Quantifying, Reducing and Improving Mine Water Use

Total Page:16

File Type:pdf, Size:1020Kb

Quantifying, Reducing and Improving Mine Water Use QUANTIFYING, REDUCING AND IMPROVING MINE WATER USE by Aaron James Gunson B.A., Mount Allison University, 1999 B.A.Sc., University of British Columbia, 2002 M.A.Sc., University of British Columbia, 2004 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES (Mining Engineering) THE UNIVERISITY OF BRITISH COLUMBIA (Vancouver) May, 2013 © Aaron James Gunson, 2013 ABSTRACT Water is vital to the mining industry; mines can require substantial amounts of water and are often located in some of the driest places on earth. Reducing water withdrawals and improving mine water use are key strategic requirements for moving toward a more sustainable mining industry. Mine water requirements often have significant technical, economic, environmental and political implications. This thesis quantifies global mine water withdrawals and discusses methods of improving mine water use by reducing water withdrawals and water-related energy consumption. The thesis is composed of four main sections. First, two methods are proposed to calculate global mining water withdrawals by commodity. One method is based on the amount of water required to process a tonne of ore and the other is based on the amount of water required to produce a tonne of concentrate. A large database was created, compiling data regarding ore production, commodity production, commodity prices, and mine water withdrawals between 2006 and 2009. The study estimates that global water withdrawals range from 6 to 8 billion m3 per annum. Second, the thesis presents a case study on the challenges faced and lessons learned during the design, start-up and modification of the water systems of a large copper mine site. Third, the thesis identifies multiple mine water reduction, reuse and recycle strategies that have been implemented around the world. A model is developed and used to show the potential impact of these strategies. The results of the modelling show how a hypothetical mine could reduce water withdrawals from 0.76 m3/t to 0.20 m3/t of ore processed or lower. In particular, the combination of ore pre-concentration and filtered tailings disposal reduced water consumption by over 74% of the base case. Finally, this thesis describes and demonstrates a method of determining the lowest energy option for a mine water network. The method uses a linear programming algorithm to compare options for matching water sources with consumers at mine sites. An example illustrates the method and shows how mine water system energy requirements can be reduced by over 50%. ii PREFACE Thus far the research undertaken for this dissertation has generated two journal publications and five refereed conference papers. In all cases, as the first author, I was primarily responsible for the research design, data collection and analysis, manuscript preparation and writing. Dr. Bern Klein, Dr. Marcello Veiga, Dr. Scott Dunbar, and Dr. Ward Wilson, as members of my supervisory committee, provided input, through advice and editing assistance. The publications are as follow: Gunson, A. and K. Wood. 2008. Raw Water Supply: The Experience of Cerro Verde. In CMP 2008 Proceedings. Ottawa. Gunson, A, Klein, B., and Veiga, M. 2008. Improving Mill Water System Design, In Proceedings WIM 2008, Santiago. Gunson, A., Wood, K., Klein, B., and Veiga, M. 2008. Estimating Water Demand and Availability for Open Water-based Mill Cooling Systems, In Proceedings of XXIV IMPC, Beijing. Gunson, A, Klein, B., and Veiga, M. 2010. Improving Mine/Mill Water Network Design by Reducing Water and Energy Requirements. In CMP 2010 Proceedings. Ottawa. Gunson, A, Klein, B., and Veiga, M. 2010. Estimating Global Water Withdrawals due to Copper Mining. In Proceedings WIM 2010, Santiago. Gunson, A. Klein, B., Veiga, M., Dunbar, S. 2010. Reducing mine water network energy requirements. Journal of Cleaner Production, Volume 18, Issue 13, September 2010, Pages 1328-1338. iii Gunson, A. Klein, B., Veiga, M., Dunbar, S. 2012. Reducing mine water requirements. Journal of Cleaner Production, Volume 21, Issue 1, January 2012, Pages 71-81. Additional assistance was provided by others as follows: “Raw Water Supply: The Experience of Cerro Verde.”, was reviewed and commented on by Ken Wood, my mentor at Fluor Canada. The paper was also reviewed, commented on and approved by John Marsdon, John Broderick, and Peter Faur, of Freeport McMoran Copper and Gold and Dave Dicaire, of Fluor Canada. In addition, Ian Orford, 1st Vice Chair of the Canadian Mineral Processing Conference, 2008, provided editing recommendations on the structure of the paper before final acceptance. The case study describes the design, pre-operations testing, start- up and upgrades to the Cerro Verde Primary Sulfide Project (CVPSP) water system. In addition to being the primary author, I worked as a process specialist with Fluor Canada and Fluor Daniel International on the CVPSP from November 2004 until March 2007, from the beginning of detailed engineering to the completion of the water system upgrade. I was the primary process designer for the CVPSP water systems, with responsibilities including: Creating and updating the site water balance, using data from the project mass (metallurgical) balance, existing site data and data from MWH Global on the proposed tailings storage facility; Compiling information about the available water quality based on SMCV environmental monitoring data; Compiling information from vendors about water requirements for mechanical and electrical equipment; Designing process flow sheets and piping and instrumentation diagrams for the plant water systems and providing process data for mechanical equipment datasheets; iv Writing the water systems process control philosophy and operating manuals; Leading the pre-operational testing and wet testing of the plant water systems; and Leading efforts to upgrade the fresh water system, including drafting evaluations of available options, completing detailed design of the process modifications, commissioning the modifications and training SMCV operators on how to operate the system. “Improving Mill Water System Design” was reviewed and commented on by an anonymous reviewer for the Water in Mining Conference in 2008. “Estimating Water Demand and Availability for Open Water-based Mill Cooling Systems” was reviewed, commented on, and approved by Ari Partanen of Freeport McMoran Copper and Gold. It was also reviewed and commented on by an anonymous reviewer for the International Mineral Processors Conference in 2008. “Improving Mine/Mill Water Network Design by Reducing Water and Energy Requirements” was reviewed and commented on by Dominic Fragomeni, 1st Vice Chair of the Canadian Mineral Processing Conference, 2010. “Estimating Global Water Withdrawals due to Copper Mining” was reviewed and commented on by an anonymous reviewer for the Water in Mining Conference in 2010. “Reducing mine water network energy requirements” and “Reducing mine water requirements” were reviewed and commented on by anonymous peer reviewers and Gavin Hilson, Subject Editor, Journal of Cleaner Production. Chapter 2, Literature Review, integrates the literature reviews undertaken during the research of all of the above papers in addition to further relevant publications. v Chapter 3, Methodology, integrates the methodology descriptions of all the above papers in addition to outlining the methodology used in Chapter 4, Estimating Global Mine Water Use. Chapter 4, Estimating Global Mine Water Use, is partially based on concepts developed in “Estimating Global Water Withdrawals due to Copper Mining,” but is largely composed of material not previously published. Chapter 5, Case Study – Cerro Verde Concentrator Fresh Water System, is primarily based on the papers, “Raw Water Supply: The Experience of Cerro Verde,” “Improving Mill Water System Design” and “Estimating Water Demand and Availability for Open Water-based Mill Cooling Systems.” Chapter 6, Reducing Mine Water Requirements, is closely based on the paper “Reducing mine water requirements.” Chapter 7, Mine Water Network Design, is closely based on the paper “Reducing mine water network energy requirements.” However, it also includes a previously unpublished section integrating and building on the results of the paper “Reducing mine water requirements.” No ethics certificates were required or obtained for this dissertation. vi TABLE OF CONTENTS ABSTRACT ................................................................................................................................... ii PREFACE ..................................................................................................................................... iii TABLE OF CONTENTS ............................................................................................................. vii LIST OF TABLES ...................................................................................................................... xiii LIST OF FIGURES .................................................................................................................... xvi LIST OF ABBREVIATIONS AND SYMBOLS ..................................................................... xviii ACKNOWLEDGEMENTS ....................................................................................................... xxv DEDICATION ......................................................................................................................... xxvii 1. INTRODUCTION ................................................................................................................
