Songbird Remix Model by B.L
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
To Download the Creamer's Field Student Activity Book
Creamer's Field Student Activity Book Creamer's Field Migratory Waterfowl Refuge Fairbanks, Alaska Page 2 Alaska Songbird Institute Table of Contents Introduction Waterfowl (Geese & Ducks) Welcome to the new Creamer's Field Greater White-fronted Goose...........4 Student Activity Book! This book Canada Goose...................................5 includes a coloring guide to many Mallard.............................................6 of the common birds you can see at Northern Pintail................................7 Creamer's Field. It also includes some Birds of Prey (Raptors) pages to use in school and at home. Bald Eagle........................................8 Peregrine Falcon...............................9 We hope that you will remember to Cranes bring it with you every time you visit Sandhill Crane.................................10 Creamer's Field and to share what you Flycatchers have learned with others! Alder Flycatcher...............................11 Chickadees If you have feedback or questions, Black-capped Chickadee..................12 please contact the Alaska Songbird Kinglets Institute. This book and other Ruby-crowned Kinglet.....................13 educational materials are available Thrushes on our website at: Swainson’s Thrush...........................14 http://aksongbird.org. American Robin...............................15 Warblers This book was provided for you by Orange-crowned Warbler.................16 the Alaska Songbird Institute with support from Yellow-rumped Warbler...................17 the Alaska Department -
The Circumnavigation of Sicily Bird List -- September 26
The Circumnavigation of Sicily Bird List -- September 26 - October 8, 2017 Produced by Jim Wilson Date of sighting in September and October 2017 Key for Locations on Page 2 Common Name Scientific Name 1 2 3 4 5 6 7 8 9 10 Mallard Anas platyrhynchos X Eurasian Collared Dove Streptopelia decaocto X X X X X X X X X Feral Pigeon Columba livia X X X X X X X X X X Great Cormorant Phalacrocorax carbo X X X Black-headed Gull Chroicocephalus ridibundus X X X X X X Yellow-legged Gull Larus michahellis X X X X X X X X X X Northern House Martin Delichon urbicum X X X X X X X European Robin Erithacus rubecula X X Woodpigeon Columba palumbus X X X X X X X X X Common Coot Fulica atra X X X Grey Heron Ardea cinerea X X X X X Common Tern Sterna hirundo X Bonnelli's Eagle Aquila fasciata X X X Eurasian Buzzard Buteo buteo X X X X X Common Kestrel Falco tinnunculus X X X X X X X X Eurasian Hobby Falco subbuteo X Eurasian Magpie Pica pica X X X X X X X X Eurasian Jackdaw Corvus monedula X X X X X X X X X Dunnock Prunella modularis X Spanish Sparrow Passer hispaniolensis X X X X X X X X European Greenfinch Chloris chloris X X X Common Linnet Linaria cannabina X X Blue Tit Cyanistes caeruleus X X X X X X X X Sand Martin Riparia riparia X Barn Swallow Hirundo rustica X X X X X X X X X Willow Warbler Phylloscopus trochilus X Subalpine Warbler Curruca cantillans X X X X Eurasian Wren Troglodytes troglodytes X X X Spotless Starling Spotless Starling X X X X X X X X Common Name Scientific Name 1 2 3 4 5 6 7 8 9 10 Sardinian Warbler Curruca melanocephala X X X X -
Best of the Baltic - Bird List - July 2019 Note: *Species Are Listed in Order of First Seeing Them ** H = Heard Only
Best of the Baltic - Bird List - July 2019 Note: *Species are listed in order of first seeing them ** H = Heard Only July 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th Mute Swan Cygnus olor X X X X X X X X Whopper Swan Cygnus cygnus X X X X Greylag Goose Anser anser X X X X X Barnacle Goose Branta leucopsis X X X Tufted Duck Aythya fuligula X X X X Common Eider Somateria mollissima X X X X X X X X Common Goldeneye Bucephala clangula X X X X X X Red-breasted Merganser Mergus serrator X X X X X Great Cormorant Phalacrocorax carbo X X X X X X X X X X Grey Heron Ardea cinerea X X X X X X X X X Western Marsh Harrier Circus aeruginosus X X X X White-tailed Eagle Haliaeetus albicilla X X X X Eurasian Coot Fulica atra X X X X X X X X Eurasian Oystercatcher Haematopus ostralegus X X X X X X X Black-headed Gull Chroicocephalus ridibundus X X X X X X X X X X X X European Herring Gull Larus argentatus X X X X X X X X X X X X Lesser Black-backed Gull Larus fuscus X X X X X X X X X X X X Great Black-backed Gull Larus marinus X X X X X X X X X X X X Common/Mew Gull Larus canus X X X X X X X X X X X X Common Tern Sterna hirundo X X X X X X X X X X X X Arctic Tern Sterna paradisaea X X X X X X X Feral Pigeon ( Rock) Columba livia X X X X X X X X X X X X Common Wood Pigeon Columba palumbus X X X X X X X X X X X Eurasian Collared Dove Streptopelia decaocto X X X Common Swift Apus apus X X X X X X X X X X X X Barn Swallow Hirundo rustica X X X X X X X X X X X Common House Martin Delichon urbicum X X X X X X X X White Wagtail Motacilla alba X X -
