Fclts for the Quadratic Variation of a CTRW and for Certain Stochastic Integrals

Total Page:16

File Type:pdf, Size:1020Kb

Fclts for the Quadratic Variation of a CTRW and for Certain Stochastic Integrals FCLTs for the Quadratic Variation of a CTRW and for certain stochastic integrals No`eliaViles Cuadros (joint work with Enrico Scalas) Universitat de Barcelona Sevilla, 17 de Septiembre 2013 Damped harmonic oscillator subject to a random force The equation of motion is informally given by x¨(t) + γx_(t) + kx(t) = ξ(t); (1) where x(t) is the position of the oscillating particle with unit mass at time t, γ > 0 is the damping coefficient, k > 0 is the spring constant and ξ(t) represents white L´evynoise. I. M. Sokolov, Harmonic oscillator under L´evynoise: Unexpected properties in the phase space. Phys. Rev. E. Stat. Nonlin Soft Matter Phys 83, 041118 (2011). 2 of 27 The formal solution is Z t x(t) = F (t) + G(t − t0)ξ(t0)dt0; (2) −∞ where G(t) is the Green function for the homogeneous equation. The solution for the velocity component can be written as Z t 0 0 0 v(t) = Fv (t) + Gv (t − t )ξ(t )dt ; (3) −∞ d d where Fv (t) = dt F (t) and Gv (t) = dt G(t). 3 of 27 • Replace the white noise with a sequence of instantaneous shots of random amplitude at random times. • They can be expressed in terms of the formal derivative of compound renewal process, a random walk subordinated to a counting process called continuous-time random walk. A continuous time random walk (CTRW) is a pure jump process given by a sum of i.i.d. random jumps fYi gi2N separated by i.i.d. random waiting times (positive random variables) fJi gi2N. 4 of 27 Fractional Poisson Process Let fJi gi2N be a sequence of i.i.d. and positive β-stable rv's with the meaning of waiting times between jumps and β 2 (0; 1). Let n X Tn = Ji i=1 represent the epoch of the n-th jump and the counting process associated is the fractional Poisson process Nβ(t) = maxfn : Tn 6 tg: which counts the number of jumps up to time t > 0. 5 of 27 Compound Fractional Poisson Process Let fYi gi2N be a sequence of i.i.d. and α-stable rv's (independent of Ji ) with the meaning of jumps taking place at every epoch and α 2 (0; 2]. If we subordinate a CTRW to the fractional Poisson process, we obtain the compound fractional Poisson process, which is not Markov Nβ (t) X XNβ (t) = Yi : (4) i=1 6 of 27 But limits in which sense? Our goal Under the following distributional assumptions, • the jumps fYi gi2N are rv's in the DOA of an α-stable process with index α 2 (0; 2]; • the waiting times fJi gi2N are rv's in the DOA of a β-stable process with index β 2 (0; 1); We want to study the limits of the following stochastic process 8 9 8 9 Nβ (nt) Nβ (nt) < 1 X Ti = < 1 X Ti = G t − Y and G t − Y : nβ/α n i nβ/α v n i : i=1 ; : i=1 ; t>0 t>0 7 of 27 Our goal Under the following distributional assumptions, • the jumps fYi gi2N are rv's in the DOA of an α-stable process with index α 2 (0; 2]; • the waiting times fJi gi2N are rv's in the DOA of a β-stable process with index β 2 (0; 1); We want to study the limits of the following stochastic process 8 9 8 9 Nβ (nt) Nβ (nt) < 1 X Ti = < 1 X Ti = G t − Y and G t − Y : nβ/α n i nβ/α v n i : i=1 ; : i=1 ; t>0 t>0 But limits in which sense? 