Recommended publications
  • Positive PFS Results for Razorback High Grade Iron Ore Concentrate Project
    ASX Announcement 5 July 2021 Positive PFS Results for Razorback High Grade Iron Ore Concentrate Project Highlights: • Pre Feasibility Study completed and scope defined for Definitive Feasibility Study • PFS supports declaration of a maiden ore reserve of 473mt based on a 12.8Mtpa plant throughput, backed by PFS level or AACE Class 4 capital cost estimates and/or third-party service proposals1 • Optimisation of the processing plant configuration with a nominal 15.5Mtpa feed plant utilising three grinding stages, three stage magnetic separation and flotation to generate a premium grade magnetite concentrate with 67.5 - 68.5% Fe content • Non-process infrastructure and transport studies confirm preferred scope for operating inputs and initial route selection to load annual production of between 2 and 3 Mtpa of high grade concentrate on to Cape size vessels • Initial capital investment of US$429-$506M (A$572-$675M) resulting in optimised case results of NPV of A$669M and 20% IRR for selected go-forward case at long run average prices (post tax, ungeared) • Preparation for a prompt commencement of Definitive Feasibility Study is well advanced with further drilling, testwork, metallurgical investigation and engineering workplans in progress Magnetite Mines Limited (Magnetite Mines or the Company) today announced the results of the Pre Feasibility Study (PFS) for development of its 100% owned Razorback High Grade Iron Ore Concentrate Project (the Project or Razorback) and is now proceeding with the Definitive Feasibility Study (DFS). The PFS has confirmed the opportunity for a high return, long life, initial development of the large scale Razorback resource which leverages the advantages of resource scale, low stripping ratio, available infrastructure, low cost sustainable power and leading product quality.
    [Show full text]
  • Recovery of Magnetite-Hematite Concentrate from Iron Ore Tailings
    E3S Web of Conferences 247, 01042 (2021) https://doi.org/10.1051/e3sconf/202124701042 ICEPP-2021 Recovery of magnetite-hematite concentrate from iron ore tailings Mikhail Khokhulya1,*, Alexander Fomin1, and Svetlana Alekseeva1 1Mining Institute of Kola Science Center of Russian Academy of Sciences, Apatity, 184209, Russia Abstract. The research is aimed at study of the probable recovery of iron from the tailings of the Olcon mining company located in the north-western Arctic zone of Russia. Material composition of a sample from a tailings dump was analysed. The authors have developed a separation production technology to recover magnetite-hematite concentrate from the tailings. A processing flowsheet includes magnetic separation, milling and gravity concentration methods. The separation technology provides for production of iron ore concentrate with total iron content of 65.9% and recovers 91.0% of magnetite and 80.5% of hematite from the tailings containing 20.4% of total iron. The proposed technology will increase production of the concentrate at a dressing plant and reduce environmental impact. 1 Introduction The mineral processing plant of the Olcon JSC, located at the Murmansk region, produces magnetite- At present, there is an important problem worldwide in hematite concentrate. The processing technology the disposal of waste generated during the mineral includes several magnetic separation stages to produce production and processing. Tailings dumps occupy huge magnetite concentrate and two jigging stages to produce areas and pollute the environment. However, waste hematite concentrate from a non-magnetic fraction of material contains some valuable components that can be magnetic separation [13]. used in various industries. In the initial period of plant operation (since 1955) In Russia, mining-induced waste occupies more than iron ore tailings were stored in the Southern Bay of 300 thousand hectares of lands.