Weight and Size Variation in the Gray Catbird
WEIGHT AND SIZE VARIATION IN THE GRAY CATBIRD BY GILBERT S. RAYNOR INTRODUCTION Weights of wild birds fluctuate becauseof various activity patterns governed by either internal or external stimuli. Important short time- scaleactivities include locomotion,feeding, and defecation;those on a longer time-scaleinclude migration, reproduction, and molt. Stimuli controllingthese activitiesinclude day length, temperature, hunger, fright, and many others, someoperating directly and others indirectly. Weight changesin living birds provide cluesto other aspectsof their biology,to environmentalstresses, and to the longer-periodactivities in which the speciesor individualis engaged. Becauseof the many variablesdetermining the instantaneousweight of a bird and the limited number of times a wild bird can be captured and weighed(particularly without inadvertently influencing the weight), usefulinformation on cyclicalor systematicchanges can best be obtained from statisticalanalyses of large numbersof weightstaken throughout the duration of the cycleof interest.This paper presentsan analysisof weightvariation in the Gray Catbird (Dumetellacarolinensis) and relates thesevariations to time of day and year, activitypatterns, age, and sex. In contrastto weight, linear measurementsof individual birds are relativelyconstant after full growth is attained.Some change takes place in wing and tail length by wear betweenmolts but this is typicallyslow and gradual (Blake, 1971). Thus, sizeof the Catbird is documentedby age and sex but related only to season. Many authorshave reported bird weightsand several(Baldwin and Kendeigh, 1938; Becker and Stack, 1944; Wiseman, 1975) have ana- lyzedtheir data by age, sex,time of day or season.Most data were taken from living birds but somefrom tower kills (Graber and Graber, 1962; Tordoff and Mengel, 1956). Causesof weight changesand their signif- icance have been discussedpreviously (Nice, 1938; Blake, 1956). -
New Zealand Passerines Help Clarify the Diversification of Major Songbird Lineages During the Oligocene
GBE New Zealand Passerines Help Clarify the Diversification of Major Songbird Lineages during the Oligocene Gillian C. Gibb1,*,y, Ryan England2,4,y, Gerrit Hartig2,5, Patricia A. (Trish) McLenachan2, Briar L. Taylor Smith1, Bennet J. McComish2,6, Alan Cooper3, and David Penny2 1Ecology Group, Institute of Agriculture and Environment, Massey University, Palmerston North, New Zealand 2Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand 3Australian Centre for Ancient DNA, School of Earth and Environmental Sciences, University of Adelaide, South Australia, Australia 4Present address: Forensic Business Group, Institute of Environmental Science and Research (ESR Ltd.), Mt Albert Science Centre, Auckland, New Zealand 5Present address: Starlims Germany GmbH An Abbott Company, Witten, Germany 6Present address: School of Physical Sciences, University of Tasmania, Hobart, Australia *Corresponding author: E-mail: [email protected]. yThese authors contributed equally to this work. Accepted: October 7, 2015 Data deposition: This project has been deposited at GenBank under the accession numbers KC545397-KC545409, KT894672. Abstract Passerines are the largest avian order, and the 6,000 species comprise more than half of all extant bird species. This successful radiation probably had its origin in the Australasian region, but dating this origin has been difficult due to a scarce fossil record and poor biogeographic assumptions. Many of New Zealand’s endemic passerines fall within the deeper branches of the passerine radiation, and a well resolved phylogeny for the modern New Zealand element in the deeper branches of the oscine lineage will help us understand both oscine and passerine biogeography. To this end we present complete mitochondrial genomes representing all families of New Zealand passerines in a phylogenetic framework of over 100 passerine species. -