7 of 27 α-stable L´evyprocesses A continuous-time process L = fLt gt>0 with values in R is called a L´evyprocess if its sample paths are c`adl`agat every time point t, and it has stationary, independent increments. An α-stable process is a real-valued L´evyprocess Lα = fLα(t)gt>0 with initial value Lα(0) that satisfies the self-similarity property 1 L (t) =L L (0); 8t > 0: t1/α α α If α = 2 then the α-stable L´evyprocess is the Wiener process. 8 of 27 The Skorokhod space The Skorokhod space, denoted by D = D([0; T ]; R) (with T > 0), is the space of real functions x : [0; T ] ! R that are right-continuous with left limits: 1. For t 2 [0; T ), x(t+) = lims#t x(s) exists and x(t+) = x(t). 2. For t 2 (0; T ], x(t−) = lims"t x(s) exists. Functions satisfying these properties are called c`adl`ag functions. 9 of 27 Skorokhod topologies The Skorokhod space provides a natural and convenient formalism for describing the trajectories of stochastic processes with jumps: • Poisson processes; • L´evyprocesses; • martingales and semimartingales; • empirical distribution functions; • discretizations of stochastic processes. Topology: It can be assigned a topology that intuitively allows us to wiggle space and time a bit (whereas the traditional topology of uniform convergence only allows us to wiggle space a bit). 10 of 27 J1 and M1 topologies Skorokhod (1956) proposed four metric separable topologies on D, denoted by J1, J2, M1 and M2. The difference between J1 and M1 topologies is: • M1-topology allows numerous small jumps for the approximating process to accumulate into a large jump for the limit process • J1-topology requires a large jump for the limit process to be approximated by a single large jump for the approximating one. A. Skorokhod. Limit Theorems for Stochastic Processes. Theor. Probability Appl. 1, 261{290, 1956. 11 of 27 Our problem Under the following distributional assumptions, • the jumps fYi gi2N are rv's in the DOA of an α-stable process with index α 2 (0; 2]; • the waiting times fJi gi2N are rv's in the DOA of a β-stable process with index β 2 (0; 1); We want to study the Functional Central Limit Theorem of 8 9 Nβ (nt) < 1 X Ti = f Y ; nβ/α n i : i=1 ; t>0 for all f continuous and bounded function. 12 of 27 Convergence to the β-stable subordinator For t > 0, we define btc X Tt := Ji : i=1 We have −1/β J1−top fc Tct gt>0 ) fDβ(t)gt>0; as c ! +1: A β-stable subordinator fDβ(t)gt>0 is a real-valued β-stable L´evy process with nondecreasing sample paths. 13 of 27 Convergence to the inverse β-stable subordinator For any integer n > 0 and any t > 0: fTn 6 tg = fNβ(t) 6 ng: Theorem (Meerschaert & Scheffler (2001)) −1/β J1−top −1 fc Nβ(ct)gt>0 ) fDβ (t)gt>0; as c ! +1: The functional inverse of fDβ(t)gt>0 can be defined as −1 Dβ (t) := inffx > 0 : Dβ(x) > tg: It has a.s. continuous non-decreasing sample paths and without stationary and independent increments. 14 of 27 Convergence to the symmetric α-stable L´evyprocess Assume the jumps Yi belong to the strict generalized DOA of some stable law with α 2 (0; 2], then Theorem (Meerschaert & Scheffler (2004)) 8 [ct] 9 < −1/α X = J1−top c Yi ) fLα(t)gt>0; when c ! +1: : i=1 ; t>0 M. Meerschaert, H. P. Scheffler. Limit theorems for continuous-time random walks with infinite mean waiting times. J. Appl. Probab., 41 (3), 623{638, 2004. 