Levy Processes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Persistent Random Walks. II. Functional Scaling Limits
Persistent random walks. II. Functional Scaling Limits Peggy Cénac1. Arnaud Le Ny2. Basile de Loynes3. Yoann Offret1 1Institut de Mathématiques de Bourgogne (IMB) - UMR CNRS 5584 Université de Bourgogne Franche-Comté, 21000 Dijon, France 2Laboratoire d’Analyse et de Mathématiques Appliquées (LAMA) - UMR CNRS 8050 Université Paris Est Créteil, 94010 Créteil Cedex, France 3Ensai - Université de Bretagne-Loire, Campus de Ker-Lann, Rue Blaise Pascal, BP 37203, 35172 BRUZ cedex, France Abstract We give a complete and unified description – under some stability assumptions – of the functional scaling limits associated with some persistent random walks for which the recurrent or transient type is studied in [1]. As a result, we highlight a phase transition phenomenon with respect to the memory. It turns out that the limit process is either Markovian or not according to – to put it in a nutshell – the rate of decrease of the distribution tails corresponding to the persistent times. In the memoryless situation, the limits are classical strictly stable Lévy processes of infinite variations. However, we point out that the description of the critical Cauchy case fills some lacuna even in the closely related context of Directionally Reinforced Random Walks (DRRWs) for which it has not been considered yet. Besides, we need to introduced some relevant generalized drift – extended the classical one – in order to study the critical case but also the situation when the limit is no longer Markovian. It appears to be in full generality a drift in mean for the Persistent Random Walk (PRW). The limit processes keeping some memory – given by some variable length Markov chain – of the underlying PRW are called arcsine Lamperti anomalous diffusions due to their marginal distribution which are computed explicitly here. -
Introduction to Lévy Processes
Introduction to Lévy Processes Huang Lorick [email protected] Document type These are lecture notes. Typos, errors, and imprecisions are expected. Comments are welcome! This version is available at http://perso.math.univ-toulouse.fr/lhuang/enseignements/ Year of publication 2021 Terms of use This work is licensed under a Creative Commons Attribution 4.0 International license: https://creativecommons.org/licenses/by/4.0/ Contents Contents 1 1 Introduction and Examples 2 1.1 Infinitely divisible distributions . 2 1.2 Examples of infinitely divisible distributions . 2 1.3 The Lévy Khintchine formula . 4 1.4 Digression on Relativity . 6 2 Lévy processes 8 2.1 Definition of a Lévy process . 8 2.2 Examples of Lévy processes . 9 2.3 Exploring the Jumps of a Lévy Process . 11 3 Proof of the Levy Khintchine formula 19 3.1 The Lévy-Itô Decomposition . 19 3.2 Consequences of the Lévy-Itô Decomposition . 21 3.3 Exercises . 23 3.4 Discussion . 23 4 Lévy processes as Markov Processes 24 4.1 Properties of the Semi-group . 24 4.2 The Generator . 26 4.3 Recurrence and Transience . 28 4.4 Fractional Derivatives . 29 5 Elements of Stochastic Calculus with Jumps 31 5.1 Example of Use in Applications . 31 5.2 Stochastic Integration . 32 5.3 Construction of the Stochastic Integral . 33 5.4 Quadratic Variation and Itô Formula with jumps . 34 5.5 Stochastic Differential Equation . 35 Bibliography 38 1 Chapter 1 Introduction and Examples In this introductive chapter, we start by defining the notion of infinitely divisible distributions. We then give examples of such distributions and end this chapter by stating the celebrated Lévy-Khintchine formula. -
Brownian Motion and the Heat Equation
