Frond Architecture of the Rootless Duckweed Wolffia Globosa Jingjing Yang1, Xuyao Zhao1, Gaojie Li1, Shiqi Hu1,2 and Hongwei Hou1*

Total Page:16

File Type:pdf, Size:1020Kb

Frond Architecture of the Rootless Duckweed Wolffia Globosa Jingjing Yang1, Xuyao Zhao1, Gaojie Li1, Shiqi Hu1,2 and Hongwei Hou1* Yang et al. BMC Plant Biology (2021) 21:387 https://doi.org/10.1186/s12870-021-03165-5 RESEARCH ARTICLE Open Access Frond architecture of the rootless duckweed Wolffia globosa Jingjing Yang1, Xuyao Zhao1, Gaojie Li1, Shiqi Hu1,2 and Hongwei Hou1* Abstract Background: The plant body in duckweed species has undergone reduction and simplification from the ancient Spirodela species towards more derived Wolffia species. Among the five duckweed genera, Wolffia members are rootless and represent the smallest and most reduced species. A better understanding of Wolffia frond architecture is necessary to fully explore duckweed evolution. Results: We conducted a comprehensive study of the morphology and anatomy of Wolffia globosa, the only Wolffia species in China. We first used X-ray microtomography imaging to reveal the three-dimensional and internal structure of the W. globosa frond. This showed that new fronds rapidly budded from the hollow reproductive pocket of the mother fronds and that several generations at various developmental stages could coexist in a single W. globosa frond. Using light microscopy, we observed that the meristem area of the W. globosa frond was located at the base of the reproductive pocket and composed of undifferentiated cells that continued to produce new buds. A single epidermal layer surrounded the W. globosa frond, and the mesophyll cells varied from small and dense palisade-like parenchyma cells to large, vacuolated cells from the ventral to the dorsal part. Furthermore, W. globosa fronds contained all the same organelles as other angiosperms; the most prominent organelles were chloroplasts with abundant starch grains. Conclusions: Our study revealed that the reproductive strategy of W. globosa plants enables the rapid accumulation of biomass and the wide distribution of this species in various habitats. The reduced body plan and size of Wolffia are consistent with our observation that relatively few cell types are present in these plants. We also propose that W. globosa plants are not only suitable for the study of structural reduction in higher plants, but also an ideal system to explore fundamental developmental processes of higher plants that cannot be addressed using other model plants. Keywords: Wolffia globosa, Morphology, Three-dimensional structure, Light microscopy, Ultrastructure Background attentions for their economic value and potential to Duckweeds, aquatic monocotyledonous plants of the ameliorate resource limitations and environmental prob- family Lemnaceae, include five genera (Spirodela, Land- lems [3]. For example, duckweeds are widely used for oltia, Lemna, Wolffiella,andWolffia) with variable standardized toxicity testing of various water contami- morphologies and living habits, propagating mostly by nants including nitrogen, phosphorus, metals, and nu- vegetative reproduction [1, 2]. Duckweeds have attracted merous organic compounds [4, 5]. Duckweeds also possess good qualitative and quantitative nutritional pro- files without detectable anti-proliferative or cytotoxic ef- * Correspondence: [email protected] 1The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key fects and could serve as a new source of human food [6]. Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Duckweed-based expression systems with strictly con- Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan trolled formats have been developed to produce various 430072, China Full list of author information is available at the end of the article recombinant proteins with relatively high yield [7, 8]. © The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. Yang et al. BMC Plant Biology (2021) 21:387 Page 2 of 10 Duckweeds also may be valuable feedstock for biofuel species, which lack pseudoroots [19]. These previous production due to their high biomass and starch accu- studies demonstrated that members of the Wolffia genus mulation [9, 10]. Furthermore, their rapid growth rate, vary distinctively in morphology, anatomy, growth etc. ease of cultivation and transformation, direct contact in adaption to different living environments. with water, and ability to adapt to environmental Wolffia globosa is the only Wolffia species in China changes make duckweeds suitable plant models and ex- [20] and it has a genome size of 1300 Mbp [12]. Stable cellent materials for physiological studies [3]. and transient transformation methods for W. globosa Duckweeds