    [Show full text]
  • Treatment and Microscopy of Gold
    TREATMENT AND MICROSCOPY OF GOLD AND BASE METAL ORES. (Script with Sketches & Tables) Short Course by R. W. Lehne April 2006 www.isogyre.com Geneva University, Department of Mineralogy CONTENTS (Script) page 1. Gold ores and their metallurgical treatment 2 1.1 Gravity processes 2 1.2 Amalgamation 2 1.3 Flotation and subsequent processes 2 1.4 Leaching processes 3 1.5 Gold extraction processes 4 1.6 Cyanide leaching vs. thio-compound leaching 5 2. Microscopy of gold ores and treatment products 5 2.1 Tasks and problems of microscopical investigations 5 2.2 Microscopy of selected gold ores and products 6 (practical exercises) 3. Base metal ores and their beneficiation 7 3.1 Flotation 7 3.2 Development of the flotation process 7 3.3 Principles and mechanisms of flotation 7 3.4 Column flotation 9 3.5 Hydrometallurgy 10 4. Microscopy of base metal ores and milling products 10 4.1 Specific tasks of microscopical investigations 11 4.2 Microscopy of selected base metal ores and milling products 13 (practical exercises) 5. Selected bibliography 14 (Sketches & Tables) Different ways of gold concentration 15 Gravity concentration of gold (Agricola) 16 Gravity concentration of gold (“Long Tom”) 17 Shaking table 18 Humphreys spiral concentrator 19 Amalgamating mills (Mexican “arrastra”, Chilean “trapiche”) 20 Pressure oxidation flowsheet 21 Chemical reactions of gold leaching and cementation 22 Cyanide solubilities of selected minerals 23 Heap leaching flowsheet 24 Carbon in pulp process 25 Complexing of gold by thio-compounds 26 Relation gold content / amount of particles in polished section 27 www.isogyre.com Economically important copper minerals 28 Common zinc minerals 29 Selection of flotation reagents 30 Design and function of a flotation cell 31 Column cell flotation 32 Flowsheet of a simple flotation process 33 Flowsheet of a selective Pb-Zn flotation 34 Locking textures 35 2 1.
    [Show full text]
  • Addressing the Information Gaps on Prices of Minerals Sold in an Intermediate Form
    The Platform for Cooperation on Tax DISCUSSION DRAFT: Addressing the Information Gaps on Prices of Minerals Sold in an Intermediate Form Feedback Period 24 January 2017 – 21 February 2017 Organisation for Economic Co-operation and Development (OECD) World Bank Group (WBG) International Monetary Fund (IMF) United Nations (UN) 1 This discussion draft has been prepared in the framework of the Platform for Collaboration on Tax by the OECD, under the responsibility of the Secretariats and Staff of the four mandated organisations. The draft reflects a broad consensus among these staff, but should not be regarded as the officially endorsed views of those organisations or of their member countries. 1 Table of Contents Introduction................................................................................................................................................................ 6 Domestic Resource Mobilisation from Mining......................................................................................... 6 Report Structure ................................................................................................................................................... 9 Building An Understanding of the Mining Sector – A Methodology ................................................ 10 Introduction ........................................................................................................................................................ 10 Steps in the Methodology ...........................................................................................................................
    [Show full text]
  • An Issue Dedicated to Solutions for the Modern Mining Industry
    Metso’s customer magazine » ISSUE 1/2017 Mining minds An issue dedicated to solutions for the modern mining industry More efficiency Six-fold reduction Longer wear life and with less energy in moisture content fewer liner changes 06 and water 18 at Olenegorsky GOK 28 reduce costs “Metso has gone beyond combining and re-releasing technology based on prior designs. Its solution is more efficient, lasts longer and reduces operating costs.” mining Results mining is PUBLISHED BY EDITOR-IN-CHIEF © Copyright 2017 PRINTING Metso’s customer magazine Metso Corporation Inka Törmä, Metso Corporation. Hämeen Kirjapaino Oy, showcasing our work and [email protected] All rights reserved. February 2017 Töölönlahdenkatu 2, the success of our customers. P.O. Box 1220, DESIGN AND LAYOUT Reproduction permitted ISSN SUBSCRIPTIONS FI-00101 Helsinki, Brandkind, brandkind.fi quoting “Results mining” 2343-3590 To receive your personal Finland as source. ENGLISH LANGUAGE ADDRESSES 4041 0209 copy, please contact your Printed matter tel. +358 20 484 100 Kathleen Kuosmanen All product names used Metso customer data nearest Metso office or HÄMEEN KIRJAPAINO OY www.metso.com are trademarks of their the e-mail provided. respective owners. This magazine, including all claims regarding operational performance, is intended for sharing information on successful customer cases. Metso makes no warranty or representation whatsoever, either express or implied, that similar or any performance levels or improvements are achievable for all sites or for any particular site. Metso assumes no legal liability for any use of information contained in this presentation. If requested, Metso can execute a site specific survey to provide an estimate of performance or performance improvement for a specific site and operation.
