A Mean Field Theory of Nonlinear Filtering Pierre Del Moral, Frédéric Patras, Sylvain Rubenthaler

Total Page:16

File Type:pdf, Size:1020Kb

A Mean Field Theory of Nonlinear Filtering Pierre Del Moral, Frédéric Patras, Sylvain Rubenthaler A Mean Field Theory of Nonlinear Filtering Pierre del Moral, Frédéric Patras, Sylvain Rubenthaler To cite this version: Pierre del Moral, Frédéric Patras, Sylvain Rubenthaler. A Mean Field Theory of Nonlinear Filtering. [Research Report] RR-6437, INRIA. 2008. inria-00238398v3 HAL Id: inria-00238398 https://hal.inria.fr/inria-00238398v3 Submitted on 5 Feb 2008 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE A Mean Field Theory of Nonlinear Filtering Pierre Del Moral — Frédéric Patras — Sylvain Rubenthaler N° 6437 February 2008 Thème NUM apport de recherche ISSN 0249-6399 ISRN INRIA/RR--6437--FR+ENG A Mean Field Theory of Nonlinear Filtering Pierre Del Moral∗, Fr´ed´eric Patrasy , Sylvain Rubenthaler z Th`emeNUM | Syst`emesnum´eriques Equipes-Projets´ CQFD Rapport de recherche n° 6437 | February 2008 | 36 pages Abstract: We present a mean field particle theory for the numerical approx- imation of Feynman-Kac path integrals in the context of nonlinear filtering. We show that the conditional distribution of the signal paths given a series of noisy and partial observation data is approximated by the occupation mea- sure of a genealogical tree model associated with mean field interacting particle model. The complete historical model converges to the McKean distribution of the paths of a nonlinear Markov chain dictated by the mean field interpretation model. We review the stability properties and the asymptotic analysis of these interacting processes, including fluctuation theorems and large deviation princi- ples. We also present an original Laurent type and algebraic tree-based integral representations of particle block distributions. These sharp and non asymptotic propagations of chaos properties seem to be the first result of this type for mean field and interacting particle systems. Key-words: Feynman-Kac measures, nonlinear filtering, interacting particle systems, historical and genealogical tree models, central limit theorems, Gaus- sian fields, propagations of chaos, trees and forests, combinatorial enumeration. ∗ Centre INRIA Bordeaux et Sud-Ouest & Institut de Math´ematiquesde Bordeaux , Uni- versit´ede Bordeaux I, 351 cours de la Lib´eration33405 Talence cedex, France, Pierre.Del- [email protected]. y CNRS UMR 6621, Universit´ede Nice, Laboratoire de Math´ematiquesJ. Dieudonn´e,Parc Valrose, 06108 Nice Cedex 2, France. z CNRS UMR 6621, Universit´ede Nice, Laboratoire de Math´ematiquesJ. Dieudonn´e,Parc Valrose, 06108 Nice Cedex 2, France. Centre de recherche INRIA Bordeaux – Sud Ouest Domaine Universitaire - 351, cours de la Libération 33405 Talence Cedex Téléphone : +33 5 40 00 69 00 Une th´eoriechamp moyen du filtrage non lin´eaire R´esum´e: Nous exposons ici une th´eorieparticulaire de type champ moyen pour la r´esolutionnum´eriquedes int´egralesde chemins de Feynman utilis´eesen fil- trage non lin´eaire.Nous d´emontrons que les lois conditionnelles des trajectoires d'un signal bruit´eet partiellement observ´epeuvent ^etrecalcul´ees `apartir des mesures d'occupation d'arbres g´en´ealogiquesassoci´es`ades syst`emes de partic- ules en interaction. Le processus historique caract´erisant l'´evolution ancestrale compl`eteconverge vers la mesure de McKean des trajectoires d'une cha^ınede Markov non lin´eairedict´eepar l'interpr´etationchamp moyen du mod`elede fil- trage. Nous passons en revue les propri´et´esde stabilit´eet les r´esultatsd'analyse asymptotique de ces processus en interaction, avec notamment des th´eor`emes de fluctuations et des principes de grandes d´eviations. Nous exposons aussi des d´eveloppements faibles et non asymptotiques des distributions de blocs de particules en termes combinatoire de for^etset d'arbres de coalescences. Ces propri´et´esfines de propagations du chaos semblent ^etreles premiers r´esultats de ce type pour des syst`emesde particules en interaction de type champ moyen. Mots-cl´es: Mesures de Feynman-Kac, filtrage non lin´eaire,syst`emesde particules en interaction, processus historique et mod`elesd'arbres g´en´ealogiques, th´eor`emesde la limite centrale, champs gaussiens, propri´et´esde propagations