have undergone reduction and simplifica- have been established [21]. Based on this efficient gen- tion of the plant body from the ancient Spirodela species etic transformation system, W. globosa has been used to towards the more-derived Wolffia species [11]. Among express a protective edible vaccine antigen against fish the five duckweed genera, Wolffia members are rootless vibriosis with high survival of vaccinated fish (63.3%), and represent the smallest (0.5–1 mm) and most- which indicated that W. globosa could serve as a bioreac- reduced species; other duckweed species (including Spir- tor to produce edible vaccines [7]. W. globosa is also a odela, Landoltia,andLemna) produce adventitious good indicator of metal pollution in aquatic environ- roots. DNA content estimates also vary nearly thirteen- ments [22, 23]. Early studies by Landolt [11] reported fold among duckweed species, ranging from 158 Mbp in the morphology of W. globosa. Huang [20] studied the Spirodela polyrhiza to 1881Mbp in Wolffia arrhiza [12], phylogeny and genetic diversity of W. globosa in China and negatively correlate with body size [12–14]. The based on sequencing of the mat-K gene and random striking variation in body plan and size among duck- amplified polymorphic DNA (RAPD) markers. Huang weeds is one of the most extreme examples of structural [20] also preliminaily compared the anatomy of the tur- reduction in any family. However, we lack knowledge ion, frond, and flowering structures among W. globosa about the mechanisms driving its occurrence within the individuals from the field. The morphology and anatomy plant kingdom. of W. globosa still need further investigation to reveal its Two studies by Landolt [11] described the morphology unique characteristics that may be of importance in of the Wolffia genus and characterized its members basic and applied research. Here, we report a compre- based on their frond shape, frond width, number of sto- hensive study of the morphology and anatomy of W. glo- mata, stigma with or without pigment cells, etc. Ander- bosa. The findings provide a foundation for future son et al. [15] first reported the light and electron research on duckweed growth, development, physiology, microscopic structure of the W. arrhiza frond, revealing and evolution. Biological research on duckweeds is that W. arrhiza fronds varied considerably from mature growing as genomes of some duckweed species have chlorenchymous tissue to the meristematic area where been sequenced [24]. We hope to attract more investiga- numerous daughter fronds develop. The frond structure tors and investors to join our efforts and realize the of Wolffia australiana was similar to that of W. arrhiza; great potential of duckweed as a model system for basic however, the W. australiana chloroplasts were concen- and applied research in plants. trated in dorsal mesophyll cells [16]. White and Wise [17] revealed the differences in mesophyll anatomies be- Results tween Wolffia columbiana and Wolffia borealis: the Morphology of the W. globosa frond chloroplasts were located mainly in the epidermis of W. The three-dimensional (3D) volumes of the W. globosa columbiana with a single mesophyll cell size and type, frond are shown in Fig. 1 and Movie S1. The oval- but were concentrated in the dorsal part of W. borealis shaped W. globosa frond could be divided into dorsal, with a steep gradient in cell size, as in W. australiana ventral, and lateral parts (Fig. 1A1). There was one big and W. arrhiza. Lemon and Posluszny [18] were the first cavity in both the mother frond (MF) and daughter to compare the developmental morphology of shoots in frond (DF1) named the reproductive pocket (RpM and S. polyrhiza, Lemna minor, and W. borealis, which re- RpD, respectively) (Fig. 1A2–A5). The MF had two vis- vealed the successive formation of new generations in ible daughter fronds (DF1 and DF2), one (DF2) budding these three duckweed species and their progressive sim- from the base of the RpM. The DF1 also had two new plification from Spirodela to Lemna to Wolffia. Sree buds (GF1 and GF2) (Fig. 1A3–A5). The empty RpM et al. [19] reported the unique morphology of vegetative with the new bud (DF2) was exposed when the attached and generative propagation in Wolffia microscopica daughter frond (DF1) was separated (Fig. 1B2–B5). It using light and electron microscopy. They observed was located at one end of the MF and opened when DF1 flowering in different generations of W. microscopica at protruded from the MF. Stomata were found only in the the same time [19]. Furthermore, W. microscopica dorsal part of the frond; no stoma were found in the fronds often possessed a ventral projection and a special ventral and lateral parts (Fig.
