An Investigation of Class 1 Integrons and Integrase Gene In

Total Page:16

File Type:pdf, Size:1020Kb

An Investigation of Class 1 Integrons and Integrase Gene In AN INVESTIGATION OF CLASS 1 INTEGRONS AND INTEGRASE GENE IN ESCHERICHIA COLI AND MANNHEIMIA HAEMOLYTICA FROM BEEF CATTLE IN WESTERN CANADA A Thesis Presented to The Faculty of Graduate Studies of The University of Guelph by MATTHEW LESLIE In partial fulfillment of requirements for the degree of Master of Science May, 2011 © Matthew Leslie, 2011 Library and Archives Bibliotheque et 1*1 Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington OttawaONK1A0N4 Ottawa ON K1A 0N4 Canada Canada Your file Vote reference ISBN: 978-0-494-82791-8 Our We Notre r6f6rence ISBN: 978-0-494-82791-8 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library and permettant a la Bibliotheque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par I'lnternet, preter, telecommunication or on the Internet, distribuer et vendre des theses partout dans le loan, distribute and sell theses monde, a des fins commerciaies ou autres, sur worldwide, for commercial or non­ support microforme, papier, electronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in this et des droits moraux qui protege cette these. Ni thesis. Neither the thesis nor la these ni des extraits substantiels de celle-ci substantial extracts from it may be ne doivent etre imprimes ou autrement printed or otherwise reproduced reproduits sans son autorisation. without the author's permission. In compliance with the Canadian Conformement a la loi canadienne sur la Privacy Act some supporting forms protection de la vie privee, quelques may have been removed from this formulaires secondaires ont ete enleves de thesis. cette these. While these forms may be included Bien que ces formulaires aient inclus dans in the document page count, their la pagination, il n'y aura aucun contenu removal does not represent any loss manquant. of content from the thesis. 1*1 Canada ABSTRACT AN INVESTIGATION OF CLASS 1 INTEGRONS AND INTEGRASE GENE IN ESCHERICHIA COII AND MANNHEIMIA HAEMOIYTICA ISOLATED FROM BEEF CATTLE IN WESTERN CANADA Matthew Leslie Advisor: University of Guelph, 2011 Dr. P. Boerlin This study examined and characterized class 1 integrons and class 1 integrase-associated genetic elements in Escherichia coli and Mannheimia haemolytica from Canadian beef cattle. Both E. coli and M. haemolytica isolated from beef cattle on four feedlots in Alberta Canada were screened for the presence of the class 1 integrase gene (intll). All isolates which possessed this gene were further characterized to determine if they contained a typical class 1 integron or an incomplete integron, dubbed 'lonely integrase'. A variety of gene cassettes, gene arrays and variants were identified in E. coli. The genetic environment surrounding the 'lonely integrase' was characterized using cloning and PCR. The 'lonely integrase' structure was shown to contain a duplicated class 1 integrase gene and to be associated with both tet(M) and tet(A). This same structure was observed in the majority of the isolates possessing a 'lonely integrase'. ACKNOWLEDGEMENTS I would like to thank my advisor Dr. Patrick Boerlin, my mentor over the last two years, who has not only given me this opportunity but has also provided me with ongoing support, encouragement and guidance. His enthusiasm for science motivated me to improve my own knowledge and his support helped me gain confidence in my abilities. I