Modulating Male Aggression and Courtship: Detecting External Pheromonal and Nutritional Information

Total Page:16

File Type:pdf, Size:1020Kb

Modulating Male Aggression and Courtship: Detecting External Pheromonal and Nutritional Information University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2016 MODULATING MALE AGGRESSION AND COURTSHIP: DETECTING EXTERNAL PHEROMONAL AND NUTRITIONAL INFORMATION Jonathan C. Andrews University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Andrews, Jonathan C., "MODULATING MALE AGGRESSION AND COURTSHIP: DETECTING EXTERNAL PHEROMONAL AND NUTRITIONAL INFORMATION" (2016). Graduate Student Theses, Dissertations, & Professional Papers. 10931. https://scholarworks.umt.edu/etd/10931 This Dissertation is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. MODULATING MALE AGGRESSION AND COURTSHIP: DETECTING EXTERNAL PHEROMONAL AND NUTRITIONAL BY JONATHAN ANDREWS B.A. in Human Biology, University of Montana, Missoula 2006 B.A. in Psychology, University of Montana, Missoula (2009) Dissertation/Thesis Presented in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in NEUROSCIENCE The University of Montana Missoula, MT December 2016 Approved by: Sandy Ross, Dean of The Graduate School Graduate School Sarah Certel, Advisor Department of Biological Sciences J. Stephen Lodmell, Chair Department of Biological Sciences Darrell Jackson Department of Biomedical and Pharmaceutical Sciences Fernando Cardozo-Pelaez Department of Biomedical and Pharmaceutical Sciences Chris Comer Dean of the College of Humanities and Sciences Jonathan Andrews 2016 2 Table of Contents Abstract…………..…………..…………..…………..…………..…………..…………..…………...……………7 Acknowledgements…………..…………..…………..…………..…………..…………..……………..……8 Chapter I…………..…………..…………..…………..…………..…………..…………..…………..…………...9 Introduction…………..…………..…………..…………..…………..…………..…………..………...9 Major contributions of Drosophila to neuroscience research…………..…………..9 Drosophila Behavior…………..…………..…………..…………..…………..…………..……….11 Commonalities in Drosophila behavior…………..…………..…………..…………..……..12 Drosophila aggression…………..…………..…………..…………..…………..…………..……..13 Cues affecting aggression…………..…………..…………..…………..…………..…………….14 Drosophila Courtship…………..…………..…………..…………..…………..…………..………15 Drosophila gustation…………..…………..…………..…………..…………..…………..……….15 Pheromone sensation…………..…………..…………..…………..…………..…………..……..19 Sensation of dietary sugars and bitter compounds…………..…………..…………....21 The Subesophageal zone of the Drosophila brain…………..…………..………………22 Octopaminergic signaling and Aggression…………..…………..…………..…………….24 Octopaminergic Signaling and Courtship…………..…………..…………..……………...25 OA in the Drosophila brain…………..…………..…………..…………..…………..…………..26 OA Structure and Synthesis…………..…………..…………..…………..…………..…………28 OA receptors…………..…………..…………..…………..…………..…………..…………..………28 OA in vertebrates…………..…………..…………..…………..…………..…………..……………30 Summary…………..…………..…………..…………..…………..…………..…………..……………31 Works Cited…………..…………..…………..…………..…………..…………..…………..………..32 Chapter II…………..…………..…………..…………..…………..…………..…………..…………..………...58 Foreword to Chapter II…………..…………..…………..…………..…………..…………..……58 Abstract…………..…………..…………..…………..…………..…………..…………..……………..59 Summary…………..…………..…………..…………..…………..…………..……………….……….59 Introduction…………..…………..…………..…………..…………..…………..…………..……….60 Results…………..…………..…………..…………..…………..…………..…………..…………..…...62 Gr32a neurons contact OA neurons in the suboesophageal ganglion………….62 Removing OA neurons changes Gr32a SOG axonal targeting…………..………….66 Gr32a expressing neurons mediate onset of aggression via OA signaling…...70 The intracellular Ca2+ response of OA SOG neurons to male CHCs requires Gr32a neurons…………..…………..…………..…………..…………..…………..…………..……75 Subset-specific effects of Gr32a neuronal function on male aggression and courtship selection…………..…………..…………..