Recommended publications
  • An Updated Checklist of Aquatic Plants of Myanmar and Thailand
    Biodiversity Data Journal 2: e1019 doi: 10.3897/BDJ.2.e1019 Taxonomic paper An updated checklist of aquatic plants of Myanmar and Thailand Yu Ito†, Anders S. Barfod‡ † University of Canterbury, Christchurch, New Zealand ‡ Aarhus University, Aarhus, Denmark Corresponding author: Yu Ito ([email protected]) Academic editor: Quentin Groom Received: 04 Nov 2013 | Accepted: 29 Dec 2013 | Published: 06 Jan 2014 Citation: Ito Y, Barfod A (2014) An updated checklist of aquatic plants of Myanmar and Thailand. Biodiversity Data Journal 2: e1019. doi: 10.3897/BDJ.2.e1019 Abstract The flora of Tropical Asia is among the richest in the world, yet the actual diversity is estimated to be much higher than previously reported. Myanmar and Thailand are adjacent countries that together occupy more than the half the area of continental Tropical Asia. This geographic area is diverse ecologically, ranging from cool-temperate to tropical climates, and includes from coast, rainforests and high mountain elevations. An updated checklist of aquatic plants, which includes 78 species in 44 genera from 24 families, are presented based on floristic works. This number includes seven species, that have never been listed in the previous floras and checklists. The species (excluding non-indigenous taxa) were categorized by five geographic groups with the exception of to reflect the rich diversity of the countries' floras. Keywords Aquatic plants, flora, Myanmar, Thailand © Ito Y, Barfod A. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
    [Show full text]
  • Genome of the World’S Smallest Flowering Plant, Wolffia Australiana
    ARTICLE https://doi.org/10.1038/s42003-021-02422-5 OPEN Genome of the world’s smallest flowering plant, Wolffia australiana, helps explain its specialized physiology and unique morphology Halim Park1,8, Jin Hwa Park1,8, Yejin Lee1, Dong U Woo1, Ho Hwi Jeon1, Yeon Woo Sung1, Sangrea Shim2,3, Sang Hee Kim 1,4, Kyun Oh Lee1,4, Jae-Yean Kim1,4, Chang-Kug Kim 5, Debashish Bhattacharya6, ✉ ✉ Hwan Su Yoon 7 & Yang Jae Kang1,4 Watermeal, Wolffia australiana, is the smallest known flowering monocot and is rich in protein. Despite its great potential as a biotech crop, basic research on Wolffia is in its 1234567890():,; infancy. Here, we generated the reference genome of a species of watermeal, W. australiana, and identified the genome-wide features that may contribute to its atypical anatomy and physiology, including the absence of roots, adaxial stomata development, and anaerobic life as a turion. In addition, we found evidence of extensive genome rearrangements that may underpin the specialized aquatic lifestyle of watermeal. Analysis of the gene inventory of this intriguing species helps explain the distinct characteristics of W. australiana and its unique evolutionary trajectory. 1 Division of Bio & Medical Bigdata Department (BK4 Program), Gyeongsang National University, Jinju, Republic of Korea. 2 Department of Chemistry, Seoul National University, Seoul, Korea. 3 Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea. 4 Division of Life Science Department, Gyeongsang National University, Jinju, Republic of Korea. 5 Genomics Division, National Academy of Agricultural Science (NAAS) Rural Development Administration, Jeonju, Korea. 6 Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA.
    [Show full text]
  • FDA Has No Questions
    Valentina Carpio-Téllez Parabel Ltd. 7898 Headwaters Commerce Street Fellsmere, FL 32948 Re: GRAS Notice No. GRN 000742 Dear Ms. Carpio-Téllez: The Food and Drug Administration (FDA, we) completed our evaluation of GRN 000742. We received Parabel’s notice on November 8, 2017 and filed it on December 19, 2017. Parabel submitted amendments to the notice on February 19, 2018; April 16, 2018; June 12, 2018; and August 1, 2018. The amendments included revisions to the dietary exposure assessment. The subjects of the notice are duckweed powder (DWP) and degreened duckweed powder (DDWP) for use as a source of protein in food at levels ranging from 3-20%.1 The notice informs us of Parabel’s view that this use of DWP and DDWP is GRAS through scientific procedures. Our use of the terms “duckweed powder” and “degreened duckweed powder” in this letter is not our recommendation of those terms as appropriate common or usual names for declaring the substances in accordance with FDA’s labeling requirements. Under Title 21 of the United States Code of Federal Regulations (CFR) 101.4, each ingredient must be declared by its common or usual name. In addition, 21 CFR 102.5 outlines general principles to use when establishing common or usual names for nonstandardized foods. Issues associated with labeling and the common or usual name of a food ingredient are under the purview of the Office of Nutrition and Food Labeling (ONFL) in the Center for Food Safety and Applied Nutrition. The Office of Food Additive Safety (OFAS) did not consult with ONFL regarding the appropriate common or usual name for “duckweed powder” and “degreened duckweed powder.” Duckweeds are aquatic plants in the Lemnoideae subfamily of the plant family Araceae.2 The notifier intends to use multiple species from the genera Landoltia, Lemna, Wolffia, and Wolfiella.3 Although the products may derive from different duckweed species, the 1 Excluding products regulated by the United States Department of Agriculture.