would like to thank my committee members Dr. Lucy Mutharia, Dr. John Prescott and Dr. Richard Reid-Smith for their wisdom and advice over the past two years. Thank you to Dr. David Pearl for his crash course and continued guidance in statistics. I thank our technicians Vivian Nicholson and Gabhan Chalmers for getting me acquainted with the laboratory and various techniques and for the tips and tricks that they've passed on. Thank you to my lab mates (Stina Nilsson, Fiona Coutinho, Jennie Pouget, Shaun Kernaghan, Walter Wang, Heidi Mascarenhas) who have helped me learn valuable lessons along the way and who have always had time to have a little fun (i.e., Lab Olympics); I truly value the friendships I have made within the lab. A special shout out Kelly Keithlin, my parallel life partner, who kept me motivated and with whom I competed with throughout our undergraduate and graduate studies. A very heartfelt thank you goes out to my incredibly supportive family and group of friends; you've helped me through a lot of the struggles that happen outside of the lab. TABLE OF CONTENTS ACKNOWLEDGEMENTS i TABLE OF CONTENTS ii LIST OF TABLES iv LIST OF FIGURES vi LIST OF ABBREVIATIONS vii DECLARATION OF WORK ix INTRODUCTION 2 CHAPTER ONE: LITERATURE REVIEW 5 1. Antimicrobial Use in Food Animal Production and Antimicrobial Resistance 5 2. Escherichia coli as a Commensal and Reservoir for AMR Genes 7 3. Mannheimia haemolytica: Opportunistic Pathogen of Ruminants 10 4. Integrons and Their Role in AMR 13 5. Predominant AMR Genes in Integrons and the Resistance Mechanisms They Confer 19 6. AMR in Bacteria Isolated from Canadian Beef Cattle 27 7. Ancestral Integrons, Modified Integrons and the 'Lonely Integrase' 29 8. The Dissemination of Class 1 Integrons 33 9. Proposal 34 CHAPTER TWO: AN INVESTIGATION AND CHARACTERIZATION OF CLASS ONE INTEGRONS IN ESCHERICHIA COLI AND MANNHEIMIA HAEMOLYTICA FROM FEEDLOT CATTLE IN WESTERN CANADA 39 ABSTRACT 39 INTRODUCTION 40 ii MATERIALS AND METHODS 42 RESULTS 45 DISCUSSION 49 ACKNOWLEDGEMENTS 54 CHAPTER 3: CHARACTERIZATION OF A CLASS 1INTEGRASE GENE ASSOCIATED WITH TETRACYLINE RESISTANCE IN ESCHERICHIA COLI ISOLATED FROM CANADIAN BEEF CATTLE 66 ABSTRACT 66 INTRODUCTION 67 MATERIALS AND METHODS 68 RESULTS 71 DISCUSSION 73 ACKNOWLEDGEMENTS 76 DISCUSSION AND CONCLUSIONS 86 REFERENCES 91 APPENDIX 1: FORMULAE USED TO DETERMINE THE ADJUSTED PREVALENCE FOR STRATIFIED RANDOM SAMPLES 110 APPENDIX 2: STATISTICAL ANALYSES OF INTEGRASE GENE, CLASS 1 INTEGRONS AND 'LONELY INTEGRASE' 111 APPENDIX 3: NUCLEOTIDE AND AMINO ACID ALIGNMENTS FOR VARIANTS OF THE AADA1 AND AADB-AADA2 GENE CASSETTES 114 APPENDIX 4 PLASMID SEQUENCING RESULTS OF TWO LARGE PLASMIDS CONTAINING THE 'LONELY' INTEGRASE GENETIC ELEMENT 121 in LIST OF TABLES Table 1 - PCR primers used for PCR in this study 55 Table 2 - The distribution of intll gene, class 1 integron and 'lonely integrase' in generic E. coli in regards to type of sampling, timing of sample and feedlot 56 Table 3 - Gene cassettes present within a class 1 integron in generic E. coli from beef cattle in feedlots collected at entry, >60 DOF and at exit 57 Table 4- Distribution of gene cassettes and variants within class 1 integrons of generic E. coli from beef cattle from four different feedlot operations in Alberta, Canada 58 Table 5 - Distribution of the number of gene cassettes present within class 1 integrons in generic E. coli from beef cattle in feedlots collected at entry, >60 DOF and at exit 59 Table 6 - Susceptibility