du chaos, combinatoire d'arbres et de for^et. A Mean Field Theory of Nonlinear Filtering 3 1 Introduction 1.1 A mean field theory of nonlinear filtering The filtering problem consists in computing the conditional distributions of a state signal given a series of observations. The signal/observation pair sequence (Xn;Yn)n≥0 is defined as a Markov chain which takes values in some product of measurable spaces (En ×Fn)n≥0. We further assume that the initial distribution ν0 and the Markov transitions Pn of the pair process (Xn;Yn) have the form ν0(d(x0; y0)) = g0(x0; y0) η0(dx0) q0(dy0) Pn((xn−1; yn−1); d(xn; yn)) = Mn(xn−1; dxn) gn(xn; yn) qn(dyn) (1.1) where gn are strictly positive functions on (En × Fn) and qn is a sequence of measures on Fn. The initial distribution η0 of the signal Xn, the Markov transitions Mn and the likelihood functions gn are assumed to be known. The main advantage of this general and abstract set-up comes from the fact that it applies directly without further work to traditional real valued or multidimensional problems, as well as to smoothing and path estimation filtering models. For instance the signal 0 0 Xn = (X0;:::;Xn) may represents the path from the origin up to time n of an auxiliary Markov 0 0 0 chain Xn taking values in some measurable state space (En; En). A version of the conditional distributions ηn of the signal states Xn given their noisy observations Yp = yp up to time p < n is expressed in terms of a flow of Feynman-Kac measures associated with the distribution of the paths of the signal and weighted by the collection of likelihood potential functions. To better connect the mean field particle approach to existing alternatives methods, it is convenient at this point to make a couple of remarks. Firstly, using this functional representation it is tempting to approximate this measures using a crude Monte Carlo method based on independent simula- tions of the paths of the signal weighted by products of the likelihood functions from the origin up to time n. This strategy gives satisfactory results when the signal paths are sufficiently stable using a simple weight regularization to avoid their degeneracy with respect to the time parameter. We refer to [12, 14, 33] for further details. Precise comparisons of the fluctuation variances associated with this Monte Carlo method and the mean feld particle models presented in the present article have been studied in [23]. Another commonly used strategy in Bayesian statistics and in stochastic engineering is the well-known Monte Carlo Markov chain method (abbreviate MCMC methods). The idea is to interpret the conditional distributions ηn as the invariant measure of a suitably chosen Markov chain. This technique as to main drawbacks. The first one is that we need to run the underlying chain for very long times. This burning period is difficult to estimate, and it is often too long to tackle filtering problems with high frequency observation sequences such as those arising in radar processing. The second difficulty is that the conditional distributions ηn vary with the time parameter and we need to chose at each time an appropriate MCMC algorithm. In contrast to the two ideas discussed above, the mean field particle strategy presented in this article can be interpreted as a stochastic and adaptive grid RR n° 0123456789 4 Del Moral, Patras & Rubenthaler approximation model. Loosely speaking, this particle technique consists in in- terpreting the weights likelihood as branching selection rates. No calibration of the convergence to equilibrium is needed, the conditional measures variations are automatically updated by the stochastic particle model. The first rigorous study in this field seems to be the article [15] published in 1996 on the appli- cations of interacting particle methods to nonlinear estimation problems. This article provides the first convergence results for a series of heuristic genetic type schemes presented in the beginning of the 1990's in three independent chains of articles on nonlinear filtering [36, 35], [39], and [2, 40, 30, 32]. In the end of the 1990's, three other independent works [6, 7, 8] proposed another class of particle branching variants for solving continuous-time filtering problems. For a more thorough discussion on the origins and the analysis these mod- els, we refer