    [Show full text]
  • Culture System for Wolffia Globosa L. (Lemnaceae) for Hygiene Human Food
    Culture system for Wolffia globosa L. (Lemnaceae) for hygiene human food Nisachol Ruekaewma1, Somkiat Piyatiratitivorakul2,3* and Sorawit Powtongsook2,4 1 Program in Biotechnology, 2 Center of Excellence for Marine Biotechnology, 3 Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok 10330 Thailand. 4 National Centers for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120 Thailand. *Corresponding author. E-mail address: [email protected] Abstract This study aimed to develop a suitable culture system for the mass production of Wolffia globosa for human consumption. W. globosa was grown in five different culture systems (static, vertical aeration, horizontal surface agitation, system with top water spraying and layer culturing system with top water spraying) The results showed that dry weight of W. globosa determined every 7 days indicated that a horizontal surface agitation provided the highest mass of 42.94±2.17 g/m2 and significantly difference with others in 28 days (P<0.05). Twenty one days-culture of W. globosa in the horizontal circulation produced the highest yield of 1.52±0.04 g dry weight/m2/d and was significantly higher than those in other systems. Frond size of W. globosa in 7 days-culture provides the biggest of all the culture systems, however, no significant difference was found among the culture systems. The biomass had 48.2% protein with complete essential amino acids, 9.6% fat and 14.5% crude fiber with low bacterial contamination. Keywords: culture system, Wolffia globosa, water meal, duckweed, mass culture 1. Introduction Development of new foods is vital to the needs of rapid expanding in Asia because of rapid human population growth.
    [Show full text]
  • Survey of the Total Fatty Acid and Triacylglycerol Composition and Content of 30 Duckweed Species and Cloning of a Δ6-Desaturas
    Survey of the total fatty acid and triacylglycerol composition and content of 30 duckweed species and cloning of a Δ6-desaturase responsible for the production of γ-linolenic and stearidonic acids in Lemna gibba Yan et al. Yan et al. BMC Plant Biology 2013, 13:201 http://www.biomedcentral.com/1471-2229/13/201 Yan et al. BMC Plant Biology 2013, 13:201 http://www.biomedcentral.com/1471-2229/13/201 RESEARCH ARTICLE Open Access Survey of the total fatty acid and triacylglycerol composition and content of 30 duckweed species and cloning of a Δ6-desaturase responsible for the production of γ-linolenic and stearidonic acids in Lemna gibba Yiheng Yan1, Jason Candreva1, Hai Shi1, Evan Ernst2, Robert Martienssen2, Jorg Schwender1 and John Shanklin1* Abstract Background: Duckweeds, i.e., members of the Lemnoideae family, are amongst the smallest aquatic flowering plants. Their high growth rate, aquatic habit and suitability for bio-remediation make them strong candidates for biomass production. Duckweeds have been studied for their potential as feedstocks for bioethanol production; however, less is known about their ability to accumulate reduced carbon as fatty acids (FA) and oil. Results: Total FA profiles of thirty duckweed species were analysed to assess the natural diversity within the Lemnoideae. Total FA content varied between 4.6% and 14.2% of dry weight whereas triacylglycerol (TAG) levels varied between 0.02% and 0.15% of dry weight. Three FA, 16:0 (palmitic), 18:2Δ9,12 (Linoleic acid, or LN) and 18:3Δ9,12,15 (α-linolenic acid, or ALA) comprise more than 80% of total duckweed FA.