    [Show full text]
  • Charge Calculations in Pyrometallurgical Processes
    Charge Calculations in Pyrometallurgical Processes Smelting It is a unit process similar to roasting, to heat a mixture of ore concentrate above the melting point The objective is to separate the gangue mineral from liquid metal or matte The state of the gangue mineral in case of smelting is liquid which is the main difference between roasting and smelting Inputs – Ore, flux, fuel, air Output – Metal or Matte, slag, off-gas When metal is separated as sulphide from smelting of ore, it is called Matte smelting e.g. Cu2S and FeS When metal is separated as liquid, it is called reduction smelting e.g. Ironmaking Density of liquid metal or matte is around 5-5.5 g/cm3 Density of slag is around 2.8-3 g/cm3 The additives and fluxes serve to convert the waste or gangue materials in the charge into a low melting point slag which also dissolves the coke ash and removes sulphur Matte Smelting Advantages of matte smelting • Low melting point of matte so that less amount of thermal energy is required by converting the metal of the ore in the form of sulphide and then extracting the metal e.g. melting point of Cu2S and FeS is around 1000 degrees Celsius • Cu2S which is contained in the matte, does not require any reducing agent It is converted to oxide by blowing oxygen • Matte smelting is beneficial for extraction of metal from sulphide ore, particularly when sulphide ore is associated with iron sulphide which forms eutectic point with Cu and Ni The grade of the matte is defined as the copper grade of matte A matte of 40 percent means, it has 40% copper, so matte is always given in terms of copper, because it is used to produce copper not iron Slag in matte smelting is mixture of oxides e.g.
    [Show full text]
  • India's Contribution to the Mining, Extraction and Refining of Gold: Some Observations Related to the Pre-Christian Era
    0 2001 NML Jamshedpur 831 007, India; Metallurgy in India: A Retrospective; (ISBN: 81-87053-56-7); Eds: P. Ramachandra Rao and N.G. Goswami; pp.163-181. 8 India's Contribution to the Mining, Extraction and Refining of Gold: Some Observations Related to the Pre-Christian Era ' R.K. Dube. • Department of Materials & Metallurgical Engineering, Indian Institute of Technology, Kanptir .208 016, India. ABSTRACT India has a very old and fascinating history of gold. Various aspects of the mining and metallurgy of gold were known to the Indians since time immemorial. In this paper, different types of the gold ore deposits', and the technique used in the extraction and refining of gold in ancient India as obtained from the literary sources 'composed in the pre-Christian era and some archaeological findings are discussed. The recovery of a novel variety of high purity gold powder, known as Pipilaka Gold, from the auriferous soil of ant-hills, as stated in the Maheibharata, has also been discussed. Key, words : Alluvial placer gold, Vein gold, Liquid ore of gold, Panning, Deep mining, Cupellation, Solid state refining of gold, Anks'r gold. INTRODUCTION Man and metal have an age-old relationship. Out of all metals known to man in ancient times, p-6i-haps gold was the first with which man became acquainted. Indians had, and still continue to have, great fascination for gold. Its special attributes, such as pleasing and untarnishing colour, excellent corrosion and . oxidation resistance, ease of forming, and limited availability made it an ideal metal for ornaments, decoration, currency, and store of wealth in ancient India.