the reader to the research monograph of the first author [11]. The latter is dedicated to Feynman-Kac and Boltzmann-Gibbs measures with their genealogical and interacting particle system interpretations, as well as their applications in physics, in biology and in engineering sciences. Besides their im- portant application in filtering, Feynman-Kac type particle models also arise in the spectral analysis of Schrdinger type operators, rare events estimation, as well as in macromolecular and directed polymers simulations. In this connection, we also mention that the mean field theory presented here applies without further work to study the analysis of a variety of heuristic like models introduced in stochastic engineering since the beginning of the 1950's, including genetic type algorithms, quantum and sequential Monte Carlo methods, pruned enrichment molecular simulations, bootstrap and particle filters, and many others. For a rather thorough discussion on these rather well known application areas, the interested reader is also recommended to consult the book [34], and the ref- erences therein.
Recommended publications
  • Poisson Representations of Branching Markov and Measure-Valued
    The Annals of Probability 2011, Vol. 39, No. 3, 939–984 DOI: 10.1214/10-AOP574 c Institute of Mathematical Statistics, 2011 POISSON REPRESENTATIONS OF BRANCHING MARKOV AND MEASURE-VALUED BRANCHING PROCESSES By Thomas G. Kurtz1 and Eliane R. Rodrigues2 University of Wisconsin, Madison and UNAM Representations of branching Markov processes and their measure- valued limits in terms of countable systems of particles are con- structed for models with spatially varying birth and death rates. Each particle has a location and a “level,” but unlike earlier con- structions, the levels change with time. In fact, death of a particle occurs only when the level of the particle crosses a specified level r, or for the limiting models, hits infinity. For branching Markov pro- cesses, at each time t, conditioned on the state of the process, the levels are independent and uniformly distributed on [0,r]. For the limiting measure-valued process, at each time t, the joint distribu- tion of locations and levels is conditionally Poisson distributed with mean measure K(t) × Λ, where Λ denotes Lebesgue measure, and K is the desired measure-valued process. The representation simplifies or gives alternative proofs for a vari- ety of calculations and results including conditioning on extinction or nonextinction, Harris’s convergence theorem for supercritical branch- ing processes, and diffusion approximations for processes in random environments. 1. Introduction. Measure-valued processes arise naturally as infinite sys- tem limits of empirical measures of finite particle systems. A number of ap- proaches have been developed which preserve distinct particles in the limit and which give a representation of the measure-valued process as a transfor- mation of the limiting infinite particle system.
    [Show full text]
  • Brownian Motion and the Heat Equation
    Brownian motion and the heat equation Denis Bell University of North Florida 1. The heat equation Let the function u(t, x) denote the temperature in a rod at position x and time t u(t,x) Then u(t, x) satisfies the heat equation ∂u 1∂2u = , t > 0. (1) ∂t 2∂x2 It is easy to check that the Gaussian function 1 x2 u(t, x) = e−2t 2πt satisfies (1). Let φ be any! bounded continuous function and define 1 (x y)2 u(t, x) = ∞ φ(y)e− 2−t dy. 2πt "−∞ Then u satisfies!(1). Furthermore making the substitution z = (x y)/√t in the integral gives − 1 z2 u(t, x) = ∞ φ(x y√t)e−2 dz − 2π "−∞ ! 1 z2 φ(x) ∞ e−2 dz = φ(x) → 2π "−∞ ! as t 0. Thus ↓ 1 (x y)2 u(t, x) = ∞ φ(y)e− 2−t dy. 2πt "−∞ ! = E[φ(Xt)] where Xt is a N(x, t) random variable solves the heat equation ∂u 1∂2u = ∂t 2∂x2 with initial condition u(0, ) = φ. · Note: The function u(t, x) is smooth in x for t > 0 even if is only continuous. 2. Brownian motion In the nineteenth century, the botanist Robert Brown observed that a pollen particle suspended in liquid undergoes a strange erratic motion (caused by bombardment by molecules of the liquid) Letting w(t) denote the position of the particle in a fixed direction, the paths w typically look like this t N. Wiener constructed a rigorous mathemati- cal model of Brownian motion in the 1930s.