…………..…………..…………..………....78 Tissue-specific refinement of Gr32a to octopamine neuron synaptic contacts..…………..…………..…………..…………..……………………..…………....…………….80 3 Cell-specific refinement of octopamine neuron connections to Gr32a neurons….…………..…………..…………..…………..…………..…………..…………..…………..83 Discussion…………..…………..…………..…………..…………..…………..…………..………….86 Materials and Methods…………..…………..…………..…………..…………..…………..……90 References…………..…………..…………..…………..…………..…………..…………..………..107 Chapter III…………..…………..…………..…………..…………..…………..…………..…………..……..117 Introduction…………..…………..…………..…………..…………..…………..…………..……..117 Results…………..…………..…………..…………..…………..…………..…………..……………..120 Oaβ1R-expressing neurons are present in the legs and proboscis……………120 Octopamine administration causes an increase in cAMP levels in Oaβ1R- expressing neurons…………..…………..…………..…………..…………..…………..……….122 Oaβ1R-expressing neurons also express sugar sensors…………..…………..…...124 Octopamine administration alters neuronal excitability in the periphery…127 Oaβ1R-expressing neurons mediate onset and frequency of aggressive behavior…………..…………..…………..…………..…………..…………..…………..…………..130 Ablation of Oaβ1R-expressing neurons delays courtship and copulation…131 Males lacking the Oaβ1R receptor take longer to court and perform fewer wing threats…………..…………..…………..…………..…………..…………..…………..…….133 A subset of Oaβ1R-expressing neurons is required for male aggression…..135 Discussion…………..…………..…………..…………..…………..…………..…………..………..135 Future directions…………..…………..…………..…………..…………..…………..…………..139 Material and methods…………..…………..…………..…………..…………..…………..…...140 4 Table of Figures Chapter I Figure 1: Stereotyped aggressive and courtship behaviors in Drosophila…………..…………..…………..…………..…………..…………..……………16 Figure 2: Location and Structure of Gustatory Sensilla…………..………..18 Figure 3: Structure of Drosophila Pheromones…………..…………..……….20 Figure 4: The Drosophila brain…………..…………..…………..………………….23 Figure 5: OA in the Drosophila brain…………..…………..…………..………….27 Figure 6: Octopamine structure, synthesis, and receptors……………….29 Chapter II Figure 1: Gr32a neurons contact OA neurons in the suboesophageal ganglion.…………..…………..…………..…………..…………..…………..……………...64 Figure 2: Removing OA neurons significantly alters Gr32a axonal projections.…………..…………..…………………..…………..…………………..……...68 Figure 3: Gr32a-expressing neurons promote aggression via OA signaling.…………..…………..…………………..…………..……………………………...71 Figure 4: Male CHCs evoke intracellular Ca2+ responses in OA neurons that are dependent on Gr32a neurons.…………..…………..…………………..76 Figure 5: Gr32a chemosensory neurons located in the mouth promote aggression without an elevation in male:male courtship………………...79 Figure 6. Mouth-specific Gr32a neurons contact OA neurons in the suboesophageal ganglion.…………..…………..…………………..…………..……..81 Figure 7: Gr32a neurons anatomically contact three FruM-OA neurons……………..…………..…………………..…………..…………………..…………84 Figure S1: Characterization of the Tdc2-LexA line.…..…………..………….95 Figure S2. Single GRASP component control brains demonstrate an absence of GFP expression.…..…………..…………..…………..…………..……….96 Figure S3. Gr22e and Gr59b neurons contact OA neurons in the suboesophageal ganglion.…..…………..…………..…………..…………..…………98 Figure S4. GRASP-reconstitution between Gr47a neurons and OA- expressing neurons is not observed.…..…………..…………..…………..……...99 Figure S5. Tdc2-expressing neurons are ablated by UAS-hid UAS-DsRed expression.…..…………..…………..…………..…………..…………..…………..……100 Figure S6. Eliminating OA production alters a subset of Gr32a axonal projections.….…………..…………..…………..…………..…………..…………..…….101 Figure S7. Defects in aggressive behavior parameters in Gr32a- expressing and OA deficient males.…..…………..…………..…………..…….103 Figure S8. tsh-Gal80 blocks Gal4-mediated expression in the leg…...105 5 Table S1. Analysis of male-female courtship in males with ablated mouth Gr32a-expressing neurons.