    [Show full text]
  • World Bank Document
    ReportNo. 1351-BA Burma Appraisalof the Tin and TungstenExpansion Project Public Disclosure Authorized February8, 1977 Industrial ProjectsDepartment FOR OFFICIAL USEONLY Public Disclosure Authorized Public Disclosure Authorized Public Disclosure Authorized Document of the World Bank Thisdocument hasa restricteddistribution and may be usedby recipients only in the performanceof their officialduties. Its contents may not otherwise be disclosedwithout World Bankauthorization. CURRENCYEQUIVALENTS Except where otherwise indicated, all figures are quoted in Kyats (K) and US Dollars (US$). K 1.00 = US$0.15 K 6.65 = US$1.00 ABBRIVIATIONSAND ACRONYMS CIDA Canadian InternationalDevelopment Association DGSE Directorateof Geological Survey and Mineral Exploration Government Government of the SocialistRepublic of the Union of Burma KfW Kreditanstaltfur Wiederaufbau ITC InternationalTin Council LMB London Metal Bulletin LME London Metal Exchange LTPY Long tons per year MC2, the Corporation No. 2 Mining Corporation (formerlyMyanma Tin Tungsten Corporation - MTTC) MDC Mineral Development Corporation MEB Myanma Economic Bank IMEIC Myanma Export Import Corporation MMDC Myanma Mineral Development Corporation HOC Myanma Oil Corporation 1'PY Metric tons per year PTA Primary Tungsten Association UBB Union Bank of Burma UGCF Union Government ConsolidatedFund UNCTAD United Nations Conference on Trade and Development UNDP United Nations Development Program USBM US Bureau of Mines WBMS World Bureau of Metal Statistics WEIGHTSAND MEASURES 1 Hectare = 2.47 acres 1 Kilometer (km) = 0.62 miles 1 Long Ton (LT) = 2,240 pounds 1 Long Ton Unit (LTU) = 1% of a long ton or 22.4 pounds 1 Meter (m) = 39.3 inches 1 Metric Ton (MT) = 2,205 pounds 1 Metric Ton Unit (MTU)= 1% of a metric ton, or 22.05 pounds 1 Picul (Pikul) = 133.33 pounds FISCAL YEAR April 1 - March 31 Industrial Projects Department February 1977 FOR OFFICIAL USE ONLY BURMA APPRAISAL OF THE TIN AND TUNGSTEN EXPANSION PROJECT TABLE OF CONTENTS Page No.
    [Show full text]
  • FIG. 1 I Crush And/Or Grind to Free the Iron Oxide
    Aug. 22, 1967 J‘ E. LAWVER 3,337,328 IRON ORE BENEFICIATION PROCESS Filed June 19, 1964 6 Sheets-Sheet l Heavy Media Tailings Tailing Pond Fines or Semitaconite 25 to 50% Iron FIG. 1 I Crush and/or Grind to Free the Iron Oxide Partial Concentration to Separate Iron Mineral from Waste Product by one of Following Processes or or A B C High Intensity Wet Froth Gravity Magnetic Separation Flotation Separation l l I I Partial Waste Partial Waste Partial Waste Concentrate Product Concentrate Product Concentrate Product L I I . Gravity Gravity Concentrates or Separation of Partial‘ Concentrates Low-grade Hematitic Ore From "An or “all or "ch 40 to 58%‘.Iron Crush and Grind to Liberate Silica Coarse Fraction Minus O. 010" plus 0.003" Fine Fraction‘ Less than 0.003" G to 75% Weight @ 25 to 100% Weight Electrodynamic Process to Separate Froth Flotation Process to Separate Iron Oxides and Silica Iron Oxides and Silica Silica Product to Waste Silica Product to Waste Iron Oxide Concentrate 62 to 65% Iron 5% Silica ' INVENTOR J9me; E. L’ AWl/ER 14 T TORNE Y! Aug. 22, 1967 J. e. LAWVER 3,337,328 IRON ORE BENEFICIATION PROCESS Filed ‘June 19, 1964 6 Sheets-Sheet 2 Crude Ore %Wt. 100. O0 FIG.' 2 %Fe%Insol.4l.l9 39 . 35 4" Screen -4" Ore +4" Ore %wt.84.45 %Wt. 15.39 %E‘e 4O. 19 %E'e 34. 75 %Inso]l . 48. 57 Crush 8 Screen %Fe Rec.l3.59 _ -___.______ +14 Mesh ~~14 Mesh Heavy Media Sands Slimes Separation '7‘Wt- 9-58 Spirals %E‘e 11.78 Sinks Floats ' Concentrate r(‘ailing %Wt.