    [Show full text]
  • Coalescence in Bellman-Harris and Multi-Type Branching Processes Jyy-I Joy Hong Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2011 Coalescence in Bellman-Harris and multi-type branching processes Jyy-i Joy Hong Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Mathematics Commons Recommended Citation Hong, Jyy-i Joy, "Coalescence in Bellman-Harris and multi-type branching processes" (2011). Graduate Theses and Dissertations. 10103. https://lib.dr.iastate.edu/etd/10103 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Coalescence in Bellman-Harris and multi-type branching processes by Jyy-I Hong A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Mathematics Program of Study Committee: Krishna B. Athreya, Major Professor Clifford Bergman Dan Nordman Ananda Weerasinghe Paul E. Sacks Iowa State University Ames, Iowa 2011 Copyright c Jyy-I Hong, 2011. All rights reserved. ii DEDICATION I would like to dedicate this thesis to my parents Wan-Fu Hong and Wen-Hsiang Tseng for their un- conditional love and support. Without them, the completion of this work would not have been possible. iii TABLE OF CONTENTS ACKNOWLEDGEMENTS . vii ABSTRACT . viii CHAPTER 1. PRELIMINARIES . 1 1.1 Introduction . 1 1.2 Discrete-time Single-type Galton-Watson Branching Processes .
    [Show full text]
  • Lecture 16: March 12 Instructor: Alistair Sinclair
    CS271 Randomness & Computation Spring 2020 Lecture 16: March 12 Instructor: Alistair Sinclair Disclaimer: These notes have not been subjected to the usual scrutiny accorded to formal publications. They may be distributed outside this class only with the permission of the Instructor. 16.1 The Giant Component in Gn,p In an earlier lecture we briefly mentioned the threshold for the existence of a “giant” component in a random graph, i.e., a connected component containing a constant fraction of the vertices. We now derive this threshold rigorously, using both Chernoff bounds and the useful machinery of branching processes. We work c with our usual model of random graphs, Gn,p, and look specifically at the range p = n , for some constant c. Our goal will be to prove: c Theorem 16.1 For G ∈ Gn,p with p = n for constant c, we have: 1. For c < 1, then a.a.s. the largest connected component of G is of size O(log n). 2. For c > 1, then a.a.s. there exists a single largest component of G of size βn(1 + o(1)), where β is the unique solution in (0, 1) to β + e−βc = 1. Moreover, the next largest component in G has size O(log n). Here, and throughout this lecture, we use the phrase “a.a.s.” (asymptotically almost surely) to denote an event that holds with probability tending to 1 as n → ∞. This behavior is shown pictorially in Figure 16.1. For c < 1, G consists of a collection of small components of size at most O(log n) (which are all “tree-like”), while for c > 1 a single “giant” component emerges that contains a constant fraction of the vertices, with the remaining vertices all belonging to tree-like components of size O(log n).
