great help in matters chemical and non-chemical. To the Salters Company I would like to express my sincere thanks for the award of a scholarship and for their interest during the tenure of it. My thanks are also due to Dr. D. W. Turner for advice on counting techniques, Mr. D. Aldrich and his staff for valuable technical assistance, Miss J. Cuckney for microanalyses, Mr. R.H. Young who grew the daffodils and poppies and to my many friends and co-workers at Imperial College. -
Mendelian Randomization Study on Amino Acid Metabolism Suggests Tyrosine As Causal Trait for Type 2 Diabetes
nutrients Article Mendelian Randomization Study on Amino Acid Metabolism Suggests Tyrosine as Causal Trait for Type 2 Diabetes Susanne Jäger 1,2,* , Rafael Cuadrat 1,2, Clemens Wittenbecher 1,2,3, Anna Floegel 4, Per Hoffmann 5,6, Cornelia Prehn 7 , Jerzy Adamski 2,7,8,9 , Tobias Pischon 10,11,12 and Matthias B. Schulze 1,2,13 1 Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany; [email protected] (R.C.); [email protected] (C.W.); [email protected] (M.B.S.) 2 German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; [email protected] 3 Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA 4 Leibniz Institute for Prevention Research and Epidemiology-BIPS, 28359 Bremen, Germany; fl[email protected] 5 Human Genomics Research Group, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland; per.hoff[email protected] 6 Institute of Human Genetics, Division of Genomics, Life & Brain Research Centre, University Hospital of Bonn, 53105 Bonn, Germany 7 Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany; [email protected] 8 Chair of Experimental Genetics, Center of Life and Food Sciences Weihenstephan, Technische Universität München, 85354 Freising-Weihenstephan, Germany 9 Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, -
H-Tyrosine-Glycine-Phenylalanine-Glycine-Glycine-OH for the Treatment of Chronic Idiopathic Myelofibrosis
European Medicines Agency Pre-authorisation Evaluation of Medicines for Human Use Document Date: London, 5 October 2009 Doc.Ref.: EMEA/COMP/1579/2003 Rev.1 Please note that this product was withdrawn from the Community Register of designated Orphan Medicinal Products in March 2009 on request of the Sponsor. Committee for Orphan Medicinal Products Public summary of positive opinion for orphan designation of H-Tyrosine-Glycine-Phenylalanine-Glycine-Glycine-OH for the treatment of chronic idiopathic myelofibrosis On 20 October 2003, orphan designation (EU/3/03/167) was granted by the European Commission to Abiogen Pharma S.p.A, Italy, for H-Tyrosine-Glycine-Phenylalanine-Glycine-Glycine-OH for the treatment of chronic idiopathic myelofibrosis. What is chronic idiopathic myelofibrosis? Chronic idiopathic myelofibrosis is a disease in which cancer cells are found in the blood and in the bone marrow. The bone marrow is the spongy tissue inside the large bones in the body. Normally the bone marrow makes cells called “blasts” that mature into several different types of blood cells that have specific functions in the body. These include red cells, white cells and platelets. Red blood cells carry oxygen and other materials to all tissues of the body. White blood cells fight infection. Platelets make the blood clot. When myelofibrosis develops, the bone marrow produces large number of abnormal blood cells. In chronic idiopathic myelofibrosis the abnormal population of cells produce substances that alter the growth media of bone marrow and makes bone marrow very dense and rigid. As the abnormal bone marrow environment is no more adequate for the cells, some migrate to other sites where proliferation and maturation take place. -
Mrx CLINICAL ALERT