Brownian motion and the heat equation Denis Bell University of North Florida 1. The heat equation Let the function u(t, x) denote the temperature in a rod at position x and time t u(t,x) Then u(t, x) satisfies the heat equation ∂u 1∂2u = , t > 0. (1) ∂t 2∂x2 It is easy to check that the Gaussian function 1 x2 u(t, x) = e−2t 2πt satisfies (1). Let φ be any! bounded continuous function and define 1 (x y)2 u(t, x) = ∞ φ(y)e− 2−t dy. 2πt "−∞ Then u satisfies!(1). Furthermore making the substitution z = (x y)/√t in the integral gives − 1 z2 u(t, x) = ∞ φ(x y√t)e−2 dz − 2π "−∞ ! 1 z2 φ(x) ∞ e−2 dz = φ(x) → 2π "−∞ ! as t 0. Thus ↓ 1 (x y)2 u(t, x) = ∞ φ(y)e− 2−t dy. 2πt "−∞ ! = E[φ(Xt)] where Xt is a N(x, t) random variable solves the heat equation ∂u 1∂2u = ∂t 2∂x2 with initial condition u(0, ) = φ. · Note: The function u(t, x) is smooth in x for t > 0 even if is only continuous. 2. Brownian motion In the nineteenth century, the botanist Robert Brown observed that a pollen particle suspended in liquid undergoes a strange erratic motion (caused by bombardment by molecules of the liquid) Letting w(t) denote the position of the particle in a fixed direction, the paths w typically look like this t N. Wiener constructed a rigorous mathemati- cal model of Brownian motion in the 1930s. -
Lectures on Lévy Processes, Stochastic Calculus and Financial
Lectures on L¶evyProcesses, Stochastic Calculus and Financial Applications, Ovronnaz September 2005 David Applebaum Probability and Statistics Department, University of She±eld, Hicks Building, Houns¯eld Road, She±eld, England, S3 7RH e-mail: D.Applebaum@she±eld.ac.uk Introduction A L¶evyprocess is essentially a stochastic process with stationary and in- dependent increments. The basic theory was developed, principally by Paul L¶evyin the 1930s. In the past 15 years there has been a renaissance of interest and a plethora of books, articles and conferences. Why ? There are both theoretical and practical reasons. Theoretical ² There are many interesting examples - Brownian motion, simple and compound Poisson processes, ®-stable processes, subordinated processes, ¯nancial processes, relativistic process, Riemann zeta process . ² L¶evyprocesses are simplest generic class of process which have (a.s.) continuous paths interspersed with random jumps of arbitrary size oc- curring at random times. ² L¶evyprocesses comprise a natural subclass of semimartingales and of Markov processes of Feller type. ² Noise. L¶evyprocesses are a good model of \noise" in random dynamical systems. 1 Input + Noise = Output Attempts to describe this di®erentially leads to stochastic calculus.A large class of Markov processes can be built as solutions of stochastic di®erential equations driven by L¶evynoise. L¶evydriven stochastic partial di®erential equations are beginning to be studied with some intensity. ² Robust structure. Most applications utilise L¶evyprocesses taking val- ues in Euclidean space but this can be replaced by a Hilbert space, a Banach space (these are important for spdes), a locally compact group, a manifold. Quantised versions are non-commutative L¶evyprocesses on quantum groups. -
Lectures on Multiparameter Processes
Lecture Notes on Multiparameter Processes: Ecole Polytechnique Fed´ erale´ de Lausanne, Switzerland Davar Khoshnevisan Department of Mathematics University of Utah Salt Lake City, UT 84112–0090 [email protected] http://www.math.utah.edu/˜davar April–June 2001 ii Contents Preface vi 1 Examples from Markov chains 1 2 Examples from Percolation on Trees and Brownian Motion 7 3ProvingLevy’s´ Theorem and Introducing Martingales 13 4 Preliminaries on Ortho-Martingales 19 5 Ortho-Martingales and Intersections of Walks and Brownian Motion 25 6 Intersections of Brownian Motion, Multiparameter Martingales 35 7 Capacity, Energy and Dimension 43 8 Frostman’s Theorem, Hausdorff Dimension and Brownian Motion 49 9 Potential Theory of Brownian Motion and Stable Processes 55 10 Brownian Sheet and Kahane’s Problem 65 Bibliography 71 iii iv Preface These are the notes for a one-semester course based on ten lectures given at the Ecole Polytechnique Fed´ erale´ de Lausanne, April–June 2001. My goal has been to illustrate, in some detail, some of the salient features of the theory of multiparameter processes and in particular, Cairoli’s theory of multiparameter mar- tingales. In order to get to the heart of the matter, and develop a kind of intuition at the same time, I have chosen the simplest topics of random walks, Brownian motions, etc. to highlight the methods. The full theory can be found in Multi-Parameter Processes: An Introduction to Random Fields (henceforth, referred to as MPP) which is to be published by Springer-Verlag, although these lectures also contain material not covered in the mentioned book. -