    [Show full text]
  • Fundamental Aspects of Alloy Smelting in a DC Arc Furnace
    F U N D A M E N T A L A S P E C T S O F A L L O Y S M E L T I N G I N A D C A R C F U R N A C E ------------ Rodney Trevor Jones PhD 2015 F U N D A M E N T A L A S P E C T S O F A L L O Y S M E L T I N G I N A D C A R C F U R N A C E Rodney Trevor Jones A thesis submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Doctor of Philosophy Johannesburg, 2015 DECLARATION I declare that this thesis is my own unaided work. It is being submitted to the Degree of Doctor of Philosophy to the University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination to any other university. Much of the information presented in this thesis was obtained during the course of my employment in the Pyrometallurgy Division at Mintek in Randburg. 17 June 2015 DECLARATION I declare that this thesis is my own unaided work. It is being submitted to the Degree of Doctor of Philosophy to the University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination to any other university. Much of the information presented in this thesis was obtained during the course of my employment in the Pyrometallurgy Division at Mintek in Randburg.
    [Show full text]
  • Mining Tax Guide 2018 2018 Distribution of Production Tax (Based on 2017 Production Year) Total Production Tax ­— $93,792,543* Production Tax Per Taxable Ton – $2.701
    Mining Tax Guide 2018 2018 Distribution of Production Tax (Based on 2017 Production Year) Total Production Tax — $93,792,543* Production Tax per taxable ton – $2.701. Taxable tonnage – 32,109,738 tons. Property Tax Department of Iron Range Cities and Townships School Districts Counties Resources & Rehabilitation Other Relief and Misc. (IRRR) $10,998,266 $20,440,406 $11,885,958 $11,064,355 $8,613,242 34.2 cpt 63.6 cpt 37.0 cpt $30,790,316 26.8 cpt 34.5 cpt 95.9 cpt City and Township Taconite School Regular Taconite Property IRRR Fund** Taconite Economic Mining & Conc Fund** $0.0343 Fund** County Fund** Tax Relief $3,151,470 Development Fund $1,867,542 $1,382,880 $7,267,637 $11,064,355 9.8 cpt $8,430,530 5.8 cpt 4.3 cpt*** 22.6 cpt 34.5 cpt 26.2 cpt IRRR Fixed Fund Regular School Township Fund $1,252,520 $0.2472 Fund** County Road and $1,060,065 3.9 cpt $8,823,468 Bridge Fund** Range Association 3.3 cpt 27.5 cpt*** $3,833,944 Iron Range Higher Education of Municipalities & Schools** 12.0 cpt Acct. $118,494 Taconite Municipal Aid** Taconite Railroad $1,605,486 0.4 cpt 5.0 cpt $5,707,956 $1,106,935 Taconite 17.8 cpt 3.4 cpt *** Railroad Producer Grant & Loan Fund Hockey $784,377 $2,866,569 Hall of Fame 2.4 cpt Taconite Railroad Building Maintenance Fund 8.9 cpt $64,218 $591,142 $1,284,390 0.2 cpt 1.8 cpt 4.0 cpt Educational Revenue Bonds $3,990,034 Mining Effects** Taconite Referendum** 12.4 cpt $1,614,524 $6,178,596 5.0 cpt 19.2 cpt Iron Range School Cons.
    [Show full text]
  • A Partial Glossary of Spanish Geological Terms Exclusive of Most Cognates
    U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY A Partial Glossary of Spanish Geological Terms Exclusive of Most Cognates by Keith R. Long Open-File Report 91-0579 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. 1991 Preface In recent years, almost all countries in Latin America have adopted democratic political systems and liberal economic policies. The resulting favorable investment climate has spurred a new wave of North American investment in Latin American mineral resources and has improved cooperation between geoscience organizations on both continents. The U.S. Geological Survey (USGS) has responded to the new situation through cooperative mineral resource investigations with a number of countries in Latin America. These activities are now being coordinated by the USGS's Center for Inter-American Mineral Resource Investigations (CIMRI), recently established in Tucson, Arizona. In the course of CIMRI's work, we have found a need for a compilation of Spanish geological and mining terminology that goes beyond the few Spanish-English geological dictionaries available. Even geologists who are fluent in Spanish often encounter local terminology oijerga that is unfamiliar. These terms, which have grown out of five centuries of mining tradition in Latin America, and frequently draw on native languages, usually cannot be found in standard dictionaries. There are, of course, many geological terms which can be recognized even by geologists who speak little or no Spanish.
    [Show full text]