…..…………..…………..…………..………106 Chapter III Figure 1: Oaβ1R neurons within the tarsi and labellum…..…………….121 Figure 2: cAMP levels change in response to OA administration……123 Figure 3: Oaβ1R neurons express water sensors.…..……………………...125 Figure 4: Oaβ1R neurons express sugar receptors…..…………..………..126 Figure 5: Oaβ1R neurons express choline acetyltransferase………….128 Figure 6: OA administration increases firing frequency in labellar Oaβ1R neurons.…..…………..…………..…………..…………..…………..………….129 Figure 7: Oaβ1R neurons promote aggression and courtship behavior……..…………..…………..…………..…………..…………..…………..……..132 Figure 8: Loss of the Oaβ1R receptor alters wing specific behavior……………………………………………………………………………………..134 Figure 9: Oaβ1R-expressing neurons in the mouth promote initiation of courtship and aggression…..…………..…………..…………..…………..…….136 6 Abstract Survival and reproduction in the natural world requires an organism to identify and react to the presence of environmental stimuli in a time and cue dependent manner. Such temporal specificity requires the development and use of specialized sensory organs that receive this external sensory information. Neurons within the specialized sensory organs respond to touch, taste, pheromones, chemicals, and light, and transduce this information to the central brain. In many systems, gustatory and olfactory chemosensation in particular, provides critical information regarding sex and species identification as well as the status of food resources. The output of neurons which receive chemical information is regulated by the action of biogenic
Recommended publications
  • Uniting Micro- with Macroevolution Into an Extended Synthesis: Reintegrating Life’S Natural History Into Evolution Studies
    Uniting Micro- with Macroevolution into an Extended Synthesis: Reintegrating Life’s Natural History into Evolution Studies Nathalie Gontier Abstract The Modern Synthesis explains the evolution of life at a mesolevel by identifying phenotype–environmental interactions as the locus of evolution and by identifying natural selection as the means by which evolution occurs. Both micro- and macroevolutionary schools of thought are post-synthetic attempts to evolution- ize phenomena above and below organisms that have traditionally been conceived as non-living. Microevolutionary thought associates with the study of how genetic selection explains higher-order phenomena such as speciation and extinction, while macroevolutionary research fields understand species and higher taxa as biological individuals and they attribute evolutionary causation to biotic and abiotic factors that transcend genetic selection. The microreductionist and macroholistic research schools are characterized as two distinct epistemic cultures where the former favor mechanical explanations, while the latter favor historical explanations of the evolu- tionary process by identifying recurring patterns and trends in the evolution of life. I demonstrate that both cultures endorse radically different notions on time and explain how both perspectives can be unified by endorsing epistemic pluralism. Keywords Microevolution · Macroevolution · Origin of life · Evolutionary biology · Sociocultural evolution · Natural history · Organicism · Biorealities · Units, levels and mechanisms of evolution · Major transitions · Hierarchy theory But how … shall we describe a process which nobody has seen performed, and of which no written history gives any account? This is only to be investigated, first, in examining the nature of those solid bodies, the history of which we want to know; and 2dly, in exam- ining the natural operations of the globe, in order to see if there now actually exist such operations, as, from the nature of the solid bodies, appear to have been necessary to their formation.