15 of 27 Functional Central Limit Theorem Theorem (Meerschaert & Scheffler (2004)) Under the distributional assumptions considered above for the waiting times Ji and the jumps Yi , we have 8 9 Nβ (ct) < −β/α X = M1−top −1 c Yi ) fLα(Dβ (t))gt>0; when c ! +1; : i=1 ; t>0 (5) in the Skorokhod space D([0; +1); R). M. Meerschaert, H. P. Scheffler. Limit theorems for continuous-time random walks with infinite mean waiting times. J. Appl. Probab., 41 (3), 623{638, 2004. 16 of 27 Main ingredients of the proof • Triangular array approach (c) (c) ∆ = f(Yi ; Ji ): i > 1; c > 0g: It is assumed that ∆ is given so that 80 btc btc 19 < X (c) X (c) = J1−top Y ; J ) f(Lα(t); Dβ(t))g ; c ! 1: @ i i A t>0 : i=1 i=1 ; t>0 • Continuous-Mapping Theorem (CMT) W. Whitt, Stochastic-Process Limits: An Introduction to Stochastic-Process Limits and Their Application to Queues. Springer, New York (2002). 17 of 27 Example: Quadratic Variation The quadratic variation of Nβ (t) X X (t) = Yi i=1 is Nβ (t) Nβ (t) X 2 X 2 [X ](t)=[ X ; X ](t) = [X (Ti ) − X (Ti−1)] = Yi : i=1 i=1 E. Scalas, N. Viles, On the Convergence of Quadratic variation for Compound Fractional Poisson Processes. Fractional Calculus and Applied Analysis, 15, 314{331 (2012). 18 of 27 FCLT for the Quadratic Variation Theorem (Scalas & V. (2012)) Under the distributional assumptions considered above, we have that 80 [nt] 19 < 1 X 2 1 = J1−top + @ Yi ; Tnt A ) f(L (t); Dβ(t))gt 0; n2/α n1/β n!+1 α/2 > : i=1 ; t>0 in D([0; +1); R+ × R+) . Moreover, we have also Nβ (nt) 1 X M1−top Y 2 ) L+ (D−1(t)); as n ! +1; n2β/α i α/2 β i=1 + α in D([0; +1); R+), where Lα/2(t) denotes an 2 -stable positive L´evy process.
Recommended publications
  • Introduction to Lévy Processes
    Introduction to Lévy Processes Huang Lorick [email protected] Document type These are lecture notes. Typos, errors, and imprecisions are expected. Comments are welcome! This version is available at http://perso.math.univ-toulouse.fr/lhuang/enseignements/ Year of publication 2021 Terms of use This work is licensed under a Creative Commons Attribution 4.0 International license: https://creativecommons.org/licenses/by/4.0/ Contents Contents 1 1 Introduction and Examples 2 1.1 Infinitely divisible distributions . 2 1.2 Examples of infinitely divisible distributions . 2 1.3 The Lévy Khintchine formula . 4 1.4 Digression on Relativity . 6 2 Lévy processes 8 2.1 Definition of a Lévy process . 8 2.2 Examples of Lévy processes . 9 2.3 Exploring the Jumps of a Lévy Process . 11 3 Proof of the Levy Khintchine formula 19 3.1 The Lévy-Itô Decomposition . 19 3.2 Consequences of the Lévy-Itô Decomposition . 21 3.3 Exercises . 23 3.4 Discussion . 23 4 Lévy processes as Markov Processes 24 4.1 Properties of the Semi-group . 24 4.2 The Generator . 26 4.3 Recurrence and Transience . 28 4.4 Fractional Derivatives . 29 5 Elements of Stochastic Calculus with Jumps 31 5.1 Example of Use in Applications . 31 5.2 Stochastic Integration . 32 5.3 Construction of the Stochastic Integral . 33 5.4 Quadratic Variation and Itô Formula with jumps . 34 5.5 Stochastic Differential Equation . 35 Bibliography 38 1 Chapter 1 Introduction and Examples In this introductive chapter, we start by defining the notion of infinitely divisible distributions. We then give examples of such distributions and end this chapter by stating the celebrated Lévy-Khintchine formula.