    [Show full text]
  • Aquatic Plants and Their Element and Fatty Acid Profiles G
    Aquatic Plants and Their Element and Fatty Acid Profiles G. Kumar1, R. K. Goswami1, A. K. Shrivastav2, J. G. Sharma2, D. R. Tocher3 and R. Chakrabarti1 1Aqua Research Lab, Department of Zoology, University of Delhi, Delhi 110 007, India 2Department of Biotechnology, Delhi Technological University, Delhi 110042, India 3Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK. Abstract The present study aims to evaluate the elements and fatty acids composition of twelve aquatic plants. Freshwater plants Azolla microphylla, A. pinnata, Enhydra fluctuans, Hydrilla verticillata, Ipomoea aquatica, Lemna minor, Marsilea quadrifolia, Pistia stratiotes, Salvinia molesta, S. natans, Spirodela polyrhiza and Wolffia arrhiza were cultured using organic manures, cattle manures, poultry wastes and mustard oil-cake (1:1:1). Among various aquatic plants significantly (P<0.05) higher crude protein and lipid were found in L. minor and S. polyrhiza. The ash content was significantly (P<0.05) higher in H. verticillata, W. arrhiza and P. stratiotes compared to others. Highest Na, Mg, Cr and Fe levels were recorded in P. stratiotes. H. verticillata was the rich source for Cu, Mn, Co and Zn; Ca, Mg, Sr and Ni contents were highest in S. polyrhiza; Se and K contents were higher in S. natans and W. arrhiza, respectively. The n-6 and n-3 polyunsaturated fatty acids (PUFA) levels were significantly (P<0.05) higher in W. arrhiza and I. aquatica, respectively compared to others. Linoleic acid (C18:2n-6) and alpha linolenic acid (C18:3n-3) were dominant n-6 Fig.1. Culture of Lemna minor in outdoor tanks.
    [Show full text]
  • Development of Duckweed Transformation Technique for Biological Application
    i DEVELOPMENT OF DUCKWEED TRANSFORMATION TECHNIQUE FOR BIOLOGICAL APPLICATION AORNPILIN JAIPRASERT A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE MASTER DEGREE OF SCIENCE IN BIOLOGICAL SCIENCE FACULTY OF SCIENCE BURAPHA UNIVERSITY JULY 2018 COPYRIGHT OF BURAPHA UNIVERSITY ii iii ACKNOWLEDGEMENT In the success of this thesis, I would like to express my sincere gratitude and deep appreciation to my advisor, Dr. Salil Chanroj for support, attention, motivation, technical assistance, helpful suggestion and comment, and encouragement throughout my study. I would like to thank Assistant Professor Dr. Waranyoo Phoolcharoen from Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Dr. Wasinee Pongprayoon from Department of Biology, and Dr. Somchart Maenpuen, Department of Biochemistry, Faculty of Science, Burapha University for all of their guidance and valuable advice throughout the examination. Great appreciation is also given to Biological Science Graduate Program, Department of Biotechnology for laboratory facilities. I would like to thank Microscopic center, Faculty of Science for technical assistance on fluorescence microscope. I also would like to thank National Research Council of Thailand and Burapha University for the financial support. Finally, a great respect is brought to my parents and my family for their loving, take caring, attention, encouragement, guidance and supporting throughout my study. I specially thank to all lecturers of Department of Biotechnology and Department of Biology and all of my friends for their kindness, support, suggestion, encouragement, and friendship. Aornpilin Jaiprasert iv 56910051: MAJOR: BIOLOGICAL SCIENCE; M.Sc. (BIOLOGICAL SCIENCE) KEYWORDS: DUCKWEEDS/ IDENTIFICATION/ CULTIVATION/ FLOWERING/ TRANSFORMATION AORNPILIN JAIPRASERT: DEVELOPMENT OF DUCKWEED TRANSFORMATION TECHNIQUE FOR BIOLOGICAL APPLICATION.