Songbird Use of Native and Invasive Fruit in the Northeastern USA
Wildlife Society Bulletin 44(3):570–578; 2020; DOI: 10.1002/wsb.1113 Original Article Songbird Use of Native and Invasive Fruit in the Northeastern USA MICHELLE A. LABBÉ, Department of Environmental Conservation, University of Massachusetts, Amherst, MA 01003, USA DAVID I. KING,1 U.S. Department of Agriculture Forest Service Northern Research Station, University of Massachusetts, Amherst, MA 01003, USA ABSTRACT Fruit is consumed by songbirds, yet whether or not it comprises an important component of habitat quality depends on the extent to which it is used by birds. In addition, there is evidence fruits of exotic invasive species may be nutritionally inferior to fruits of native species, so the influence of plant invasion on bird body condition is of interest to managers. Birds that consume invasive fruits may also serve as seed vectors, and consumption of fruits of invasive species may exacerbate invasion. Thus, the extent to which songbirds consume fruits of native versus invasive plant species, influence of plant invasion on bird body condition, and extent to which birds exhibit foraging behaviors that elevate their potential to act as dispersers of invasive species have important implications for habitat management. To understand bird use of native and invasive fruits and the potential role of birds in dispersing invasive plants, we observed bird foraging, measured body condition indices of birds captured in mist nets, measured available fruits of native and invasive plants, and calculated indices of seed dispersal for bird species based on fruit handling and consumption, within 16 shrubland sites in western Massachusetts, USA. Our findings indicate that birds use fruit extensively (57% of foraging events), use varied among species, and frugivorous species at our sites generally chose the fruit of native species, especially Prunus, over fruits of invasive species. -
Bird-Friendly Building Guide
Bird-Friendly Building Design Vassar’s Bridge for Laboratory Sciences, shown here under construction in October 2015. The building is scheduled to open in January 2016. Cover rendering and photos courtesy of Ennead Architects Cover rendering and photo this page: The new Bridge for Laboratory Sciences building at Vassar College, designed by Richard Olcott/Ennead Architects, redefines the identity of the sciences on the College’s historic campus and provides technologically advanced facilities for students, faculty, and researchers. Fundamental to the building’s design is its seamless integration with the natural landscape, scale, and campus aesthetic of the College. In this natural wooded setting, the need for strategies to reduce bird collisions with the building was apparent. In response, the building was designed to comply with LEED Pilot Credit 55: Bird Collision Deterrence. Ennead managing partner Guy Maxwell is a nationally recognized champion of bird-friendly design and has led Ennead’s innovative approach to make the building’s glazing safer for birds, employing patterned glass, screens and sunshades, and Ornilux glass, a specialty glass product that uses a UV coating visible to birds but not humans. By framing and showcasing views of the landscape, the building celebrates and connects students with the surrounding environment, while the overall development of the precinct repurposes an Exterior glass detail Glass detail, showing frit pattern underutilized sector of campus. Table of Contents Executive Summary ...........................................................4 -
Passerines: Perching Birds