    [Show full text]
  • Applied Probability
    ISSN 1050-5164 (print) ISSN 2168-8737 (online) THE ANNALS of APPLIED PROBABILITY AN OFFICIAL JOURNAL OF THE INSTITUTE OF MATHEMATICAL STATISTICS Articles Optimal control of branching diffusion processes: A finite horizon problem JULIEN CLAISSE 1 Change point detection in network models: Preferential attachment and long range dependence . SHANKAR BHAMIDI,JIMMY JIN AND ANDREW NOBEL 35 Ergodic theory for controlled Markov chains with stationary inputs YUE CHEN,ANA BUŠIC´ AND SEAN MEYN 79 Nash equilibria of threshold type for two-player nonzero-sum games of stopping TIZIANO DE ANGELIS,GIORGIO FERRARI AND JOHN MORIARTY 112 Local inhomogeneous circular law JOHANNES ALT,LÁSZLÓ ERDOS˝ AND TORBEN KRÜGER 148 Diffusion approximations for controlled weakly interacting large finite state systems withsimultaneousjumps.........AMARJIT BUDHIRAJA AND ERIC FRIEDLANDER 204 Duality and fixation in -Wright–Fisher processes with frequency-dependent selection ADRIÁN GONZÁLEZ CASANOVA AND DARIO SPANÒ 250 CombinatorialLévyprocesses.......................................HARRY CRANE 285 Eigenvalue versus perimeter in a shape theorem for self-interacting random walks MAREK BISKUP AND EVIATAR B. PROCACCIA 340 Volatility and arbitrage E. ROBERT FERNHOLZ,IOANNIS KARATZAS AND JOHANNES RUF 378 A Skorokhod map on measure-valued paths with applications to priority queues RAMI ATAR,ANUP BISWAS,HAYA KASPI AND KAV I TA RAMANAN 418 BSDEs with mean reflection . PHILIPPE BRIAND,ROMUALD ELIE AND YING HU 482 Limit theorems for integrated local empirical characteristic exponents from noisy high-frequency data with application to volatility and jump activity estimation JEAN JACOD AND VIKTOR TODOROV 511 Disorder and wetting transition: The pinned harmonic crystal indimensionthreeorlarger.....GIAMBATTISTA GIACOMIN AND HUBERT LACOIN 577 Law of large numbers for the largest component in a hyperbolic model ofcomplexnetworks..........NIKOLAOS FOUNTOULAKIS AND TOBIAS MÜLLER 607 Vol.
    [Show full text]
  • Superprocesses and Mckean-Vlasov Equations with Creation of Mass
    Sup erpro cesses and McKean-Vlasov equations with creation of mass L. Overb eck Department of Statistics, University of California, Berkeley, 367, Evans Hall Berkeley, CA 94720, y U.S.A. Abstract Weak solutions of McKean-Vlasov equations with creation of mass are given in terms of sup erpro cesses. The solutions can b e approxi- mated by a sequence of non-interacting sup erpro cesses or by the mean- eld of multityp e sup erpro cesses with mean- eld interaction. The lat- ter approximation is asso ciated with a propagation of chaos statement for weakly interacting multityp e sup erpro cesses. Running title: Sup erpro cesses and McKean-Vlasov equations . 1 Intro duction Sup erpro cesses are useful in solving nonlinear partial di erential equation of 1+ the typ e f = f , 2 0; 1], cf. [Dy]. Wenowchange the p oint of view and showhowtheyprovide sto chastic solutions of nonlinear partial di erential Supp orted byanFellowship of the Deutsche Forschungsgemeinschaft. y On leave from the Universitat Bonn, Institut fur Angewandte Mathematik, Wegelerstr. 6, 53115 Bonn, Germany. 1 equation of McKean-Vlasovtyp e, i.e. wewant to nd weak solutions of d d 2 X X @ @ @ + d x; + bx; : 1.1 = a x; t i t t t t t ij t @t @x @x @x i j i i=1 i;j =1 d Aweak solution = 2 C [0;T];MIR satis es s Z 2 t X X @ @ a f = f + f + d f + b f ds: s ij s t 0 i s s @x @x @x 0 i j i Equation 1.1 generalizes McKean-Vlasov equations of twodi erenttyp es.