MRx AUGUST 2018 CLINICAL ALERT YOUR MONTHLY SOURCE FOR DRUG INFORMATION HIGHLIGHTS HOT TOPIC: potential to placebo in non-dependent FIRST DRUG COMPRISED adult recreational drug users. EDITORIAL OF ACTIVE MARIJUANA DERIVATIVE APPROVED Cannabidiol oral solution was studied STAFF in 3 randomized, double-blind, placebo- Under Priority review, the United States controlled clinical trials including 516 (US) Food and Drug Administration (FDA) patients with either LGS or Dravet EDITOR IN CHIEF approved cannabidiol oral solution syndrome. Cannabidiol taken with ® Maryam Tabatabai (Epidiolex ) for the treatment of the patient’s current anticonvulsant PharmD seizures associated with Lennox-Gastaut regimen was shown to be effective syndrome (LGS) or Dravet syndrome in in reducing the frequency of seizures patients ≥ 2 years of age. It is the only when compared with placebo. Over EXECUTIVE EDITOR drug approved to treat Dravet syndrome the 12-week treatment period, the Carole Kerzic and the FDA designated it as an Orphan reduction in median number of LGS RPh drug and Rare pediatric disease drug seizures ranged from 37% to 44% with to treat both serious, difficult-to-treat CBD and 17% to 22% with placebo. DEPUTY EDITORS childhood seizure disorders. Dravet For Dravet syndrome, seizure reductions Stephanie Christofferson syndrome is diagnosed in approximately were 39% and 13% with CBD and PharmD 1 in 15,700 individuals in the US and placebo, respectively. Common side is characterized by frequent prolonged effects (≥ 10%) reported with CBD Jessica Czechowski seizures and developmental delays. LGS were increased liver transaminases PharmD involves frequent drop seizures and (particularly with concurrent use of impaired intellectual development. -
Amino Acids Amino Acids
Amino Acids Amino Acids What Are Amino Acids? Essential Amino Acids Non Essential Amino Acids Amino acids are the building blocks of proteins; proteins are made of amino acids. Isoleucine Arginine (conditional) When you ingest a protein your body breaks it down into the individual aminos, Leucine Glutamine (conditional) reorders them, re-folds them, and turns them into whatever is needed by the body at Lysine Tyrosine (conditional) that time. From only 20 amino acids, the body is able to make thousands of unique proteins with different functions. Methionine Cysteine (conditional) Phenylalanine Glycine (conditional) Threonine Proline (conditional) Did You Know? Tryptophan Serine (conditional) Valine Ornithine (conditional) There are 20 different types of amino acids that can be combined to make a protein. Each protein consists of 50 to 2,000 amino acids that are connected together in a specific Histidine* Alanine sequence. The sequence of the amino acids determines each protein’s unique structure Asparagine and its specific function in the body. Asparate Popular Amino Acid Supplements How Do They Benefit Our Health? Acetyl L- Carnitine: As part of its role in supporting L-Lysine: L-Lysine, an essential amino acid, is mental function, Acetyl L-Carnitine may help needed to support proper growth and bone Proteins (amino acids) are needed by your body to maintain muscles, bones, blood, as support memory, attention span and mental development. It can also support immune function. well as create enzymes, neurotransmitters and antibodies, as well as transport and performance. store molecules. N-Acetyl Cysteine: N-Acetyl Cysteine (NAC) is a L-Arginine: L-Arginine is a nonessential amino acid form of the amino acid cysteine. -
Interpretive Guide for Amino Acids
Interpretive Guide for Amino Acids Intervention Options LOW HIGH Essential Amino Acids Arginine (Arg) Arg Mn Histidine (His) Folate, His Isoleucine (Ile) * B6, Check for insulin insensitivity Leucine (Leu) * B6, Check for insulin insensitivity Lysine (Lys) Carnitine Vitamin C, Niacin, B6, Iron, a-KG Methionine(Met) * B6, á-KG, Mg, SAM Phenylalanine (Phe) * Iron,VitaminC,Niacin,LowPhediet Threonine(Thr) * B6, Zn Tryptophan(Trp) Trpor5-HTP Niacin, B6 Valine (Val) * B6, Check for insulin insensitivity Essential Amino Acid Derivatives Neuroendocrine Metabolism y-Aminobutyric Acid (GABA) a-KG, B6 Glycine (Gly) Gly Folate, B6,B2,B5 Serine (Ser) B6, Mn, Folate * Taurine (Tau) Tau, B6 Vit. E, Vit. C, B-Carotene, CoQ10, Lipoate Tyrosine(Tyr) Iron,Tyr,VitaminC,Niacin Cu, Iron, Vitamin C, B6 Ammonia/Energy Metabolism a-Aminoadipic Acid B6, a-KG Asparagine (Asn) Mg Aspartic Acid (Asp) a-KG, B6 Mg, Zn Citrulline (Cit) Mg, Aspartic acid Glutamic Acid (Glu) B6, a-KG Niacin, B6 Glutamine (Gln) a-KG, B6 Ornithine (Orn) Arg Mg, a-KG, B6 Sulfur Metabolism Cystine (Cys) NAC B2 Cystathionine B6 Homocystine (HCys) B6, Folate, B12, Betaine Additional Metabolites a-Amino-N-Butyric Acid a-KG, B6 B6, a-KG Alanine (Ala) * B6 Anserine Zn n-Alanine Lactobacillus and Bifidobacteria, B6 n-Aminoisobutyric Acid B6 Carnosine Zn Ethanolamine Mg Hydroxylysine (HLys) Vitamin C, Iron, a-KG Hydroxyproline (HPro) Vitamin C, Iron, a-KG 1-Methylhistidine Vitamin E, B12, Folate 3-Methylhistidine BCAAs, Vit. E, Vit. C, n-Carotene, CoQ10, Lipoate Phosphoethanolamine (PE) SAM, B12, Folate, Betaine Phosphoserine Mg Proline (Pro) a-KG Vitamin C, Niacin Sarcosine B2 * Use balanced or custom mixtures of essential amino acids Nordic Laboratiroes∙ Nygade 6, 3.sal ∙ 1164 Copenhagen K ∙ DenmarkTel: +45 33 75 1000 ∙ e-mail: [email protected] In association with ©Metametrix, Inc. -