3.9 Orders 9: Passerines – perching birds - Atlas of Birds uncorrected proofs 3.9 Atlas of Birds - Uncorrected proofs Copyrighted Material Passerines: Perching Birds he Passeriformes is by far the largest order of birds, comprising close to 6,000 P Size of order Cardinal virtues Insect-eating voyager Multi-purpose passerine Tspecies. Known loosely as “perching birds”, its members differ from other Number of species in order The Northern or Common Cardinal (Cardinalis cardinalis) The Common Redstart (Phoenicurus phoenicurus) was The Common Magpie (Pica pica) belongs to the crow family orders in various fine anatomical details, and are themselves divided into suborders. Percentage of total bird species belongs to the cardinal family (Cardinalidae) of passerines. once thought to be a member of the thrush family (Corvidae), which includes many of the larger passerines. In simple terms, however, and with a few exceptions, passerines can be described Like the various tanagers, grosbeaks and other members (Turdidae), but is now known to belong to the Old World Like many crows, it is a generalist, with a robust bill adapted of this diverse group, it has a thick, strong bill adapted to flycatchers (Muscicapidae). Its narrow bill is adapted to to feeding on anything from small animals to eggs, carrion, as small birds that sing. feeding on seeds and fruit. Males, from whose vivid red eating insects, and like many insect-eaters that breed in insects, and grain. Crows are among the most intelligent of The word passerine derives from the Latin passer, for sparrow, and indeed a sparrow plumage the family is named, are much more colourful northern Europe and Asia, this species migrates to Sub- birds, and this species is the only non-mammal ever to have is a typical passerine. -
The Division of the Major Songbird Radiation Into Passerida and 'Core
TheBlackwell Publishing Ltd division of the major songbird radiation into Passerida and ‘core Corvoidea’ (Aves: Passeriformes) — the species tree vs. gene trees MARTIN IRESTEDT & JAN I. OHLSON Submitted: 19 July 2007 Irestedt, M. & Ohlson, J. I. (2008). The division of the major songbird radiation into Passerida Accepted: 26 November 2007 and ‘core Corvoidea’ (Aves: Passeriformes) — the species tree vs. gene trees. — Zoologica doi:10.1111/j.1463-6409.2007.00321.x Scripta, 37, 305–313. The knowledge of evolutionary relationships among oscine songbirds has been largely improved in recent years by molecular phylogenetic studies. However, current knowledge is still largely based on sequence data from a limited number of loci. In this study, we re-evaluate relationships among basal lineages within the ‘core Corvoidea’ and Passerida radiations, by adding additional loci to previously published data. The trees obtained from the individual genes suggest incongruent topologies. Especially the positions of Callaeatidae (wattlebirds), Cnemophilidae (satinbirds) and Melanocharitidae (longbills and berrypeckers) vary among the trees, but RAG-1 is the only gene that unambiguously suggested a ‘core Corvoidea’ affinity for these taxa. Analyses of various combined data sets show that the phylogenetic positions for Callaeatidae, Cnemophilidae and Melanocharitidae largely depend on which genes that have been combined. As the RAG-1 gene has contributed to a majority of the phylogenetic information in previous studies, it has deeply influenced previous molecular affinities of these taxa. Based on the current data, we found a reasonable support for a Passerida affinity of Callaeatidae and Cnemophilidae, contrary to previous molecular studies. The position of Melanocharitidae is more unstable but a basal position among Passerida is congruent with a deletion observed in the glyceraldehyde-3-phosphodehydrogenase (GAPDH) loci. -
Niche Analysis and Conservation of Bird Species Using Urban Core Areas
sustainability Article Niche Analysis and Conservation of Bird Species Using Urban Core Areas Vasilios Liordos 1,* , Jukka Jokimäki 2 , Marja-Liisa Kaisanlahti-Jokimäki 2, Evangelos Valsamidis 1 and Vasileios J. Kontsiotis 1 1 Department of Forest and Natural Environment Sciences, International Hellenic University, 66100 Drama, Greece; [email protected] (E.V.); [email protected] (V.J.K.) 2 Arctic Centre, University of Lapland, 96101 Rovaniemi, Finland; jukka.jokimaki@ulapland.fi (J.J.); marja-liisa.kaisanlahti@ulapland.fi (M.-L.K.