testing results and genotypes for major gene cassette types identified in class 1 integrons 60 Table 7 - The logistic regression analysis outputs for associations between class 1 integrons, sulfonamide resistance genes, major gene cassettes and phenotypic resistance 61 Table 8 - The logistic regression analysis output for the 'lonely integrase' specifically calculated for the sulfonamide resistance genes, major gene cassettes and phenotypic resistance 63 Table 9 - The Simpson's Diversity Index calculated for all gene cassettes and their variants 65 Table 10 - Primers, PCR conditions and PCR products for the investigation of the 'lonely integrase' 77 IV Table 11 - Primers used in overlapping PCR sets for characterization of the 'lonely integrase' isolates 80 Table 12 - The eight 'lonely' integrase isolate groups based on phenotypic resistance to chloramphenicol, streptomycin, sulfizoxazole and tetracycline 81 Table 13 - The PCR results spanning the entire sequenced 'lonely' integrase region for 247 isolates 82 Table 14 - The adjusted prevalence, standard error and 95% confidence interval calculated for intll, class 1 integrons and 'lonely integrase' Ill Table 15 - The plasmid sequencing results for plasmid p260cD (120 kb).- 121 Table 16 - The plasmid sequencing results for plasmid p299cD (140 kb) 124 v LIST OF FIGURES Figure 1 - (A) General structure of class 1 integrons. (B) General structure of class 2 integrons 18 Figure 2 - The theoretical model of evolution and divergence of clinical class 1 integrons 31 Figure 3 - Southern blot analysis to determine the location of the 'lonely integrase' 83 Figure 4 - The immediate genetic environment of the 'lonely integrase' genetic environment 85 Figure 5 - The Stata 11 coding and output for the logistic regression of class 1 integrons 112 Figure 6 - The Stata 11 coding and output for the logistic regression of 'lonely' integrase isolates 113 Figure 7 - The alignment of the nucleotide sequence of the three variants of the aadAl gene cassette identified in E. co/z in a class 1 integron 114 Figure 8 - The alignment of three variants of the amino acid sequence of aadAl gene products identified in E. coli in a class 1 integron 116 Figure 9 - The alignment of the nucleotide sequence of the
Recommended publications
  • A Review of Enrofloxacin for Veterinary Use Tessa Trouchon, Sebastien Lefebvre
    A Review of Enrofloxacin for Veterinary Use Tessa Trouchon, Sebastien Lefebvre To cite this version: Tessa Trouchon, Sebastien Lefebvre. A Review of Enrofloxacin for Veterinary Use. Open Journal of Veterinary Medicine, 2016, 6 (2), pp.40-58. 10.4236/ojvm.2016.62006. hal-01503397 HAL Id: hal-01503397 https://hal.archives-ouvertes.fr/hal-01503397 Submitted on 7 Apr 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NoDerivatives| 4.0 International License Open Journal of Veterinary Medicine, 2016, 6, 40-58 Published Online February 2016 in SciRes. http://www.scirp.org/journal/ojvm http://dx.doi.org/10.4236/ojvm.2016.62006 A Review of Enrofloxacin for Veterinary Use Tessa Trouchon, Sébastien Lefebvre USC 1233 INRA-Vetagro Sup, Veterinary School of Lyon, Marcy l’Etoile, France Received 12 January 2016; accepted 21 February 2016; published 26 February 2016 Copyright © 2016 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract This review outlines the current knowledge on the use of enrofloxacin in veterinary medicine from biochemical mechanisms to the use in the field conditions and even resistance and ecotoxic- ity.