    [Show full text]
  • A Mathematical Theory of Network Interference and Its Applications
    INVITED PAPER A Mathematical Theory of Network Interference and Its Applications A unifying framework is developed to characterize the aggregate interference in wireless networks, and several applications are presented. By Moe Z. Win, Fellow IEEE, Pedro C. Pinto, Student Member IEEE, and Lawrence A. Shepp ABSTRACT | In this paper, we introduce a mathematical I. INTRODUCTION framework for the characterization of network interference in In a wireless network composed of many spatially wireless systems. We consider a network in which the scattered nodes, communication is constrained by various interferers are scattered according to a spatial Poisson process impairments such as the wireless propagation effects, and are operating asynchronously in a wireless environment network interference, and thermal noise. The effects subject to path loss, shadowing, and multipath fading. We start introduced by propagation in the wireless channel include by determining the statistical distribution of the aggregate the attenuation of radiated signals with distance (path network interference. We then investigate four applications of loss), the blocking of signals caused by large obstacles the proposed model: 1) interference in cognitive radio net- (shadowing), and the reception of multiple copies of the works; 2) interference in wireless packet networks; 3) spectrum same transmitted signal (multipath fading). The network of the aggregate radio-frequency emission of wireless net- interference is due to accumulation of signals radiated by works; and 4) coexistence between ultrawideband and nar- other transmitters, which undesirably affect receiver nodes rowband systems. Our framework accounts for all the essential in the network. The thermal noise is introduced by the physical parameters that affect network interference, such as receiver electronics and is usually modeled as additive the wireless propagation effects, the transmission technology, white Gaussian noise (AWGN).
    [Show full text]
  • Semimartingale Properties of a Generalized Fractional Brownian Motion and Its Mixtures with Applications in finance
    Semimartingale properties of a generalized fractional Brownian motion and its mixtures with applications in finance TOMOYUKI ICHIBA, GUODONG PANG, AND MURAD S. TAQQU ABSTRACT. We study the semimartingale properties for the generalized fractional Brownian motion (GFBM) introduced by Pang and Taqqu (2019) and discuss the applications of the GFBM and its mixtures to financial models, including stock price and rough volatility. The GFBM is self-similar and has non-stationary increments, whose Hurst index H 2 (0; 1) is determined by two parameters. We identify the region of these two parameter values where the GFBM is a semimartingale. Specifically, in one region resulting in H 2 (1=2; 1), it is in fact a process of finite variation and differentiable, and in another region also resulting in H 2 (1=2; 1) it is not a semimartingale. For regions resulting in H 2 (0; 1=2] except the Brownian motion case, the GFBM is also not a semimartingale. We also establish p-variation results of the GFBM, which are used to provide an alternative proof of the non-semimartingale property when H < 1=2. We then study the semimartingale properties of the mixed process made up of an independent Brownian motion and a GFBM with a Hurst parameter H 2 (1=2; 1), and derive the associated equivalent Brownian measure. We use the GFBM and its mixture with a BM to study financial asset models. The first application involves stock price models with long range dependence that generalize those using shot noise processes and FBMs. When the GFBM is a process of finite variation (resulting in H 2 (1=2; 1)), the mixed GFBM process as a stock price model is a Brownian motion with a random drift of finite variation.