    [Show full text]
  • Vedlegg 1. Vannlevende Planter. Annex 1. Aquatic Plants Plantae
    Vedlegg 1. Vannlevende planter. Annex 1. Aquatic plants Plantae Planter; Plants Ricciaceae Gaffelmosefamilien Riccia fluitans L. Vassgaffelmose; Crystalwort Pteridophyta (Divisjon) Karsporeplanter; Ferns Azollaceae Andematbregnefamilien; Mosquito Fern family Salviniaceae Salvinia molesta D.S. Giant Salvina Mitchell Salvinia natans (L.) All. Floating Watermoss Lycopodiophyta Kråkefotplanter; (Divisjon) Lycopods Isoetaceae Brasmegrasfamilien; Quillworts Isoëtes spp. L. Alle arter brasmegras; Quillworts - All species Angiospermae (Klasse) Dekkfrøede planter; Flowering Plants Acoraceae Kalmusrotfamilien; Sweet-Flag family Acorus calamus L. Kalmusrot; Sweet Flag Araceae Myrkonglefamilien; Arum family Calla palustris L. Myrkongle; Bog Arum Lemna spp. L. Alle arter i andematslekta; Duckweeds – All species Spirodela polyrrhiza (L.) Stor andemat; Greater Schleid Duckweed Wolffia arrhiza (L.) Rootless Duckweed Horkel ex Wimm. Ceratophyllaceae Hornbladfamilien; Hornwort family Ceratophyllum spp. L. Alle arter i hornbladslekten; Hornworts – All species Crassulaceae Bergknappfamilien; Stonecrop family Crassula helmsii (Kirk) Swamp Stonecrop, New Cockayne Zealand Pygmyweed Cyperaceae Starrfamilien; Sedge family Eleocharis spp. R. Br. Alle arter i sumpsivaksslekten; Sedge family - All species Elatinaceae Evjeblomfamilien; Waterwort family Elatine triandra Schkuhr Trefelt evjeblom; Threestamen Waterwort Haloragidaceae Tusenbladfamilien; Watermilfoil family Myriophyllum spp. L. Alle arter i tusenbladslekten; Water milfoils – All species Hydrocharitaceae
    [Show full text]
  • Importance of Duckweeds in Basic Research and Their Industrial 1 Applications
    Importance of Duckweeds in Basic Research and Their Industrial 1 Applications Paul Fourounjian, Tamra Fakhoorian and Xuan Hieu Cao Abstract fuel prices rose and the US Department of The Lemnaceae family, commonly called Energy funded the sequencing of the Spirodela duckweeds, is 37 species of the smallest and polyrhiza genome. This launched not only the simplest flowering plants found floating on genomic investigations detailed in this book, nutrient-rich waters worldwide. Their small but the regrowth of duckweed industrial size and rapid clonal growth in aseptic condi- applications. Thanks to their ability to quickly tions made them a stable and simple model for absorb nitrogen, phosphorous, and other nutri- plant research especially from 1950 to 1990, ents while removing pathogens and growing at when they were used to study plant physiology a rate of 13–38 dry tons/hectare year in water and biochemistry including auxin synthesis treatment lagoons, scientists are currently and sulfur metabolism. Duckweed research exploring ways that duckweed can convert then saw a resurgence in 2008 when global agricultural and municipal wastewater into clean water and a high-protein animal feed. The potential of these plants for phytoremedi- ation of heavy metals and organic compounds fi This chapter was revised and signi cantly expanded also allows the possibility to clean the wastew- upon, with the guidance of T. F., from the chapter “The Importance and Potential of Duckweeds as a Model and ater from heavy industry while providing Crop Plant for Biomass-Based Applications and biofuels and even plastics. Finally, thanks to ” Beyond, in the Handbook on Environmental Materials their superb nutritional profile Wolffia species Management, which X.
    [Show full text]
  • Appropriate Stocking Density for Growth of Watermeal (Wolffia Arrhiza) and Its Efficiency of Total Ammonia Nitrogen Removal
    International Journal of Agricultural Technology 2021 Vol. 17(1):325-336 Available online http://www.ijat-aatsea.com ISSN 2630-0192 (Online) Appropriate stocking density for growth of watermeal (Wolffia arrhiza) and its efficiency of total ammonia nitrogen removal Sirirustananun, N.1* and Jongput, B.2 1Department of Agriculture, Faculty of Agricultural and Industrial Technology, Phetchabun Rajabhat University, Phetchabun, Thailand; 2Department of Animal Production Technology and Fishery, Faculty of Agricultural Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand. Sirirustananun, N. and Jongput, B. (2021). Appropriate stocking density for growth of watermeal (Wolffia arrhiza) and its efficiency of total ammonia nitrogen removal. International Journal of Agricultural Technology 17(1):325-336. Abstract Watermeal was cultivated at six different stocking densities as 0 (control), 0.5, 1.0, 1.5, 2.0 and 2.5 g fresh weight (fw)•l-1 for two weeks. Results indicated that all watermeal treatments showed optimal growth during the first week. Watermeal cultivated at 2.5 g fw•l-1 revealed the highest growth performance but specific growth rate (SGR) was not significantly differed when compared to the other stocking densities. During the second week, all treatments were recorded as no growth with negative averaged fw gain and SGR. The cultivation of watermeal at 1.5 g fw•l-1 showed significantly higher of total ammonia nitrogen (TAN) removal rate (6.34±0.24 %•day-1•g-1) than watermeal was cultivated at 2.5 g fw•l-1 and the control treatment. The starting stocking density of watermeal at 1.5 g fw•l-1 was determined the most suitable for growth and water quality treatment.