    [Show full text]
  • 1 Introduction Branching Mechanism in a Superprocess from a Branching
    数理解析研究所講究録 1157 巻 2000 年 1-16 1 An example of random snakes by Le Gall and its applications 渡辺信三 Shinzo Watanabe, Kyoto University 1 Introduction The notion of random snakes has been introduced by Le Gall ([Le 1], [Le 2]) to construct a class of measure-valued branching processes, called superprocesses or continuous state branching processes ([Da], [Dy]). A main idea is to produce the branching mechanism in a superprocess from a branching tree embedded in excur- sions at each different level of a Brownian sample path. There is no clear notion of particles in a superprocess; it is something like a cloud or mist. Nevertheless, a random snake could provide us with a clear picture of historical or genealogical developments of”particles” in a superprocess. ” : In this note, we give a sample pathwise construction of a random snake in the case when the underlying Markov process is a Markov chain on a tree. A simplest case has been discussed in [War 1] and [Wat 2]. The construction can be reduced to this case locally and we need to consider a recurrence family of stochastic differential equations for reflecting Brownian motions with sticky boundaries. A special case has been already discussed by J. Warren [War 2] with an application to a coalescing stochastic flow of piece-wise linear transformations in connection with a non-white or non-Gaussian predictable noise in the sense of B. Tsirelson. 2 Brownian snakes Throughout this section, let $\xi=\{\xi(t), P_{x}\}$ be a Hunt Markov process on a locally compact separable metric space $S$ endowed with a metric $d_{S}(\cdot, *)$ .
    [Show full text]
  • Processes on Complex Networks. Percolation
    Chapter 5 Processes on complex networks. Percolation 77 Up till now we discussed the structure of the complex networks. The actual reason to study this structure is to understand how this structure influences the behavior of random processes on networks. I will talk about two such processes. The first one is the percolation process. The second one is the spread of epidemics. There are a lot of open problems in this area, the main of which can be innocently formulated as: How the network topology influences the dynamics of random processes on this network. We are still quite far from a definite answer to this question. 5.1 Percolation 5.1.1 Introduction to percolation Percolation is one of the simplest processes that exhibit the critical phenomena or phase transition. This means that there is a parameter in the system, whose small change yields a large change in the system behavior. To define the percolation process, consider a graph, that has a large connected component. In the classical settings, percolation was actually studied on infinite graphs, whose vertices constitute the set Zd, and edges connect each vertex with nearest neighbors, but we consider general random graphs. We have parameter ϕ, which is the probability that any edge present in the underlying graph is open or closed (an event with probability 1 − ϕ) independently of the other edges. Actually, if we talk about edges being open or closed, this means that we discuss bond percolation. It is also possible to talk about the vertices being open or closed, and this is called site percolation.
    [Show full text]
  • Chapter 21 Epidemics
    From the book Networks, Crowds, and Markets: Reasoning about a Highly Connected World. By David Easley and Jon Kleinberg. Cambridge University Press, 2010. Complete preprint on-line at http://www.cs.cornell.edu/home/kleinber/networks-book/ Chapter 21 Epidemics The study of epidemic disease has always been a topic where biological issues mix with social ones. When we talk about epidemic disease, we will be thinking of contagious diseases caused by biological pathogens — things like influenza, measles, and sexually transmitted diseases, which spread from person to person. Epidemics can pass explosively through a population, or they can persist over long time periods at low levels; they can experience sudden flare-ups or even wave-like cyclic patterns of increasing and decreasing prevalence. In extreme cases, a single disease outbreak can have a significant effect on a whole civilization, as with the epidemics started by the arrival of Europeans in the Americas [130], or the outbreak of bubonic plague that killed 20% of the population of Europe over a seven-year period in the 1300s [293]. 21.1 Diseases and the Networks that Transmit Them The patterns by which epidemics spread through groups of people is determined not just by the properties of the pathogen carrying it — including its contagiousness, the length of its infectious period, and its severity — but also by network structures within the population it is affecting. The social network within a population — recording who knows whom — determines a lot about how the disease is likely to spread from one person to another. But more generally, the opportunities for a disease to spread are given by a contact network: there is a node for each person, and an edge if two people come into contact with each other in a way that makes it possible for the disease to spread from one to the other.