    [Show full text]
  • Introduction to Lévy Processes
    Introduction to L´evyprocesses Graduate lecture 22 January 2004 Matthias Winkel Departmental lecturer (Institute of Actuaries and Aon lecturer in Statistics) 1. Random walks and continuous-time limits 2. Examples 3. Classification and construction of L´evy processes 4. Examples 5. Poisson point processes and simulation 1 1. Random walks and continuous-time limits 4 Definition 1 Let Yk, k ≥ 1, be i.i.d. Then n X 0 Sn = Yk, n ∈ N, k=1 is called a random walk. -4 0 8 16 Random walks have stationary and independent increments Yk = Sk − Sk−1, k ≥ 1. Stationarity means the Yk have identical distribution. Definition 2 A right-continuous process Xt, t ∈ R+, with stationary independent increments is called L´evy process. 2 Page 1 What are Sn, n ≥ 0, and Xt, t ≥ 0? Stochastic processes; mathematical objects, well-defined, with many nice properties that can be studied. If you don’t like this, think of a model for a stock price evolving with time. There are also many other applications. If you worry about negative values, think of log’s of prices. What does Definition 2 mean? Increments , = 1 , are independent and Xtk − Xtk−1 k , . , n , = 1 for all 0 = . Xtk − Xtk−1 ∼ Xtk−tk−1 k , . , n t0 < . < tn Right-continuity refers to the sample paths (realisations). 3 Can we obtain L´evyprocesses from random walks? What happens e.g. if we let the time unit tend to zero, i.e. take a more and more remote look at our random walk? If we focus at a fixed time, 1 say, and speed up the process so as to make n steps per time unit, we know what happens, the answer is given by the Central Limit Theorem: 2 Theorem 1 (Lindeberg-L´evy) If σ = V ar(Y1) < ∞, then Sn − (Sn) √E → Z ∼ N(0, σ2) in distribution, as n → ∞.
    [Show full text]
  • Lecture 19 Semimartingales
    Lecture 19:Semimartingales 1 of 10 Course: Theory of Probability II Term: Spring 2015 Instructor: Gordan Zitkovic Lecture 19 Semimartingales Continuous local martingales While tailor-made for the L2-theory of stochastic integration, martin- 2,c gales in M0 do not constitute a large enough class to be ultimately useful in stochastic analysis. It turns out that even the class of all mar- tingales is too small. When we restrict ourselves to processes with continuous paths, a naturally stable family turns out to be the class of so-called local martingales. Definition 19.1 (Continuous local martingales). A continuous adapted stochastic process fMtgt2[0,¥) is called a continuous local martingale if there exists a sequence ftngn2N of stopping times such that 1. t1 ≤ t2 ≤ . and tn ! ¥, a.s., and tn 2. fMt gt2[0,¥) is a uniformly integrable martingale for each n 2 N. In that case, the sequence ftngn2N is called the localizing sequence for (or is said to reduce) fMtgt2[0,¥). The set of all continuous local loc,c martingales M with M0 = 0 is denoted by M0 . Remark 19.2. 1. There is a nice theory of local martingales which are not neces- sarily continuous (RCLL), but, in these notes, we will focus solely on the continuous case. In particular, a “martingale” or a “local martingale” will always be assumed to be continuous. 2. While we will only consider local martingales with M0 = 0 in these notes, this is assumption is not standard, so we don’t put it into the definition of a local martingale. tn 3.