    [Show full text]
  • Wolffia Globosa–Mankai Plant-Based Protein Contains Bioactive Vitamin
    nutrients Article Wolffia globosa–Mankai Plant-Based Protein Contains Bioactive Vitamin B12 and Is Well Absorbed in Humans 1, 2, 3 4 Ilan Sela y, Anat Yaskolka Meir y , Alexander Brandis , Rosa Krajmalnik-Brown , Lydia Zeibich 5, Debbie Chang 5, Blake Dirks 5, Gal Tsaban 2 , Alon Kaplan 2, Ehud Rinott 2, Hila Zelicha 2, Shira Arinos 1, Uta Ceglarek 6, Berend Isermann 6 , Miri Lapidot 1, Ralph Green 7,* and Iris Shai 2,8,* 1 Research and Development Department, Hinoman Ltd., Rishon Lezion 7546302, Israel; [email protected] (I.S.); [email protected] (S.A.); [email protected] (M.L.) 2 Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; [email protected] (A.Y.M.); [email protected] (G.T.); [email protected] (A.K.); [email protected] (E.R.); [email protected] (H.Z.) 3 Targeted Metabolomics Unit, Life Sciences Core Facilities Weizmann Institute of Science, Rehovot 76100, Israel; [email protected] 4 School of Sustainable Engineering and the Built Environment, Biodesign Center for Health Through Microbiomes, Arizona State University, Tempe, AZ 85281, USA; [email protected] 5 Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85287, USA; [email protected] (L.Z.); [email protected] (D.C.); [email protected] (B.D.) 6 Institute for Laboratory Medicine, University of Leipzig Medical Center, 04103 Leipzig, Germany; [email protected] (U.C.); [email protected] (B.I.) 7 Department of Pathology and Laboratory Medicine, University of California Davis School of Medicine, Sacramento, CA 95817, USA 8 Department of Nutrition, Harvard T.H.
    [Show full text]
  • Taxonomy of Duckweeds (Lemnaceae), Potential New Crop Plants
    Emirates Journal of Food and Agriculture. 2016. 28(5): 291-302 doi: 10.9755/ejfa.2016-01-038 http://www.ejfa.me/ REVIEW ARTICLE Taxonomy of duckweeds (Lemnaceae), potential new crop plants K. Sowjanya Sree1, Manuela Bog2, Klaus-Juergen Appenroth3* 1Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India, 2University of Regensburg, Institute of Plant Sciences, Regensburg, Germany, 3Institute of General Botany and Plant Physiology, University of Jena, Jena, Germany ABSTRACT Duckweeds are increasingly gaining interest because of their potential as a new aquaculture crop. In the present era of high through- put research, duckweed taxonomy has to be emphasized in order to support and strengthen scientific communication and commercial application. Since the publication of the fundamental monograph on Lemnaceae by E. Landolt in 1986, a number of changes have taken place in terms of their taxonomic position and nomenclature, which we summarize in this review. We report here about the systematic position of this plant family and the changes in its organization. Three additional species were identified; one new genus and subsequently one of the species was re-defined after the publication of the key of determination in 1986. At present Lemnaceae comprises of 37 species grouped into five genera. We envisage that this review will serve as a compilation of all these recent revisions, describing the state of art of duckweed systematics. Keywords: Aquaculture; Duckweed; Lemnaceae; Taxonomy; Crop plant INTRODUCTION Appenroth, 2014; Sree et al., 2015a, b) can be used as a raw material for biofuel and biogas plants (Jain et al., The present “blooming era” of “resurgence of duckweed 1992; Su et al., 2014; Cui and Cheng, 2015).
    [Show full text]