Ivan N. Rich Editor Stem Cell Protocols M ETHODS in MOLECULAR BIOLOGY

Total Page:16

File Type:pdf, Size:1020Kb

Ivan N. Rich Editor Stem Cell Protocols M ETHODS in MOLECULAR BIOLOGY Methods in Molecular Biology 1235 Ivan N. Rich Editor Stem Cell Protocols M ETHODS IN MOLECULAR BIOLOGY Series Editor John M. Walker School of Life Sciences University of Hertfordshire Hat fi eld, Hertfordshire, AL10 9AB, UK For further volumes: http://www.springer.com/series/7651 Stem Cell Protocols Edited by Ivan N. Rich HemoGenix, Inc., Colorado Springs, CO, USA Editor Ivan N. Rich HemoGenix, Inc. Colorado Springs , CO , USA ISSN 1064-3745 ISSN 1940-6029 (electronic) ISBN 978-1-4939-1784-6 ISBN 978-1-4939-1785-3 (eBook) DOI 10.1007/978-1-4939-1785-3 Springer New York Heidelberg Dordrecht London Library of Congress Control Number: 2014954236 © Springer Science+Business Media New York 2015 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifi cally for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specifi c statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein. Printed on acid-free paper Humana Press is a brand of Springer Springer is part of Springer Science+Business Media (www.springer.com) Pref ace Primary stem cells represent a very small and unique population of cells. Indeed, the proportion of stem cells compared to other cells in an organ or tissue is so small that they are usually morphologically unidentifi able. Yet, their presence can be detected by functional properties and characteristics that make stem cells unique. The present volume in this suc- cessful series of Methods in Molecular Biology on Stem Cell Protocols focuses on methods that allow primary stem cells from a variety of sources to be isolated, cultured in vitro, detected, and measured for specifi c applications. These applications range from those in basic, stem cell and veterinary research to toxicology and cellular therapy and regenerative medicine. If the volume demonstrates a slight bias towards the blood-forming system, it is no coincidence. More is known about the blood-forming or hematopoietic system than prob- ably any other primary stem cell system. The hematopoietic system has been used as a model for many stem cell systems. However, although every stem cell system is unique in its own way, there are many commonalities that are demonstrated in the methods and tech- niques described in this volume. All of these unique properties and characteristics are discussed and examined, mostly at the cellular level and in detail in this volume. Unlike non-defi nitive stem cell systems such as embryonic stem (ES) and induced pluripotent stem (iPS) cells, primary defi nitive stem cells still represent a black box of unknown biology and physiology. Although ES and iPS cells can be manipulated to produce large numbers of stem cells and functionally mature cells, such as hepatocytes, cardiomyocytes, and neurons, investigators still have to demon- strate that these artifi cially produced parent and progeny cells are similar in virtually every aspect to their primary counterparts. It is therefore imperative to understand and characterize primary stem cell populations and how they are regulated. Primary, defi nitive stem cells emit and receive a multitude of signals, both internal and external, to maintain homeostasis. For applications such as cel- lular therapy and regenerative medicine, it is important to understand the complexity of the stem cell compartment in order to develop assays that provide informative and predictive information prior to use in the patient. Assays are already available for this purpose. But, new future technologies, such as nanotechnology, may provide the capability, accuracy, and sensitivity needed to probe far deeper into the intricacies of the stem cell compartment. The question is whether these new technologies will be accepted and trusted over other tech- nologies that may have been in place for decades. v vi Preface Those new to the fi eld of stem cell biology will fi nd a wealth of “go to” and “how to” information that will hopefully provide some of the fundamentals to spark further interest and incentive to develop new technologies that will be required for basic and clinical research in the future. Those who have worked and are established in the fi eld will hopefully fi nd some new methodologies that will provide a wider viewpoint and an even greater scope for their own research. The editor wishes to thank all the authors who contributed their time and effort to this volume and stem cell biology fi eld. Colorado Springs, CO Ivan N. Rich Contents Preface. v Contributors . ix 1 Short Primer in Stem Cell Biology . 