    [Show full text]
  • AMEG Categorisation of Antibiotics
    12 December 2019 EMA/CVMP/CHMP/682198/2017 Committee for Medicinal Products for Veterinary use (CVMP) Committee for Medicinal Products for Human Use (CHMP) Categorisation of antibiotics in the European Union Answer to the request from the European Commission for updating the scientific advice on the impact on public health and animal health of the use of antibiotics in animals Agreed by the Antimicrobial Advice ad hoc Expert Group (AMEG) 29 October 2018 Adopted by the CVMP for release for consultation 24 January 2019 Adopted by the CHMP for release for consultation 31 January 2019 Start of public consultation 5 February 2019 End of consultation (deadline for comments) 30 April 2019 Agreed by the Antimicrobial Advice ad hoc Expert Group (AMEG) 19 November 2019 Adopted by the CVMP 5 December 2019 Adopted by the CHMP 12 December 2019 Official address Domenico Scarlattilaan 6 ● 1083 HS Amsterdam ● The Netherlands Address for visits and deliveries Refer to www.ema.europa.eu/how-to-find-us Send us a question Go to www.ema.europa.eu/contact Telephone +31 (0)88 781 6000 An agency of the European Union © European Medicines Agency, 2020. Reproduction is authorised provided the source is acknowledged. Categorisation of antibiotics in the European Union Table of Contents 1. Summary assessment and recommendations .......................................... 3 2. Introduction ............................................................................................ 7 2.1. Background ........................................................................................................
    [Show full text]
  • Belgian Veterinary Surveillance of Antibacterial Consumption National
    Belgian Veterinary Surveillance of Antibacterial Consumption National consumption report 2020 Publication : 22 June 2021 1 SUMMARY This annual BelVet-SAC report is now published for the 12th time and describes the antimicrobial use (AMU) in animals in Belgium in 2020 and the evolution since 2011. For the third year this report combines sales data (collected at the level of the wholesalers-distributors and the compound feed producers) and usage data (collected at farm level). This allows to dig deeper into AMU at species and farm level in Belgium. With a consumption of 87,6 mg antibacterial compounds/kg biomass an increase of +0.2% is seen in 2020 in comparison to 2019. The increase seen in 2020 is spread over both pharmaceuticals (+0.2%) and antibacterial premixes (+4.0%). This unfortunately marks the end of a successful reduction in antibacterial product sales that was seen over the last 6 years resulting in a cumulative reduction of -40,2% since 2011. The gap seen in the coverage of the sales data with the Sanitel-Med collected usage data increased substantially compared to 2019, meaning continuous efforts need to be taken to ensure completeness of the collected usage data. When looking at the evolution in the number of treatment days (BD100) at the species level, as calculated from the SANITEL- MED use data, use increased in poultry (+5,0%) and veal calves (+1,9%), while it decreased in pigs (-3,1%). However, the numerator data for this indicator remain to be updated for 2020, potentially influencing the reliability of the result.
    [Show full text]
  • DANMAP 2016 - Use of Antimicrobial Agents and Occurrence of Antimicrobial Resistance in Bacteria from Food Animals, Food and Humans in Denmark
    Downloaded from orbit.dtu.dk on: Oct 09, 2021 DANMAP 2016 - Use of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from food animals, food and humans in Denmark Borck Høg, Birgitte; Korsgaard, Helle Bisgaard; Wolff Sönksen, Ute; Bager, Flemming; Bortolaia, Valeria; Ellis-Iversen, Johanne; Hendriksen, Rene S.; Borck Høg, Birgitte; Jensen, Lars Bogø; Korsgaard, Helle Bisgaard Total number of authors: 27 Publication date: 2017 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Borck Høg, B. (Ed.), Korsgaard, H. B. (Ed.), Wolff Sönksen, U. (Ed.), Bager, F., Bortolaia, V., Ellis-Iversen, J., Hendriksen, R. S., Borck Høg, B., Jensen, L. B., Korsgaard, H. B., Pedersen, K., Dalby, T., Træholt Franck, K., Hammerum, A. M., Hasman, H., Hoffmann, S., Gaardbo Kuhn, K., Rhod Larsen, A., Larsen, J., ... Vorobieva, V. (2017). DANMAP 2016 - Use of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from food animals, food and humans in Denmark. Statens Serum Institut, National Veterinary Institute, Technical University of Denmark National Food Institute, Technical University of Denmark. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