    [Show full text]
  • Hermann J. Muller's 1936 Letter to Stalin
    The Mankind Quarterly 43 (3), Spring 2003, pp. 305-319 Hermann J. Muller’s 1936 Letter to Stalin John Glad1 University of Maryland This is the full text of a 1936 letter sent by the American geneticist H.J. Muller to Joseph Stalin advocating the creation of a eugenic program in the USSR. It was rejected by Stalin in favor of Lysenkoism. Key words: eugenics, communism, Lysenkoist theory, liberal roots of eugenics movement, Jewish scholars, Hermann J. Muller, Joseph Stalin, Stalinist, purges. Hermann Joseph Muller (1890-1967) received the Nobel Prize in 1946 for his work on the genetics of drosophila, whose brief generational life made it an ideal laboratory in miniature. Within a decade, however, following the discovery in 1953 of the double helical structure of DNA, drosophila studies began to be regarded as classical genetics and gave way to microbial and molecular genetics devoted to gene structure and function. Muller looked upon his drosophila research as science to be applied to the genetic betterment of the human species. A popular misconception with regard to eugenics is that it was exclusively a product of political conservatism. In point of fact the movement had its roots in the left as much as in the right. Muller himself was a devoted communist and an idealistic believer in human rights. Bearing in mind that Jewish scholars played a significant role in the eugenics movement, it should not come as a surprise to find that Muller was Jewish on his mother’s side. Indeed, he wrote a letter to Stalin on the subject of eugenics at the suggestion of the Russian-Jewish physician Solomon Levit, whose main interests lay in the field of genetics, especially in twin studies.
    [Show full text]
  • Perspectives
    Copyright Ó 2007 by the Genetics Society of America Perspectives Anecdotal, Historical and Critical Commentaries on Genetics Edited by James F. Crow and William F. Dove Guido Pontecorvo (‘‘Ponte’’): A Centenary Memoir Bernard L. Cohen1 *Institute of Biomedical and Life Sciences, Division of Molecular Genetics, University of Glasgow, Glasgow G11 6NU, Scotland N a memoir published soon after Guido Pontecor- mendation, Pontecorvo applied for and was awarded a I vo’s death (Cohen 2000), I outlined his attractive, small, short-term SPSL scholarship. Thus, he could again but sometimes irascible, character, his history as a apply a genetical approach to a problem related to refugee from Fascism, and his most significant contribu- animal breeding (Pontecorvo 1940a), the branch of tions to genetics. The centenary of his birth (November agriculture in which he had most recently specialized 29, 1907) provides an opportunity for further reflec- with a series of data-rich articles (e.g.,Pontecorvo 1937). tions—personal, historical, and genetical.2 But Ponte was stranded in Edinburgh by the outbreak of Two points of interest arise from the support that war and the cancellation of a Peruvian contract and Ponte received from the Society for the Protection of continued for about 2 years to be supported by SPSL. Science and Learning (SPSL). Formed in 1933 as the The first point of interest is a prime example of the Academic Assistance Council, SPSL aimed to assist the power of chance and opportunity. Renting a small room refugees who had started to arrive in Britain from the in the IAG guest house, Ponte there met Hermann European continent (among them Max Born, Ernst Joseph Muller, who had recently arrived from Russia.