1 Ivan N. Rich 2 Measurement of Hematopoietic Stem Cell Proliferation, Self-Renewal, and Expansion Potential . 7 Ivan N. Rich 3 Measuring the Aging Process in Stem Cells . 19 Yi Liu, Gary Van Zant, and Ying Liang 4 Measuring the Potency of a Stem Cell Therapeutic . 33 Holli Harper and Ivan N. Rich 5 Culturing Protocols for Human Multipotent Adult Stem Cells . 49 Bart Vaes, Sara Walbers, Kristel Gijbels, David Craeye, Robert Deans, Jef Pinxteren, and Wouter van’t Hof 6 Isolation of Murine Bone Marrow Scavenging Sinusoidal Endothelial Cells . 59 Peter A. G. McCourt, Ana Oteiza, Benjamin Cao, and Susan K. Nilsson 7 Analysis of Circadian Rhythms in Embryonic Stem Cells . 73 Jiffin K. Paulose, Edmund B. Rucker III, and Vincent M. Cassone 8 Measuring Stem Cell Circadian Rhythm . 81 William Hrushesky and Ivan N. Rich 9 Cryopreservation of Human Pluripotent Stem Cells: A General Protocol. 97 Takamichi Miyazaki and Hirofumi Suemori 10 Biological Differences Between Native and Cultured Mesenchymal Stem Cells: Implications for Therapies . 105 Elena Jones and Richard Schäfer 11 The Use of Multiparameter Flow Cytometry and Cell Sorting to Characterize Native Human Bone Marrow Mesenchymal Stem Cells (MSC) . 121 Sally Boxall and Elena Jones 12 High Yield Recovery of Equine Mesenchymal Stem Cells from Umbilical Cord Matrix/Wharton’s Jelly Using a Semi-automated Process. 131 Timo Z. Nazari-Shafti, Ivone G. Bruno, Rudy Martinez, Michael E. Coleman, Eckhard U. Alt, and Scott R. McClure 13 Isolation and Functional Assessment of Cutaneous Stem Cells. 147 Yanne S. Doucet and David M. Owens vii viii Contents 14 Isolation of Adult Stem Cell Populations from the Human Cornea . 165 Matthew J. Branch, Wing-Yan Yu, Carl Sheridan, and Andrew Hopkinson 15 Advanced Imaging and Tissue Engineering of the Human Limbal Epithelial Stem Cell Niche. 179 Isobel Massie, Marc Dziasko, Alvena Kureshi, Hannah J. Levis, Louise Morgan, Michael Neale, Radhika Sheth, Victoria E. Tovell, Amanda J. Vernon, James L. Funderburgh, and Julie T. Daniels 16 Isolation and Characterization of Stem Cells in the Adult Mammalian Ovary . 203 Seema Parte, Hiren Patel, Kalpana Sriraman, and Deepa Bhartiya 17 Clonal Culture of Adult Mouse Lung Epithelial Stem/Progenitor Cells . 231 Jonathan L. McQualter and Ivan Bertoncello 18 Culture and Characterization of Mammary Cancer Stem Cells in Mammospheres. 243 Eleonora Piscitelli, Cinzia Cocola, Frank Rüdiger Thaden, Paride Pelucchi, Brian Gray, Giovanni Bertalot, Alberto Albertini, Rolland Reinbold, and Ileana Zucchi 19 Isolation and Culture of Primary Glioblastoma Cells from Human Tumor Specimens . 263 Sascha Seidel, Boyan K. Garvalov, and Till Acker Index . 277 Contributors TILL ACKER • Institute of Neuropathology , University of Giessen , Giessen , Germany ALBERTO ALBERTINI • Instituto di Technologie Biomediche , Segrate Milan , Italy ECKHARD U. ALT • Department of Surgery , Tulane University , New Orleans , LA , USA GIOVANNI BERTALOT • Azienda Ospedaliera Desenzano d/G , Leno , Italy IVAN BERTONCELLO • Lung Health Research Center , University of Melbourne , Melbourne , VIC , Australia DEEPA BHARTIYA • Stem Cell Department , National Institute for Research and Reproductive Health , Mumbai , India SALLY BOXALL • Leeds Institute of Rheumatic and Musculoskeletal Medicine, Leeds University , Leeds , UK MATTHEW J. BRANCH • Ophthalmology DCN , University of Nottingham , Nottingham , UK IVONE G. BRUNO • InGeneron, Inc. , Houston , TX , USA VINCENT M. CASSONE • Department of Biology, University of Kentucky , Lexington,
Recommended publications
  • Histopathological Analysis of Patients with Abruptio