    [Show full text]
  • Pdf File of Second Edition, January 2018
    Probability on Graphs Random Processes on Graphs and Lattices Second Edition, 2018 GEOFFREY GRIMMETT Statistical Laboratory University of Cambridge copyright Geoffrey Grimmett Geoffrey Grimmett Statistical Laboratory Centre for Mathematical Sciences University of Cambridge Wilberforce Road Cambridge CB3 0WB United Kingdom 2000 MSC: (Primary) 60K35, 82B20, (Secondary) 05C80, 82B43, 82C22 With 56 Figures copyright Geoffrey Grimmett Contents Preface ix 1 Random Walks on Graphs 1 1.1 Random Walks and Reversible Markov Chains 1 1.2 Electrical Networks 3 1.3 FlowsandEnergy 8 1.4 RecurrenceandResistance 11 1.5 Polya's Theorem 14 1.6 GraphTheory 16 1.7 Exercises 18 2 Uniform Spanning Tree 21 2.1 De®nition 21 2.2 Wilson's Algorithm 23 2.3 Weak Limits on Lattices 28 2.4 Uniform Forest 31 2.5 Schramm±LownerEvolutionsÈ 32 2.6 Exercises 36 3 Percolation and Self-Avoiding Walks 39 3.1 PercolationandPhaseTransition 39 3.2 Self-Avoiding Walks 42 3.3 ConnectiveConstantoftheHexagonalLattice 45 3.4 CoupledPercolation 53 3.5 Oriented Percolation 53 3.6 Exercises 56 4 Association and In¯uence 59 4.1 Holley Inequality 59 4.2 FKG Inequality 62 4.3 BK Inequalitycopyright Geoffrey Grimmett63 vi Contents 4.4 HoeffdingInequality 65 4.5 In¯uenceforProductMeasures 67 4.6 ProofsofIn¯uenceTheorems 72 4.7 Russo'sFormulaandSharpThresholds 80 4.8 Exercises 83 5 Further Percolation 86 5.1 Subcritical Phase 86 5.2 Supercritical Phase 90 5.3 UniquenessoftheIn®niteCluster 96 5.4 Phase Transition 99 5.5 OpenPathsinAnnuli 103 5.6 The Critical Probability in Two Dimensions 107
    [Show full text]
  • Download File
    i PREFACE Teaching stochastic processes to students whose primary interests are in applications has long been a problem. On one hand, the subject can quickly become highly technical and if mathe- matical concerns are allowed to dominate there may be no time available for exploring the many interesting areas of applications. On the other hand, the treatment of stochastic calculus in a cavalier fashion leaves the student with a feeling of great uncertainty when it comes to exploring new material. Moreover, the problem has become more acute as the power of the dierential equation point of view has become more widely appreciated. In these notes, an attempt is made to resolve this dilemma with the needs of those interested in building models and designing al- gorithms for estimation and control in mind. The approach is to start with Poisson counters and to identity the Wiener process with a certain limiting form. We do not attempt to dene the Wiener process per se. Instead, everything is done in terms of limits of jump processes. The Poisson counter and dierential equations whose right-hand sides include the dierential of Poisson counters are developed rst. This leads to the construction of a sample path representa- tions of a continuous time jump process using Poisson counters. This point of view leads to an ecient problem solving technique and permits a unied treatment of time varying and nonlinear problems. More importantly, it provides sound intuition for stochastic dierential equations and their uses without allowing the technicalities to dominate. In treating estimation theory, the conditional density equation is given a central role.