    [Show full text]
  • September: Forskarnas Älsklingsdjur
    Forskarnas älsklingsdjur Slå inte ihjäl den irriterande bananflugan nästa gång den lilla, 2-3 mm långa bumlingen surrar runt i köket. Den är ett under- verk när det gäller iakttagelseförmåga och flygprecision. Förundras i Karl von Frisch Konrad Lorenz Nikolaas Tinbergen stället över denna lilla fluga som lärt forskarna så mycket! Nobelpriset i fysiologi eller medicin 1973 tilldelades gemensamt Bananflugan Drosophila( melanogaster) är en favorit för forskare. Karl von Frisch, Konrad Lorenz och Nikolaas Tinbergen ”för deras Redan i början av 1900-talet började man studera bananflugor upptäckter rörande organisation och utlösning av individuella eftersom de är lätta att odla och förökar sig snabbt med en ge- och sociala beteendemönster”. Frisch och Tinbergen studerade insekter, dock inte bananflugor. Läs mer på www.nobelprize.org nerationstid på endast cirka två veckor. Många genetiska varian- Bananfluga (Wikimedia Commons) ter med exempelvis olika ögon- och kroppsfärg har bildats på na- turlig väg eller framkallats med röntgenstålning eller kemikalier. Nobelpristagare som arbetat med bananflugor (se www.nobel- prize.org, Education): Beteendestudier med bananflugor • Thomas Hunt Morgan (1933) beskrev kromosomernas be- Vilda bananflugor massförökas ofta inomhus tydelse för hur egenskaper ärvs. på sensommaren om övermogen frukt får ligga • Hermann Joseph Muller (1946) upptäckte att röntgenstrål- framme. Fånga in dem i en burk med en tuss ning ger mutationer. bomull indränkt med vinäger. Se även www. • Edward B. Lewis, Christiane Nüsslein-Volhard och Eric F. bioresurs.uu.se (Inköp/Levande organismer) för Wieschaus (1995) studerade embryonalutveckling. adresser till företag som säljer bananflugor. Odlingsrör med bananflugor och parande bananflugor Klassiska skollaborationer är korsningsförsök med bananflugor Bygg en testkammare av två stora petflaskor.
    [Show full text]
  • Layered Reward Signalling Through Octopamine and Dopamine in Drosophila: a Dissertation
    University of Massachusetts Medical School eScholarship@UMMS GSBS Dissertations and Theses Graduate School of Biomedical Sciences 2013-05-10 Layered Reward Signalling Through Octopamine and Dopamine in Drosophila: A Dissertation Christopher J. Burke University of Massachusetts Medical School Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/gsbs_diss Part of the Neuroscience and Neurobiology Commons Repository Citation Burke CJ. (2013). Layered Reward Signalling Through Octopamine and Dopamine in Drosophila: A Dissertation. GSBS Dissertations and Theses. https://doi.org/10.13028/M2S309. Retrieved from https://escholarship.umassmed.edu/gsbs_diss/657 This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in GSBS Dissertations and Theses by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. LAYERED REWARD SIGNALLING THROUGH OCTOPAMINE AND DOPAMINE IN DROSOPHILA A Dissertation Presented By Christopher J. Burke Submitted to the Faculty of the University of Massachusetts Graduate School of Biomedical Sciences, Worcester in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Friday, The Tenth of May, 2013 Program in Neuroscience LAYERED REWARD SIGNALLING THROUGH OCTOPAMINE AND DOPAMINE IN DROSOPHILA A Dissertation Presented By Christopher J. Burke The signatures of the Dissertation Defense Committee signifies completion and approval as to style and
    [Show full text]
  • Curriculum Vitae 1/2021
    CURRICULUM VITAE 1/2021 John G. Hildebrand Department of Neuroscience Telephone: (520) 621-6626 College of Science, School of Mind, Brain & Behavior Fax: (520) 621-8282 University of Arizona Email: [email protected] PO Box 210077 Website: https://neurosci.arizona.edu/person/john-hildebrand-phd Tucson AZ 85721-0077 Spouse: Gail D. Burd, Ph.D. Education 1964 A.B. Harvard University (Biology – mentors: John Law & Konrad Bloch) 1966 Harvard Medical School, summer training program in general pathology 1969 Ph.D. Rockefeller University (Bio-organic chemistry – mentors: Leonard Spector & Fritz Lipmann) 1969-71 Postdoctoral Fellow, Harvard Medical School, Department of Neurobiology (mentor: Edward Kravitz) 1977 Cold Spring Harbor Laboratory course, Methods in Cellular Neurophysiology 1993 DNA Methods Course, University of Arizona Division