    [Show full text]
  • NVA237 / Glycopyrronium Bromide Multinational, Multi-Database Drug
    Quantitative Safety & Epidemiology NVA237 / Glycopyrronium bromide Non-interventional Final Study Report NVA237A2401T Multinational, multi-database drug utilization study of inhaled NVA237 in Europe Author Document Status Final Date of final version 28 April 2016 of the study report EU PAS register ENCEPP/SDPP/4845 number Property of Novartis Confidential May not be used, divulged, published or otherwise disclosed without the consent of Novartis NIS Report Template Version 2.0 August-13-2014 Novartis Confidential Page 2 Non-interventional study report NVA237A/Seebri® Breezhaler®/CNVA237A2401T PASS information Title Multinational, multi-database drug utilization study of inhaled NVA237 in Europe –Final Study Report Version identifier of the Version 1.0 final study report Date of last version of 28 April 2016 the final study report EU PAS register number ENCEPP/SDPP/4845 Active substance Glycopyrronium bromide (R03BB06) Medicinal product Seebri®Breezhaler® / Tovanor®Breezhaler® / Enurev®Breezhaler® Product reference NVA237 Procedure number SeebriBreezhaler: EMEA/H/C/0002430 TovanorBreezhaler: EMEA/H/C/0002690 EnurevBreezhaler: EMEA/H/C0002691 Marketing authorization Novartis Europharm Ltd holder Frimley Business Park Camberley GU16 7SR United Kingdom Joint PASS No Research question and In the context of the NVA237 marketing authorization objectives application, the Committee for Medicinal Products for Human Use (CHMP) recommended conditions for marketing authorization and product information and suggested to conduct a post-authorization
    [Show full text]
  • Pharmacology for Veterinary Medicine Students Part II by Staff Members Depatment of Pharmacology Faculty of Veterinary Medicine
    Pharmacology for veterinary medicine students Part II By Staff members Depatment of Pharmacology Faculty of Veterinary Medicine Beni-Suef University 2019-2020 Item Page Drugs affecting etabolism……………………………………………….3 Antibiotics……………………………………………………………...17 Sulphonamides and Other antimicrobials……………………………….47 Antifungal drugs………………………………………………………...62 Antitubercular drugs……………………………………….………....…66 Antiparasitics………………………………………………..………….68 Antiprotozoals…………………………………………….……………78 Antiseptics and disinfectants……………………………….…….…….85 Antiviral agents…………………………………………….………..…90 Cancer chemotherapy………………………………………..………….97 Drug affecting endocrine system………………………………………101 Clinical pharmacology………………………………………….……. 116 Drug toxicology……………………………………………………… 125 Fish pharmacology…………………………………………………… 137 2 Fluids, electrolytes and acid-base therapy About 60 % of a normal animal's body weight is composed of water, fat, age, obese and older animals tend to have a small percentage of water of this 60 %, 33 % is within the body cells and is referred to as intracellular fluid compartment (ICF). The remaining 27 % is outside (between) the cells and is referred to as the extracellular fluid compartment (ECF). ECF may be further divided into sub-compartments (plasma 5 %, interstitial fluid 8 %, transcellular fluid 2 %, dense connective tissue and bone 12 %). Sodium is principally responsible for ECF osmolality. Osmolality in the ICF is principally determined by potassium, magnesium, phosphates and proteins. Na-K ATPase that is present in most cellular membranes (except for most canine and feline red blood cell membranes) maintains a very low intracellular Na concentration. Hence, if Na is added to the ECF it stays there and increases the osmolality and tonicity consequently, water is be drawn out of the ICF and into the ECF compartments until the osmolalities of the two fluid compartments are nearly equal. Chloride atoms usually follow Na atoms in order to maintain electroneurality.