A Mathematical Theory of Network Interference and Its Applications
INVITED PAPER A Mathematical Theory of Network Interference and Its Applications A unifying framework is developed to characterize the aggregate interference in wireless networks, and several applications are presented. By Moe Z. Win, Fellow IEEE, Pedro C. Pinto, Student Member IEEE, and Lawrence A. Shepp ABSTRACT | In this paper, we introduce a mathematical I. INTRODUCTION framework for the characterization of network interference in In a wireless network composed of many spatially wireless systems. We consider a network in which the scattered nodes, communication is constrained by various interferers are scattered according to a spatial Poisson process impairments such as the wireless propagation effects, and are operating asynchronously in a wireless environment network interference, and thermal noise. The effects subject to path loss, shadowing, and multipath fading. We start introduced by propagation in the wireless channel include by determining the statistical distribution of the aggregate the attenuation of radiated signals with distance (path network interference. We then investigate four applications of loss), the blocking of signals caused by large obstacles the proposed model: 1) interference in cognitive radio net- (shadowing), and the reception of multiple copies of the works; 2) interference in wireless packet networks; 3) spectrum same transmitted signal (multipath fading). The network of the aggregate radio-frequency emission of wireless net- interference is due to accumulation of signals radiated by works; and 4) coexistence between ultrawideband and nar- other transmitters, which undesirably affect receiver nodes rowband systems. Our framework accounts for all the essential in the network. The thermal noise is introduced by the physical parameters that affect network interference, such as receiver electronics and is usually modeled as additive the wireless propagation effects, the transmission technology, white Gaussian noise (AWGN). -
1 Introduction Branching Mechanism in a Superprocess from a Branching
数理解析研究所講究録 1157 巻 2000 年 1-16 1 An example of random snakes by Le Gall and its applications 渡辺信三 Shinzo Watanabe, Kyoto University 1 Introduction The notion of random snakes has been introduced by Le Gall ([Le 1], [Le 2]) to construct a class of measure-valued branching processes, called superprocesses or continuous state branching processes ([Da], [Dy]). A main idea is to produce the branching mechanism in a superprocess from a branching tree embedded in excur- sions at each different level of a Brownian sample path. There is no clear notion of particles in a superprocess; it is something like a cloud or mist. Nevertheless, a random snake could provide us with a clear picture of historical or genealogical developments of”particles” in a superprocess. ” : In this note, we give a sample pathwise construction of a random snake in the case when the underlying Markov process is a Markov chain on a tree. A simplest case has been discussed in [War 1] and [Wat 2]. The construction can be reduced to this case locally and we need to consider a recurrence family of stochastic differential equations for reflecting Brownian motions with sticky boundaries. A special case has been already discussed by J. Warren [War 2] with an application to a coalescing stochastic flow of piece-wise linear transformations in connection with a non-white or non-Gaussian predictable noise in the sense of B. Tsirelson. 2 Brownian snakes Throughout this section, let $\xi=\{\xi(t), P_{x}\}$ be a Hunt Markov process on a locally compact separable metric space $S$ endowed with a metric $d_{S}(\cdot, *)$ . -
Introduction to Lévy Processes