of Biotechnology Employment Present Positions 2014-now Foreign Secretary, U.S. National Academy of Sciences 2010-now Honors Professor, University of Arizona 1989-now Regents Professor, University of Arizona 1985-now Professor of Neuroscience, Chemistry & Biochemistry, Ecology & Evolutionary Biology, Entomology, and Molecular & Cellular Biology, University of Arizona Previous Positions 2009-13 founding Head, Dept. of Neuroscience (formerly ARL Div. Neurobiology), Univ. of Arizona 2010-12 Chairman, Executive Committee, UA School of Mind, Brain and Behavior 1986-97 Chairman, UA Committee on Neuroscience, University of Arizona 1985-2009 founding Director, Arizona Research Laboratories Division of Neurobiology,
    [Show full text]
  • Timeline of Genomics (1901–1950)*
    Research Resource Timeline of Genomics (1901{1950)* Year Event and Theoretical Implication/Extension Reference 1901 Hugo de Vries adopts the term MUTATION to de Vries, H. 1901. Die Mutationstheorie. describe sudden, spontaneous, drastic alterations in Veit, Leipzig, Germany. the hereditary material of Oenothera. Thomas Harrison Montgomery studies sper- 1. Montgomery, T.H. 1898. The spermato- matogenesis in various species of Hemiptera and ¯nds genesis in Pentatoma up to the formation that maternal chromosomes only pair with paternal of the spermatid. Zool. Jahrb. 12: 1-88. chromosomes during meiosis. 2. Montgomery, T.H. 1901. A study of the chromosomes of the germ cells of the Metazoa. Trans. Am. Phil. Soc. 20: 154-236. Clarence Ervin McClung postulates that the so- McClung, C.E. 1901. Notes on the acces- called accessory chromosome (now known as the \X" sory chromosome. Anat. Anz. 20: 220- chromosome) is male determining. 226. Hermann Emil Fischer(1902 Nobel Prize Laure- 1. Fischer, E. and Fourneau, E. 1901. UberÄ ate for Chemistry) and Ernest Fourneau report einige Derivate des Glykocolls. Ber. the synthesis of the ¯rst dipeptide, glycylglycine. In Dtsch. Chem. Ges. 34: 2868-2877. 1902 Fischer introduces the term PEPTIDES. 2. Fischer, E. 1907. Syntheses of polypep- tides. XVII. Ber. Dtsch. Chem. Ges. 40: 1754-1767. 1902 Theodor Boveri and Walter Stanborough Sut- 1. Boveri, T. 1902. UberÄ mehrpolige Mi- ton found the chromosome theory of heredity inde- tosen als Mittel zur Analyse des Zellkerns. pendently. Verh. Phys -med. Ges. WÄurzberg NF 35: 67-90. 2. Boveri, T. 1903. UberÄ die Konstitution der chromatischen Kernsubstanz. Verh. Zool.
    [Show full text]
  • The Effects of Serotonin and 5-Carboxamidotryptamine on Aggressive Behavior in Crayfish Pair Interactions
    THE EFFECTS OF SEROTONIN AND 5-CARBOXAMIDOTRYPTAMINE ON AGGRESSIVE BEHAVIOR IN CRAYFISH PAIR INTERACTIONS LISA MANGIAMELE Introduction Agonistic interactions between decapod crustaceans consist of a series of bouts characterized by combative use of the claws to strike, grasp, and restrain the opponent. The antennae may also be used as weapons to tap or whip the body of another individual. Fights that escalate in intensity often involve one animal pulling or lifting its opponent above the substrate, and those battles that reach the highest level of intensity may result in individuals attempting to violently break off the appendages of the opponent. These aggressive behaviors are highly stereotyped, and usually interactions result in a clear winner and loser (Bruski and Dunham 1987; Huber and Kravitz 1995). Changes in behavior during these interactions, where winning appears to reinforce aggressive behavior while losing appears to inhibit aggression, aid in the formation of a dominance hierarchy (Issa et al 1999). The neurohormone serotonin [5-hydroxytryptamine (5HT)] has been linked to agonistic behavior and aggressive posturing in lobsters and crayfish (Livingstone et al. 1980; Antonsen and Paul 1997; Huber et al. 1997). Crayfish treated with 5HT show increased intensity of aggressive response to conspecifics, and are more likely to continue fighting in situations that would normally evoke a retreat (Huber et al. 1997). The similarity of this response to the increased aggression exhibited by dominant animals suggests a role for endogenous serotonin in fighting behavior and the maintenance of social status. In addition, amine injection has been found to elicit characteristic postures in the absence of external stimuli.