    [Show full text]
  • Effects of Chlortetracycline and Copper Supplementation on Levels of Antimicrobial Resistance in the Feces of Weaned Pigs
    EFFECTS OF CHLORTETRACYCLINE AND COPPER SUPPLEMENTATION ON LEVELS OF ANTIMICROBIAL RESISTANCE IN THE FECES OF WEANED PIGS by GETAHUN EJETA AGGA DVM, Addis Ababa University, 2003 MSc, Utrecht University, 2008 AN ABSTRACT OF A DISSERTATION submitted in partial fulfillment of the requirements for the degree DOCTOR OF PHILOSOPHY Department of Diagnostic Medicine/Pathobiology College of Veterinary Medicine KANSAS STATE UNIVERSITY Manhattan, Kansas 2013 Abstract The use of antibiotics in food animals is of major concern as a purported cause of antimicrobial resistance (AMR) in human pathogens; as a result, alternatives to in-feed antibiotics such as heavy metals have been proposed. The effect of copper and CTC supplementation in weaned pigs on AMR in the gut microbiota was evaluated. Four treatment groups: control, copper, chlortetracycline (CTC), and copper plus CTC were randomly allocated to 32 pens with five pigs per pen. Fecal samples (n = 576) were collected weekly from three pigs per pen over six weeks and two Escherichia coli isolates per sample were tested phenotypically for antimicrobial and copper susceptibilities and genotypically for the presence of tetracycline (tet), copper (pcoD) and ceftiofur (blaCMY-2) resistance genes. CTC-supplementation significantly increased tetracycline resistance and susceptibility to copper when compared with the control group. Copper supplementation decreased resistance to most of the antibiotics, including cephalosporins, over all treatment periods. However, copper supplementation did not affect minimum inhibitory concentrations of copper or detection of pcoD. While tetA and blaCMY-2 genes were associated with a higher multi-drug resistance (MDR), tetB and pcoD were associated with lower MDR. Supplementations of CTC or copper alone were associated with increased tetB prevalence; however, their combination was paradoxically associated with reduced prevalence.
    [Show full text]
  • | Hao Wanathi Movie Plena Matuma Wa Mt
    |HAO WANATHI MOVIEUS009943500B2 PLENA MATUMA WA MT (12 ) United States Patent ( 10 ) Patent No. : US 9 ,943 , 500 B2 Page (45 ) Date of Patent: Apr . 17 , 2018 ( 54 ) METHODS OF TREATING TOPICAL A61K 9 /0046 ; A61K 9 / 06 ; A61K 47 /10 ; MICROBIAL INFECTIONS A61K 47 / 14 ; A61K 47 / 44 ; A61K 9 /0048 ; A61K 47/ 06 ; A61L 15 / 46 ; A61L ( 71 ) Applicant: LUODA PHARMA PTY LIMITED , 2300 /404 ; A61L 26 /0066 Caringbah ( AU ) See application file for complete search history . (72 ) Inventor : Stephen Page , Newtown ( AU ) ( 56 ) References Cited (73 ) Assignee : Luoda Pharma Pty Ltd , Caringbah U . S . PATENT DOCUMENTS (AU ) 3 ,873 , 693 A 3 / 1975 Meyers et al . 3 , 920 ,847 A * 11/ 1975 Chalaust .. .. A61K 9 /0014 Subject to any disclaimer, the term of this 514 / 512 ( * ) Notice : 4 ,772 , 470 A * 9 / 1988 Inoue .. .. .. .. .. A61K 9 / 006 patent is extended or adjusted under 35 424 / 435 U . S . C . 154 ( b ) by 0 days . 2005/ 0187199 Al * 8 /2005 Peyman .. .. .. A61K 8 / 36 514 / 154 ( 21) Appl. No .: 14 / 766 , 232 FOREIGN PATENT DOCUMENTS ( 22 ) PCT Filed : FebD . 10 , 2014 EP 0294538 A2 12 / 1988 WO WO - 2003/ 088965 A1 10 / 2003 ( 86 ) PCT No . : PCT/ AU2014 /000101 WO WO - 2006 /081327 A2 8 /2006 $ 371 ( c ) ( 1 ) , WO WO - 2008 /075207 A2 6 / 2008 ( 2 ) Date : Aug. 6 , 2015 OTHER PUBLICATIONS (87 ) PCT Pub . No .: W02014 / 121342 Weese et. al. , Veterinary Microbiology , 2010 , Elsevier, vol. 140 , pp . PCT Pub . Date : Aug . 14 , 2014 418 - 429 . * Brindle , Encyclopedia of Chemical Technology . Polyether antibi otics, Nov . 2013 , Wiley , Abstract and pp .