Solutions to 7.012 Problem Set 1
MIT Biology Department 7.012: Introductory Biology - Fall 2004 Instructors: Professor Eric Lander, Professor Robert A. Weinberg, Dr. Claudette Gardel Solutions to 7.012 Problem Set 1 Question 1 Bob, a student taking 7.012, looks at a long-standing puddle outside his dorm window. Curious as to what was growing in the cloudy water, he takes a sample to his TA, Brad Student. He wanted to know whether the organisms in the sample were prokaryotic or eukaryotic. a) Give an example of a prokaryotic and a eukaryotic organism. Prokaryotic: Eukaryotic: All bacteria Yeast, fungi, any animial or plant b) Using a light microscope, how could he tell the difference between a prokaryotic organism and a eukaryotic one? The resolution of the light microscope would allow you to see if the cell had a true nucleus or organelles. A cell with a true nucleus and organelles would be eukaryotic. You could also determine size, but that may not be sufficient to establish whether a cell is prokaryotic or eukaryotic. c) What additional differences exist between prokaryotic and eukaryotic organisms? Any answer from above also fine here. In addition, prokaryotic and eukaryotic organisms differ at the DNA level. Eukaryotes have more complex genomes than prokaryotes do. Question 2 A new startup company hires you to help with their product development. Your task is to find a protein that interacts with a polysaccharide. a) You find a large protein that has a single binding site for the polysaccharide cellulose. Which amino acids might you expect to find in the binding pocket of the protein? What is the strongest type of interaction possible between these amino acids and the cellulose? Cellulose is a polymer of glucose and as such has many free hydroxyl groups. -
The Activation of Α1-Adrenoceptors Is Implicated in the Antidepressant-Like Effect of Creatine in the Tail Suspension Test
CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Progress in Neuro-Psychopharmacology & Biological Psychiatry 44 (2013) 39–50 Contents lists available at SciVerse ScienceDirect Progress in Neuro-Psychopharmacology & Biological Psychiatry journal homepage: www.elsevier.com/locate/pnp The activation of α1-adrenoceptors is implicated in the antidepressant-like effect of creatine in the tail suspension test Mauricio P. Cunha, Francis L. Pazini, Ágatha Oliveira, Luis E.B. Bettio, Julia M. Rosa, Daniele G. Machado, Ana Lúcia S. Rodrigues ⁎ Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brazil article info abstract Article history: The antidepressant-like activity of creatine in the tail suspension test (TST) was demonstrated previously by Received 5 September 2012 our group. In this study we investigated the involvement of the noradrenergic system in the Received in revised form 8 January 2013 antidepressant-like effect of creatine in the mouse TST. In the first set of experiments, creatine administered Accepted 18 January 2013 by i.c.v. route (1 μg/site) decreased the immobility time in the TST, suggesting the central effect of this com- Available online 26 January 2013 pound. The anti-immobility effect of peripheral administration of creatine (1 mg/kg, p.o.) was prevented by the pretreatment of mice with α-methyl-p-tyrosine (100 mg/kg, i.p., inhibitor of tyrosine hydroxylase), Keywords: α α Antidepressant prazosin -
Today's Topic