Introduction to L´evyprocesses Graduate lecture 22 January 2004 Matthias Winkel Departmental lecturer (Institute of Actuaries and Aon lecturer in Statistics) 1. Random walks and continuous-time limits 2. Examples 3. Classification and construction of L´evy processes 4. Examples 5. Poisson point processes and simulation 1 1. Random walks and continuous-time limits 4 Definition 1 Let Yk, k ≥ 1, be i.i.d. Then n X 0 Sn = Yk, n ∈ N, k=1 is called a random walk. -4 0 8 16 Random walks have stationary and independent increments Yk = Sk − Sk−1, k ≥ 1. Stationarity means the Yk have identical distribution. Definition 2 A right-continuous process Xt, t ∈ R+, with stationary independent increments is called L´evy process. 2 Page 1 What are Sn, n ≥ 0, and Xt, t ≥ 0? Stochastic processes; mathematical objects, well-defined, with many nice properties that can be studied. If you don’t like this, think of a model for a stock price evolving with time. There are also many other applications. If you worry about negative values, think of log’s of prices. What does Definition 2 mean? Increments , = 1 , are independent and Xtk − Xtk−1 k , . , n , = 1 for all 0 = . Xtk − Xtk−1 ∼ Xtk−tk−1 k , . , n t0 < . < tn Right-continuity refers to the sample paths (realisations). 3 Can we obtain L´evyprocesses from random walks? What happens e.g. if we let the time unit tend to zero, i.e. take a more and more remote look at our random walk? If we focus at a fixed time, 1 say, and speed up the process so as to make n steps per time unit, we know what happens, the answer is given by the Central Limit Theorem: 2 Theorem 1 (Lindeberg-L´evy) If σ = V ar(Y1) < ∞, then Sn − (Sn) √E → Z ∼ N(0, σ2) in distribution, as n → ∞. -
Download File
i PREFACE Teaching stochastic processes to students whose primary interests are in applications has long been a problem. On one hand, the subject can quickly become highly technical and if mathe- matical concerns are allowed to dominate there may be no time available for exploring the many interesting areas of applications. On the other hand, the treatment of stochastic calculus in a cavalier fashion leaves the student with a feeling of great uncertainty when it comes to exploring new material. Moreover, the problem has become more acute as the power of the dierential equation point of view has become more widely appreciated. In these notes, an attempt is made to resolve this dilemma with the needs of those interested in building models and designing al- gorithms for estimation and control in mind. The approach is to start with Poisson counters and to identity the Wiener process with a certain limiting form. We do not attempt to dene the Wiener process per se. Instead, everything is done in terms of limits of jump processes. The Poisson counter and dierential equations whose right-hand sides include the dierential of Poisson counters are developed rst. This leads to the construction of a sample path representa- tions of a continuous time jump process using Poisson counters. This point of view leads to an ecient problem solving technique and permits a unied treatment of time varying and nonlinear problems. More importantly, it provides sound intuition for stochastic dierential equations and their uses without allowing the technicalities to dominate. In treating estimation theory, the conditional density equation is given a central role. -
Part C Lévy Processes and Finance
Part C Levy´ Processes and Finance Matthias Winkel1 University of Oxford HT 2007 1Departmental lecturer (Institute of Actuaries and Aon Lecturer in Statistics) at the Department of Statistics, University of Oxford MS3 Levy´ Processes and Finance Matthias Winkel – 16 lectures HT 2007 Prerequisites Part A Probability is a prerequisite. BS3a/OBS3a Applied Probability or B10 Martin- gales and Financial Mathematics would be useful, but are by no means essential; some material from these courses will be reviewed without proof. Aims L´evy processes form a central class of stochastic processes, contain both Brownian motion and the Poisson process, and are prototypes of Markov processes and semimartingales. Like Brownian motion, they are used in a multitude of applications ranging from biology and physics to insurance and finance. Like the Poisson process, they allow to model abrupt moves by jumps, which is an important feature for many applications. In the last ten years