    [Show full text]
  • Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DIX to the HTSUS—Continued
    20558 Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DEPARMENT OF THE TREASURY Services, U.S. Customs Service, 1301 TABLE 1.ÐPHARMACEUTICAL APPEN- Constitution Avenue NW, Washington, DIX TO THE HTSUSÐContinued Customs Service D.C. 20229 at (202) 927±1060. CAS No. Pharmaceutical [T.D. 95±33] Dated: April 14, 1995. 52±78±8 ..................... NORETHANDROLONE. A. W. Tennant, 52±86±8 ..................... HALOPERIDOL. Pharmaceutical Tables 1 and 3 of the Director, Office of Laboratories and Scientific 52±88±0 ..................... ATROPINE METHONITRATE. HTSUS 52±90±4 ..................... CYSTEINE. Services. 53±03±2 ..................... PREDNISONE. 53±06±5 ..................... CORTISONE. AGENCY: Customs Service, Department TABLE 1.ÐPHARMACEUTICAL 53±10±1 ..................... HYDROXYDIONE SODIUM SUCCI- of the Treasury. NATE. APPENDIX TO THE HTSUS 53±16±7 ..................... ESTRONE. ACTION: Listing of the products found in 53±18±9 ..................... BIETASERPINE. Table 1 and Table 3 of the CAS No. Pharmaceutical 53±19±0 ..................... MITOTANE. 53±31±6 ..................... MEDIBAZINE. Pharmaceutical Appendix to the N/A ............................. ACTAGARDIN. 53±33±8 ..................... PARAMETHASONE. Harmonized Tariff Schedule of the N/A ............................. ARDACIN. 53±34±9 ..................... FLUPREDNISOLONE. N/A ............................. BICIROMAB. 53±39±4 ..................... OXANDROLONE. United States of America in Chemical N/A ............................. CELUCLORAL. 53±43±0
    [Show full text]
  • Belgian Veterinary Surveillance of Antimicrobial Consumption
    Belgian Veterinary Surveillance of Antibacterial Consumption National consumption report 2018 Publication : 19 June 2019 1 SUMMARY This annual BelVet-SAC report is now published for the 10th time and describes the antibacterial use in animals in Belgium in 2018 and the evolution since 2011. For the first time this report combines sales data (collected at the level of the wholesalers- distributors and the compound feed producers) and usage data (collected at herd level). This allows to dig deeper into AMU at species and herd level in Belgium. With -12,8% mg antimicrobial/kg biomass in comparison to 2017, 2018 marks the largest reduction in total sales of antimicrobials for animals in Belgium since 2011. This obviously continues the decreasing trend of the previous years, resulting in a cumulative reduction of -35,4% mg/kg since 2011. This reduction is evenly split over a reduction in pharmaceuticals (-13,2% mg/kg) and antibacterial premixes (-9,2% mg/kg). It is speculated that the large reduction observed in 2018 might partly be due to the effect of extra stock (of pharmaceuticals) taken during 2017 by wholesalers-distributors and veterinarians in anticipation of the increase in the antimicrobial tax for Marketing Authorisation Holders, which became effective on the 1st of April 2018. When comparing the results achieved in 2018 with the AMCRA 2020 reduction targets, the goal of reducing the overall AMU in animals with 50% by 2020 has not been achieved yet, however, the objective comes in range with still 14,6% to reduce over the next two years. Considering the large reduction observed in total AMU in 2018, it is not surprising that also in the pig sector a substantial reduction of -8,3% mg/kg between 2017 and 2018 is observed based upon the usage data.