May 7, 2021 Vol. 1, No. 8 Palliative Care Pharmacy Team: TODAY’S TOPIC: Antidepressant Adverse Drug Reactions: Focus on QT Prolongation Clinical Pharmacy Specialist: Background: Antidepressants have been used for many years to treat mental health conditions such as Maria Felton Lowry, depression and anxiety (not an all-inclusive list). Their mechanisms are somewhat unique to the PharmD, BCPS, BCGP class of antidepressant, for instance, tricyclic antidepressants are thought to delay the inward Assistant Professor sodium current into cardiomyocytes, slowing cardiac depolarization. In contrast, SSRIs directly block potassium channels and disrupt hERG protein expression, both reducing potassium ion flow. University of Pittsburgh Palliative care clinicians use these medications commonly in clinical practice for symptom School of Pharmacy, management and should be aware of their potential side effects. Department of Pharmacy and Therapeutics Importance: Palliative Antidepressants can cause QTc prolongation. As stated in previous weeks, clinically significant QTc Care Clinical Pharmacy prolongation is an absolute QTc > 500 msec, QTc > 25% from baseline, or change of QTc > 60 Specialist msec.1 The degree of QTc prolongation is a modest predictor of the risk of Torsades de Pointes UPMC Palliative and (TdP) and sudden cardiac death.2 Still, it is important for palliative care clinicians be aware of this Supportive Institute risk of commonly prescribed medications in our practice. Cell: 412-627-8473 Known QTc prolongation risk factors: Office: 412-864-2899 -
Amino Acid Transport Pathways in the Small Intestine of the Neonatal Rat
Pediat. Res. 6: 713-719 (1972) Amino acid neonate intestine transport, amino acid Amino Acid Transport Pathways in the Small Intestine of the Neonatal Rat J. F. FITZGERALD1431, S. REISER, AND P. A. CHRISTIANSEN Departments of Pediatrics, Medicine, and Biochemistry, and Gastrointestinal Research Laboratory, Indiana University School of Medicine and Veterans Administration Hospital, Indianapolis, Indiana, USA Extract The activity of amino acid transport pathways in the small intestine of the 2-day-old rat was investigated. Transport was determined by measuring the uptake of 1 mM con- centrations of various amino acids by intestinal segments after a 5- or 10-min incuba- tion and it was expressed as intracellular accumulation. The neutral amino acid transport pathway was well developed with intracellular accumulation values for leucine, isoleucine, valine, methionine, tryptophan, phenyl- alanine, tyrosine, and alanine ranging from 3.9-5.6 mM/5 min. The intracellular accumulation of the hydroxy-containing neutral amino acids threonine (essential) and serine (nonessential) were 2.7 mM/5 min, a value significantly lower than those of the other neutral amino acids. The accumulation of histidine was also well below the level for the other neutral amino acids (1.9 mM/5 min). The basic amino acid transport pathway was also operational with accumulation values for lysine, arginine and ornithine ranging from 1.7-2.0 mM/5 min. Accumulation of the essential amino acid lysine was not statistically different from that of nonessential ornithine. Ac- cumulation of aspartic and glutamic acid was only 0.24-0.28 mM/5 min indicating a very low activity of the acidic amino acid transport pathway. -
Assessment Report
19 September 2013 EMA/737723/2013 Committee for Medicinal Products for Human Use (CHMP) Assessment report ABILIFY MAINTENA International non-proprietary name: ARIPIPRAZOLE Procedure No. EMEA/H/C/002755/0000 Note Assessment report as adopted by the CHMP with all information of a commercially confidential nature deleted. 7 Westferry Circus ● Canary Wharf ● London E14 4HB ● United Kingdom Telephone +44 (0)20 7418 8400 Facsimile +44 (0)20 7418 8613 E -mail [email protected] Website www.ema.europa.eu An agency of the European Union © European Medicines Agency, 2013. Reproduction is authorised provided the source is acknowledged. Table of contents 1.1. Submission of the dossier .................................................................................... 6 1.2. Manufacturers ................................................................................................... 6 1.3. Steps taken for the assessment of the product ....................................................... 7 2. Scientific discussion ................................................................................ 7 2.1. Introduction ...................................................................................................... 7 2.2. Quality aspects .................................................................................................. 9 2.2.1. Introduction ................................................................................................... 9 2.2.2. Active Substance ..........................................................................................