    [Show full text]
  • BRANCHING PROCESSES in RANDOM TREES by Yanjmaa
    BRANCHING PROCESSES IN RANDOM TREES by Yanjmaa Jutmaan A dissertation submitted to the faculty of the University of North Carolina at Charlotte in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Applied Mathematics Charlotte 2012 Approved by: Dr. Stanislav A. Molchanov Dr. Isaac Sonin Dr. Michael Grabchak Dr. Celine Latulipe ii c 2012 Yanjmaa Jutmaan ALL RIGHTS RESERVED iii ABSTRACT YANJMAA JUTMAAN. Branching processes in random trees. (Under the direction of DR. STANISLAV MOLCHANOV) We study the behavior of branching process in a random environment on trees in the critical, subcritical and supercritical case. We are interested in the case when both the branching and the step transition parameters are random quantities. We present quenched and annealed classifications for such processes and determine some limit theorems in the supercritical quenched case. Corollaries cover the percolation problem on random trees. The main tool is the compositions of random generating functions. iv ACKNOWLEDGMENTS This work would not have been possible without the support and assistance of my colleagues, friends, and family. I have been fortunate to be Dr. Stanislav Molchanov's student. I am grateful for his guidance, teaching and involvement in my graduate study. I have learned much from him; this will be remembered and valued throughout my life. I am thankful also to the other members of my committee, Dr. Isaac Sonin, Dr. Michael Grabchak and Dr. Celine Latulipe for their time and support provided. I would also like to thank Dr. Joel Avrin, graduate coordinator, for his advice, kindness and patience. I am eternally thankful to my father Dagva and mother Tsendmaa for their love that I feel even this far away.
    [Show full text]
  • Ewens' Sampling Formula
    Ewens’ sampling formula; a combinatorial derivation Bob Griffiths, University of Oxford Sabin Lessard, Universit´edeMontr´eal Infinitely-many-alleles-model: unique mutations ......................................................................................................... •. •. •. ............................................................................................................ •. •. .................................................................................................... •. •. •. ............................................................. ......................................... .............................................. •. ............................... ..................... ..................... ......................................... ......................................... ..................... • ••• • • • ••• • • • • • Sample configuration of alleles 4 A1,1A2,4A3,3A4,3A5. Ewens’ sampling formula (1972) n sampled genes k b Probability of a sample having types with j types represented j times, jbj = n,and bj = k,is n! 1 θk · · b b 1 1 ···n n b1! ···bn! θ(θ +1)···(θ + n − 1) Example: Sample 4 A1,1A2,4A3,3A4,3A5. b1 =1, b2 =0, b3 =2, b4 =2. Old and New lineages . •. ............................... ......................................... •. .............................................. ............................... ............................... ..................... ..................... ......................................... ..................... ..................... ◦ ◦◦◦◦◦ n1 n2 nm nm+1
    [Show full text]
  • A Branching Process Model for the Novel Coronavirus (Covid-19) Spread in Greece
    International Journal of Modeling and Optimization, Vol. 11, No. 3, August 2021 A Branching Process Model for the Novel Coronavirus (Covid-19) Spread in Greece Ioanna A. Mitrofani and Vasilis P. Koutras restrictions and after 42 days of quarantine, when the number Abstract—The novel coronavirus (covid-19) was initially of daily reported cases decreased to 10, state authorities identified at the end of 2019 and caused a global health care gradually repealed the restrictions [3]. These control crisis. The increased transmissibility of the virus, that led to measures, that were among the strictest in Europe, were high mortality, raises the interest of scientists worldwide. Thus, various methods and models have been extensively discussed, so initially considered as highly effective and whereas the to study and control covid-19 transmission. Mathematical pandemic was internationally ongoing, the case of Greece modeling constitutes an important tool to estimate key was treated as a success story [4]. However, at the time of this parameters of the transmission and predict the dynamic of the revision the numbers have been increased to 82,034 total virus. More precisely, in the relevant literature, epidemiology is cases and 1,288 deaths. These fluctuations on numbers attract considered as a classical application area of branching the interest of researchers to model the transmission of the processes, which are stochastic individual-based processes. In virus to evaluate and quantify the dynamic of the pandemic this paper, we develop a classical Galton-Watson branching process approach for the covid-19 spread in Greece at the early [1]. stage. This approach is structured in two parts, initial and latter Mathematical models of infectious disease transmission transmission stages, so to provide a comprehensive view of the effectively describe and simply depict the evolution of virus spread through basic and effective reproduction numbers diseases by providing quantitative data in epidemiology [2], respectively, along with the probability of an outbreak.
    [Show full text]