    [Show full text]
  • Pharmaceutical Compositions Comprising an Antibiotic and Bromhexine, and Process for Their Preparation
    Europäisches Patentamt *EP001121940A1* (19) European Patent Office Office européen des brevets (11) EP 1 121 940 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.7: A61K 47/10, A61K 31/495, 08.08.2001 Bulletin 2001/32 A61P 31/04, A61K 31/435 // (A61K31/495, 31:135), (21) Application number: 00101857.1 (A61K31/435, 31:135) (22) Date of filing: 31.01.2000 (84) Designated Contracting States: (72) Inventor: Shoa’a, Abdul Rahman AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU 22476 Lund (SE) MC NL PT SE Designated Extension States: (74) Representative: Harrison, Michael Charles et al AL LT LV MK RO SI Albihns GmbH, Grasserstrasse 10 (71) Applicant: New Pharma Research Sweden AB 80339 München (DE) 22476 Lund (SE) (54) Pharmaceutical compositions comprising an antibiotic and bromhexine, and process for their preparation (57) Compositions for the prophylactic or therapeu- positions are stable upon storage over a broad range of tic treatment of bacterial diseases in humans and ani- temperature. The invention concerns also the combined mals, comprising as essential active ingredients a qui- use of a quinolone- or naphtyridone-type antibiotic or an nolone- or naphtyridone-type antibiotic or an active active chemical derivative thereof and bromhexine-HCl chemical derivative thereof and bromhexine-HCl, gla- for the treatment of bacterial infections in humans and cial acetic acid, water and a stabilizing agent. The com- animals, and a process for the preparation of the afore- mentioned compositions. EP 1 121 940 A1 Printed by Jouve, 75001 PARIS (FR) EP 1 121 940 A1 Description Field of the invention: 5 [0001] The present invention concerns aqueous compositions comprising an antibiotic, the compositions being in- tended to be used in the pharmaceutical field, and preferably for the prophylaxis or treatment of bacterial diseases affecting humans or farm and domestic animals.
    [Show full text]
  • 19 June 2019
    Belgian Veterinary Surveillance of Antibacterial Consumption National consumption report 2018 Publication : 19 June 2019 1 SUMMARY This annual BelVet-SAC report is now published for the 10th time and describes the antibacterial use in animals in Belgium in 2018 and the evolution since 2011. For the first time this report combines sales data (collected at the level of the wholesalers- distributors and the compound feed producers) and usage data (collected at herd level). This allows to dig deeper into AMU at species and herd level in Belgium. With -12,8% mg antimicrobial/kg biomass in comparison to 2017, 2018 marks the largest reduction in total sales of antimicrobials for animals in Belgium since 2011. This obviously continues the decreasing trend of the previous years, resulting in a cumulative reduction of -35,4% mg/kg since 2011. This reduction is evenly split over a reduction in pharmaceuticals (-13,2% mg/kg) and antibacterial premixes (-9,2% mg/kg). It is speculated that the large reduction observed in 2018 might partly be due to the effect of extra stock (of pharmaceuticals) taken during 2017 by wholesalers-distributors and veterinarians in anticipation of the increase in the antimicrobial tax for Marketing Authorisation Holders, which became effective on the 1st of April 2018. When comparing the results achieved in 2018 with the AMCRA 2020 reduction targets, the goal of reducing the overall AMU in animals with 50% by 2020 has not been achieved yet, however, the objective comes in range with still 14,6% to reduce over the next two years. Considering the large reduction observed in total AMU in 2018, it is not surprising that also in the pig sector a substantial reduction of -8,3% mg/kg between 2017 and 2018 is observed based upon the usage data.
    [Show full text]