L´evy processes have seen a hugely increased attention as is reflected on the academic side by a number of excellent graduate texts and on the industrial side realising that they provide versatile stochastic models of financial markets. This continues to stimulate further research in both theoretical and applied directions. This course will give a solid introduction to some of the theory of L´evy processes as needed for financial and other applications. Synopsis Review of (compound) Poisson processes, Brownian motion (informal), Markov property. Connection with random walks, [Donsker’s theorem], Poisson limit theorem. Spatial Poisson processes, construction of L´evy processes. Special cases of increasing L´evy processes (subordinators) and processes with only positive jumps. -
Fclts for the Quadratic Variation of a CTRW and for Certain Stochastic Integrals
FCLTs for the Quadratic Variation of a CTRW and for certain stochastic integrals No`eliaViles Cuadros (joint work with Enrico Scalas) Universitat de Barcelona Sevilla, 17 de Septiembre 2013 Damped harmonic oscillator subject to a random force The equation of motion is informally given by x¨(t) + γx_(t) + kx(t) = ξ(t); (1) where x(t) is the position of the oscillating particle with unit mass at time t, γ > 0 is the damping coefficient, k > 0 is the spring constant and ξ(t) represents white L´evynoise. I. M. Sokolov, Harmonic oscillator under L´evynoise: Unexpected properties in the phase space. Phys. Rev. E. Stat. Nonlin Soft Matter Phys 83, 041118 (2011). 2 of 27 The formal solution is Z t x(t) = F (t) + G(t − t0)ξ(t0)dt0; (2) −∞ where G(t) is the Green function for the homogeneous equation. The solution for the velocity component can be written as Z t 0 0 0 v(t) = Fv (t) + Gv (t − t )ξ(t )dt ; (3) −∞ d d where Fv (t) = dt F (t) and Gv (t) = dt G(t). 3 of 27 • Replace the white noise with a sequence of instantaneous shots of random amplitude at random times. • They can be expressed in terms of the formal derivative of compound renewal process, a random walk subordinated to a counting process called continuous-time random walk. A continuous time random walk (CTRW) is a pure jump process given by a sum of i.i.d. random jumps fYi gi2N separated by i.i.d. random waiting times (positive random variables) fJi gi2N. -
Financial Modeling with L´Evy Processes and Applying L
FINANCIAL MODELING WITH LEVY´ PROCESSES AND APPLYING LEVY´ SUBORDINATOR TO CURRENT STOCK DATA by GONSALGE ALMEIDA Submitted in partial fullfillment of the requirements for the degree of Doctor of Philosophy Dissertation Advisor: Dr. Wojbor A. Woyczynski Department of Mathematics, Applied Mathematics and Statistics CASE WESTERN RESERVE UNIVERSITY January 2020 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the dissertation of Gonsalge Almeida candidate for the Doctoral of Philosophy degree Committee Chair: Dr.Wojbor Woyczynski Professor, Department of the Mathematics, Applied Mathematics and Statis- tics Committee: Dr.Alethea Barbaro Associate Professor, Department of the Mathematics, Applied Mathematics and Statistics Committee: Dr.Jenny Brynjarsdottir Associate Professor, Department of the Mathematics, Applied Mathematics and Statistics Committee: Dr.Peter Ritchken Professor, Weatherhead School of Management Acceptance date: June 14, 2019 *We also certify that written approval has been obtained for any proprietary material contained therein. CONTENTS List of Figures iv List of Tables ix Introduction . .1 1 Financial Modeling with L´evyProcesses and Infinitely Divisible Distributions 5 1.1 Introduction . .5 1.2 Preliminaries on L´evyprocesses . .6 1.3 Characteristic Functions . .8 1.4 Cumulant Generating Function . .9 1.5 α−Stable Distributions . 10 1.6 Tempered Stable Distribution and Process . 19 1.6.1 Tempered Stable Diffusion and Super-Diffusion . 23 1.7 Numerical Approximation of Stable and Tempered Stable Sample Paths 28 1.8 Monte Carlo Simulation for Tempered α−Stable L´evyprocess . 34 2 Brownian Subordination (Tempered Stable Subordinator) 44 i 2.1 Introduction . 44 2.2 Tempered Anomalous Subdiffusion . 46 2.3 Subordinators . 49 2.4 Time-Changed Brownian Motion .