    [Show full text]
  • Alumni Director Cover Page.Pub
    Harvard University Program in Neuroscience History of Enrollment in The Program in Neuroscience July 2018 Updated each July Nicholas Spitzer, M.D./Ph.D. B.A., Harvard College Entered 1966 * Defended May 14, 1969 Advisor: David Poer A Physiological and Histological Invesgaon of the Intercellular Transfer of Small Molecules _____________ Professor of Neurobiology University of California at San Diego Eric Frank, Ph.D. B.A., Reed College Entered 1967 * Defended January 17, 1972 Advisor: Edwin J. Furshpan The Control of Facilitaon at the Neuromuscular Juncon of the Lobster _______________ Professor Emeritus of Physiology Tus University School of Medicine Albert Hudspeth, M.D./Ph.D. B.A., Harvard College Entered 1967 * Defended April 30, 1973 Advisor: David Poer Intercellular Juncons in Epithelia _______________ Professor of Neuroscience The Rockefeller University David Van Essen, Ph.D. B.S., California Instute of Technology Entered 1967 * Defended October 22, 1971 Advisor: John Nicholls Effects of an Electronic Pump on Signaling by Leech Sensory Neurons ______________ Professor of Anatomy and Neurobiology Washington University David Van Essen, Eric Frank, and Albert Hudspeth At the 50th Anniversary celebraon for the creaon of the Harvard Department of Neurobiology October 7, 2016 Richard Mains, Ph.D. Sc.B., M.S., Brown University Entered 1968 * Defended April 24, 1973 Advisor: David Poer Tissue Culture of Dissociated Primary Rat Sympathec Neurons: Studies of Growth, Neurotransmier Metabolism, and Maturaon _______________ Professor of Neuroscience University of Conneccut Health Center Peter MacLeish, Ph.D. B.E.Sc., University of Western Ontario Entered 1969 * Defended December 29, 1976 Advisor: David Poer Synapse Formaon in Cultures of Dissociated Rat Sympathec Neurons Grown on Dissociated Rat Heart Cells _______________ Professor and Director of the Neuroscience Instute Morehouse School of Medicine Peter Sargent, Ph.D.
    [Show full text]
  • Curriculum Vitae RONALD MORGAN HARRIS-WARRICK Professor Section of Neurobiology and Behavior Cornell University Biographical
    Curriculum Vitae RONALD MORGAN HARRIS-WARRICK Professor Section of Neurobiology and Behavior Cornell University Biographical Data: Birthplace - Berkeley, California Birthdate - July 28, 1949 Citizenship - U.S.A. Marital status - Married, two children Education: B.A. Biological Sciences, Stanford University, 1970 Ph.D. Genetics, Stanford University School of Medicine, 1976 Thesis advisor: Dr. Joshua Lederberg; Title: "DNA segmentation and sequence heterology in transformation of Bacillus subtilis" Work Experience: 1970-73 Research Assistant, Department of Genetics, Stanford University School of Medicine; Advisor: Dr. Joshua Lederberg 1976-78 NIH Postdoctoral Fellow, Department of Neurobiology, Stanford University, School of Medicine; Advisor: Dr. Eric M. Shooter 1978-80 Muscular Dystrophy Association Postdoctoral Fellow, Department of Neurobiology, Harvard Medical School, Boston, Massachusetts; Advisor: Dr. Edward A. Kravitz 1980-86 Assistant Professor, Section of Neurobiology and Behavior, Cornell University, Ithaca, New York 1986-1992 Associate Professor, Section of Neurobiology and Behavior, Cornell University, Ithaca, New York 1986-87 Visiting Scientist, Laboratoire de Neurobiologie, Ecole Normale Superieure, Paris, France 1988-1991 Associate Chairman, Section of Neurobiology and Behavior, Cornell University, Ithaca, New York 1992-present Professor, Section of Neurobiology and Behavior, Cornell University, Ithaca, New York 1994 Visiting Professor, Department of Molecular and Cellular Physiology, Stanford University School of Medicine