-J.) * Correspondence: [email protected] Abstract: Knowing the ecological requirements of bird species is essential for their successful con- servation. We studied the niche characteristics of birds in managed small-sized green spaces in the urban core areas of southern (Kavala, Greece) and northern Europe (Rovaniemi, Finland), during the breeding season, based on a set of 16 environmental variables and using Outlying Mean Index, a multivariate ordination technique. Overall, 26 bird species in Kavala and 15 in Rovaniemi were recorded in more than 5% of the green spaces and were used in detailed analyses. In both areas, bird species occupied different niches of varying marginality and breadth, indicating varying responses to urban environmental conditions. Birds showed high specialization in niche position, with 12 species in Kavala (46.2%) and six species in Rovaniemi (40.0%) having marginal niches. Niche breadth was narrower in Rovaniemi than in Kavala. Species in both communities were more strongly associated either with large green spaces located further away from the city center and having a high vegetation cover (urban adapters; e.g., Common Chaffinch (Fringilla coelebs), European Greenfinch (Chloris Citation: Liordos, V.; Jokimäki, J.; chloris Cyanistes caeruleus Kaisanlahti-Jokimäki, M.-L.; ), Eurasian Blue Tit ( )) or with green spaces located closer to the city center Valsamidis, E.; Kontsiotis, V.J. -
Phylogeny of the Eurasian Wren Nannus Troglodytes
PLOS ONE RESEARCH ARTICLE Phylogeny of the Eurasian Wren Nannus troglodytes (Aves: Passeriformes: Troglodytidae) reveals deep and complex diversification patterns of Ibero-Maghrebian and Cyrenaican populations 1 2 3 4 1 Frederik AlbrechtID *, Jens Hering , Elmar Fuchs , Juan Carlos Illera , Flora Ihlow , 5 5 6 7 a1111111111 Thomas J. ShannonID , J. Martin CollinsonID , Michael Wink , Jochen Martens , a1111111111 Martin PaÈckert1 a1111111111 a1111111111 1 Museum of Zoology, Senckenberg Natural History Collections Dresden, Senckenberg|Leibniz Institution for Biodiversity and Earth System Research, Dresden, Saxony, Germany, 2 Verein SaÈchsischer Ornithologen e. a1111111111 V., Limbach-Oberfrohna, Saxony, Germany, 3 Verein SaÈchsischer Ornithologen e.V., Weimar, Thuringia, Germany, 4 Research Unit of Biodiversity (UO-CSIC-PA), Oviedo University, Asturias, Spain, 5 School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, Scotland, United Kingdom, 6 Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Baden- WuÈrttemberg, Germany, 7 Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Rhineland-Palatinate, Germany OPEN ACCESS Citation: Albrecht F, Hering J, Fuchs E, Illera JC, * [email protected] Ihlow F, Shannon TJ, et al. (2020) Phylogeny of the Eurasian Wren Nannus troglodytes (Aves: Passeriformes: Troglodytidae) reveals deep and complex diversification patterns of Ibero- Abstract Maghrebian and Cyrenaican populations. PLoS The Mediterranean Basin represents a Global Biodiversity Hotspot where many organisms ONE 15(3): e0230151. https://doi.org/10.1371/ journal.pone.0230151 show high inter- and intraspecific differentiation. Extant phylogeographic patterns of terres- trial circum-Mediterranean faunas were mainly shaped through Pleistocene range shifts and Editor: èukasz Kajtoch, Institute of Systematics and Evolution of Animals Polish Academy of range fragmentations due to retreat into different glacial refugia. -
England Birds and Gardens 2013 Trip
Eagle-Eye England Birds and Gardens 2013 Trip May 7th – 18th 2013 Bird List Graylag Goose (Anser anser) Dark-bellied Brent Goose (Branta bernicla bernicla)] Canada Goose (Branta canadensis) Mute Swan (Cygnus olor) Egyptian Goose (Alopochen aegyptiaca) Common Shelduck (Tadorna tadorna) Mandarin Duck (Aix galericulata) Gadwall (Anas strepera) Eurasian Wigeon (Anas penelope) Mallard (Anas platyrhynchos) Northern Shoveler (Anas clypeata) Green-winged Teal (Eurasian) (Anas crecca crecca/nimia) Red-crested Pochard (Netta rufina) Common Pochard (Aythya ferina) Tufted Duck (Aythya fuligula) Common/Northern Eider (Somateria mollissima mollissima) Common Scoter (Melanitta nigra) Red-legged Partridge (Alectoris rufa) Gray Partridge (Perdix perdix) Ring-necked Pheasant (Phasianus colchicus) Little Grebe (Tachybaptus ruficollis) Great Crested Grebe (Podiceps cristatus) Northern Fulmar (Fulmarus glacialis) Northern Gannet (Morus bassanus) Great Cormorant (Phalacrocorax carbo) Gray Heron (Ardea cinerea) Little Egret (Egretta garzetta) Eurasian Spoonbill (Platalea leucorodia) Western Marsh-Harrier (Circus aeruginosus) Eurasian Sparrowhawk (Accipiter nisus) Common Buzzard (Buteo buteo) Water Rail (Rallus aquaticus) Eurasian Moorhen (Gallinula chloropus) Eurasian Coot (Fulica atra) Common Crane (Grus grus) Northern Lapwing (Vanellus vanellus) Grey/Black-bellied Plover (Pluvialis squatarola) Common Ringed Plover (Charadrius hiaticula) Little Ringed Plover (Charadrius dubius) Eurasian Oystercatcher (Haematopus ostralegus) Pied Avocet (Recurvirostra avosetta)