    [Show full text]
  • Solving Black-Schole Equation Using Standard Fractional Brownian Motion
    http://jmr.ccsenet.org Journal of Mathematics Research Vol. 11, No. 2; 2019 Solving Black-Schole Equation Using Standard Fractional Brownian Motion Didier Alain Njamen Njomen1 & Eric Djeutcha2 1 Department of Mathematics and Computer’s Science, Faculty of Science, University of Maroua, Cameroon 2 Department of Mathematics, Higher Teachers’ Training College, University of Maroua, Cameroon Correspondence: Didier Alain Njamen Njomen, Department of Mathematics and Computer’s Science, Faculty of Science, University of Maroua, Po-Box 814, Cameroon. Received: May 2, 2017 Accepted: June 5, 2017 Online Published: March 24, 2019 doi:10.5539/jmr.v11n2p142 URL: https://doi.org/10.5539/jmr.v11n2p142 Abstract In this paper, we emphasize the Black-Scholes equation using standard fractional Brownian motion BH with the hurst index H 2 [0; 1]. N. Ciprian (Necula, C. (2002)) and Bright and Angela (Bright, O., Angela, I., & Chukwunezu (2014)) get the same formula for the evaluation of a Call and Put of a fractional European with the different approaches. We propose a formula by adapting the non-fractional Black-Scholes model using a λH factor to evaluate the european option. The price of the option at time t 2]0; T[ depends on λH(T − t), and the cost of the action S t, but not only from t − T as in the classical model. At the end, we propose the formula giving the implied volatility of sensitivities of the option and indicators of the financial market. Keywords: stock price, black-Scholes model, fractional Brownian motion, options, volatility 1. Introduction Among the first systematic treatments of the option pricing problem has been the pioneering work of Black, Scholes and Merton (see Black, F.
    [Show full text]
  • Levy Processes
    LÉVY PROCESSES, STABLE PROCESSES, AND SUBORDINATORS STEVEN P.LALLEY 1. DEFINITIONSAND EXAMPLES d Definition 1.1. A continuous–time process Xt = X(t ) t 0 with values in R (or, more generally, in an abelian topological groupG ) isf called a Lévyg ≥ process if (1) its sample paths are right-continuous and have left limits at every time point t , and (2) it has stationary, independent increments, that is: (a) For all 0 = t0 < t1 < < tk , the increments X(ti ) X(ti 1) are independent. − (b) For all 0 s t the··· random variables X(t ) X−(s ) and X(t s ) X(0) have the same distribution.≤ ≤ − − − The default initial condition is X0 = 0. A subordinator is a real-valued Lévy process with nondecreasing sample paths. A stable process is a real-valued Lévy process Xt t 0 with ≥ initial value X0 = 0 that satisfies the self-similarity property f g 1/α (1.1) Xt =t =D X1 t > 0. 8 The parameter α is called the exponent of the process. Example 1.1. The most fundamental Lévy processes are the Wiener process and the Poisson process. The Poisson process is a subordinator, but is not stable; the Wiener process is stable, with exponent α = 2. Any linear combination of independent Lévy processes is again a Lévy process, so, for instance, if the Wiener process Wt and the Poisson process Nt are independent then Wt Nt is a Lévy process. More important, linear combinations of independent Poisson− processes are Lévy processes: these are special cases of what are called compound Poisson processes: see sec.
    [Show full text]
  • Financial Modeling with L´Evy Processes and Applying L
    FINANCIAL MODELING WITH LEVY´ PROCESSES AND APPLYING LEVY´ SUBORDINATOR TO CURRENT STOCK DATA by GONSALGE ALMEIDA Submitted in partial fullfillment of the requirements for the degree of Doctor of Philosophy Dissertation Advisor: Dr. Wojbor A. Woyczynski Department of Mathematics, Applied Mathematics and Statistics CASE WESTERN RESERVE UNIVERSITY January 2020 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the dissertation of Gonsalge Almeida candidate for the Doctoral of Philosophy degree Committee Chair: Dr.Wojbor Woyczynski Professor, Department of the Mathematics, Applied Mathematics and Statis- tics Committee: Dr.Alethea Barbaro Associate Professor, Department of the Mathematics, Applied Mathematics and Statistics Committee: Dr.Jenny Brynjarsdottir Associate Professor, Department of the Mathematics, Applied Mathematics and Statistics Committee: Dr.Peter Ritchken Professor, Weatherhead School of Management Acceptance date: June 14, 2019 *We also certify that written approval has been obtained for any proprietary material contained therein. CONTENTS List of Figures iv List of Tables ix Introduction . .1 1 Financial Modeling with L´evyProcesses and Infinitely Divisible Distributions 5 1.1 Introduction . .5 1.2 Preliminaries on L´evyprocesses . .6 1.3 Characteristic Functions . .8 1.4 Cumulant Generating Function . .9 1.5 α−Stable Distributions . 10 1.6 Tempered Stable Distribution and Process . 19 1.6.1 Tempered Stable Diffusion and Super-Diffusion . 23 1.7 Numerical Approximation of Stable and Tempered Stable Sample Paths 28 1.8 Monte Carlo Simulation for Tempered α−Stable L´evyprocess . 34 2 Brownian Subordination (Tempered Stable Subordinator) 44 i 2.1 Introduction . 44 2.2 Tempered Anomalous Subdiffusion . 46 2.3 Subordinators . 49 2.4 Time-Changed Brownian Motion .