    [Show full text]
  • Perspectives
    Copyright 2000 by the Genetics Society of America Perspectives Anecdotal, Historical and Critical Commentaries on Genetics Edited by James F. Crow and William F. Dove Guido Pontecorvo (ªPonteº), 1907±1999 Bernard L. Cohen IBLS Division of Molecular Genetics, University of Glasgow, Glasgow G11 6NU, Scotland UIDO Pontecorvo died on September 25, 1999, and enjoy Aristophanes in Greek. During studies in the G age 91, of complications following a fall while col- Faculty of Agriculture in the University of Pisa, his inter- lecting mushrooms in his beloved Swiss mountains; he est in genetics was aroused by E. Avanzi, a plant geneti- was a signi®cant contributor to modern genetics. He cist. And in my recollection of a distant conversation, his was also an irascible yet genial friend and advisor who orientation toward agriculture resulted from working a attracted the great affection and admiration of col- relative's chicken farm when he was a teenager. Under- leagues and students worldwide and who, as head of graduate friends, among them Enrico Fermi (known department and Professor of Genetics, served the Uni- even then as ªthe Popeº because of his infallibility), were versity of Glasgow with distinction from 1945 until 1968. also in¯uential mountaineering and skiing companions. It was characteristic that in 1955, when promoted to the After two years' compulsory military service in the light newly created Chair of Genetics and also elected Fellow horse artilleryÐand somehow the image of Lieutenant of the Royal Society, he circulated a note saying that Pontecorvo exercising the commanding of®cer's horse henceforth the head of department should be known seems not at all incongruous!ÐPonte became assistant as ªPonteºÐmeaning of course no change; he was any- to Avanzi, now director of an experimental agricultural thing but pompous.
    [Show full text]
  • John G. Hildebrand
    CURRICULUM VITAE 9/2019 John G. Hildebrand Department of Neuroscience Telephone: (520) 621-6626 College of Science, School of Mind, Brain & Behavior Fax: (520) 621-8282 University of Arizona Email: [email protected] PO Box 210077 Website: http://neurosci.arizona.edu/john-g-hildebrand Tucson AZ 85721-0077 Spouse: Gail D. Burd, Ph.D. Education 1964 A.B. Harvard University (Biology – mentors: John Law & Konrad Bloch) 1966 Harvard Medical School, summer training program in general pathology 1969 Ph.D. Rockefeller University (Bio-organic chemistry – mentors: Leonard Spector & Fritz Lipmann) 1969-71 Postdoctoral Fellow, Harvard Medical School, Department of Neurobiology (mentor: Edward Kravitz) 1977 Cold Spring Harbor Laboratory course, Methods in Cellular Neurophysiology 1993 DNA Methods Course, University of Arizona Division of Biotechnology Employment Present Positions 2014-now Foreign Secretary, U.S. National Academy of Sciences 2010-now Honors Professor, University of Arizona 1989-now Regents Professor, University of Arizona 1985-now Professor of Neuroscience, Chemistry & Biochemistry, Ecology & Evolutionary Biology, Entomology, and Molecular & Cellular Biology, University of Arizona Previous Positions 2009-13 founding Head, Dept. of Neuroscience (formerly ARL Div. Neurobiology), Univ. of Arizona 2010-12 Chairman, Executive Committee, UA School of Mind, Brain and Behavior 1986-97 Chairman, UA Committee on Neuroscience, University of Arizona 1985-2009 founding Director, Arizona Research Laboratories Division of Neurobiology, Univ.
    [Show full text]