    [Show full text]
  • On the Convergence of Quadratic Variation for Compound Fractional Poisson Processes in “Fcaa” Journal
    ON THE CONVERGENCE OF QUADRATIC VARIATION FOR COMPOUND FRACTIONAL POISSON PROCESSES IN \FCAA" JOURNAL Enrico Scalas 1, No`eliaViles 2 Abstract The relationship between quadratic variation for compound renewal processes and M-Wright functions is discussed. The convergence of qua- dratic variation is investigated both as a random variable (for given t) and as a stochastic process. Key Words and Phrases: Continuous time random walk; Inverse stable subordinator; Mittag-Leffler waiting time; Fractional Poisson process; M- Wright functions; Quadratic variation; Compound renewal process. 1. Introduction This paper discusses the relationship between quadratic variation for pure jump processes (usually called continuous-time random walks by physi- cists) and M-Wright functions, often appearing in fractional calculus. Some results highlighted in this short paper were already published in [6]. How- ever, the main focus of that paper was defining and studying the properties of stochastic integrals driven by pure jump processes. Moreover, in this paper, we study the convergence of quadratic variation as a stochastic pro- cess. 1.1. Continuous-Time Random Walks 1 Let fJigi=1 be a sequence of independent and identically distributed (i.i.d.) positive random variables with the meaning of durations between c Year Diogenes Co., Sofia pp. xxx{xxx 2 Enrico Scalas, N. Viles events in a point process. They define a renewal process. Let n X T0 = 0;Tn = Ji; for n > 1; (1.1) i=1 be the epoch of the n-th event. Then the process Nt counting the number of events up to time t is Nt = maxfn : Tn ≤ tg; (1.2) where it is assumed that the number of events occurring up to t is a finite, but arbitrary, non-negative integer.
    [Show full text]
  • Long Time Behaviour and Mean-Field Limit of Atlas Models Julien Reygner
    Long time behaviour and mean-field limit of Atlas models Julien Reygner To cite this version: Julien Reygner. Long time behaviour and mean-field limit of Atlas models. ESAIM: Proceedings and Surveys, EDP Sciences, 2017, Journées MAS 2016 de la SMAI – Phénomènes complexes et hétérogènes, 60, pp.132-143. 10.1051/proc/201760132. hal-01525360 HAL Id: hal-01525360 https://hal.archives-ouvertes.fr/hal-01525360 Submitted on 19 May 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Long time behaviour and mean-field limit of Atlas models Julien Reygner ABSTRACT. This article reviews a few basic features of systems of one-dimensional diffusions with rank-based characteristics. Such systems arise in particular in the modelling of financial mar- kets, where they go by the name of Atlas models. We mostly describe their long time and large scale behaviour, and lay a particular emphasis on the case of mean-field interactions. We finally present an application of the reviewed results to the modelling of capital distribution in systems with a large number of agents. 1. Introduction The term Atlas model was originally introduced in Fernholz’ monograph on Stochastic Portfolio Theory [13] to describe a stock market in which the asset prices evolve according to independent and identically distributed processes, except the smallest one which undergoes an additional up- ward push.
    [Show full text]