    HISTOPATHOLOGICAL ANALYSIS OF PATIENTS WITH ABRUPTIO PLACENTA IN A TERTIARY HEALTH CARE CENTRE Dissertation submitted in Partial fulfillment of the regulations required for the award of M.D. Degree in PATHOLOGY - BRANCH III THE TAMILNADU DR.M.G.R.MEDICAL UNIVERSITY CHENNAI MAY 2019 DECLARATION I hereby declare that the dissertation entitled “HISTOPATHOLOGICAL ANALYSIS OF PATIENTS WITH ABRUPTIO PLACENTA IN A TERTIARY HEALTH CARE CENTRE” is a bonafide research work done by me in the Department of Pathology, Coimbatore Medical College during the period from JANUARY 2017 TO JUNE 2018 under the guidance and supervision of Dr.G.S.THIRIVENI BALAJJI, M.D, Associate Professor, Department of Pathology, Coimbatore Medical College. This dissertation is submitted to The Tamilnadu Dr.MGR Medical University, Chennai towards the partial fulfillment of the requirement for the award of M.D., Degree (Branch III) in Pathology. I have not submitted this dissertation on any previous occasion to any University for the award of any Degree. Place : Coimbatore Dr. A. PETER SAMIDOSS Date : CERTIFICATE This is to certify that dissertation entitled “HISTOPATHOLOGICAL ANALYSIS OF PATIENTS WITH ABRUPTIO PLACENTA IN A TERTIARY HEALTH CARE CENTRE” is a bonafide work done by Dr. A. PETER SAMIDOSS, a postgraduate student in the Department of Pathology, Coimbatore Medical College, Coimbatore under guidance and supervision of Dr.G.S.THIRIVENI BALAJJI, M.D, Associate Professor, Department of Pathology, Coimbatore Medical College, Coimbatore in partial fulfillment of the regulations of the Tamil Nadu Dr. M. G. R. Medical University, Chennai towards the award of M.D. Degree (Branch III) in Pathology. Guide Head of the Department Dr.G.S.THIRIVENI BALAJJI, M.D, Prof.
    [Show full text]
  • The Therapeutic Potential, Challenges and Future Clinical Directions of Stem Cells from the Wharton’S Jelly of the Human Umbilical Cord
    Stem Cell Rev and Rep (2013) 9:226–240 DOI 10.1007/s12015-012-9418-z The Therapeutic Potential, Challenges and Future Clinical Directions of Stem Cells from the Wharton’s Jelly of the Human Umbilical Cord Ariff Bongso & Chui-Yee Fong Published online: 12 December 2012 # Springer Science+Business Media New York 2012 Abstract Mesenchymal stem cells (MSCs) from bone mar- attractive autologous or allogeneic agents for the treatment of row, adult organs and fetuses face the disadvantages of inva- malignant and non-malignant hematopoietic and non- sive isolation, limited cell numbers and ethical constraints hematopoietic diseases. This review critically evaluates their while embryonic stem cells (ESCs) and induced pluripotent therapeutic value, the challenges and future directions for their stem cells (iPSCs) face the clinical hurdles of potential immu- clinical application. norejection and tumorigenesis respectively. These challenges have prompted interest in the study and evaluation of stem Keywords Standardization of derivation protocols . cells from birth-associated tissues. The umbilical cord (UC) Properties and applications of Wharton’s jelly stem cells . has been the most popular. Hematopoietic stem cells (HSCs) Umbilical cord compartments harvested from cord blood have been successfully used for the treatment of hematopoietic diseases. Stem cell populations have also been reported in other compartments of the UC Introduction viz., amnion, subamnion, perivascular region, Wharton’sjelly, umbilical blood vessel adventia and endothelium. Differences Various types of stem cells have been isolated to date in the in stemness characteristics between compartments have been human from a variety of tissues including preimplantation reported and hence derivation protocols using whole UC embryos, fetuses, birth-associated tissues and adult organs.
    [Show full text]
  • Transplantation of Umbilical Cord–Derived Mesenchymal Stem Cells
    nature publishing group  Review Transplantation of umbilical cord–derived mesenchymal stem cells as a novel strategy to protect the central nervous system: technical aspects, preclinical studies, and clinical perspectives Jérémie Dalous1,2, Jérome Larghero3,4 and Olivier Baud1,2,5 The prevention of perinatal neurological disabilities issue in public health, and no neuroprotective treatment to remains a major challenge for public health, and no date has proven clinically useful in reducing lesions. neuroprotective treatment to date has proven clini- It is hoped that stem cells will provide an inexhaustible source cally useful in reducing the lesions leading to these dis- of therapeutic products that will enable neuroprotection and abilities. Efforts are, therefore, urgently needed to test neuroregeneration in disorders affecting the brain and spinal other neuroprotective strategies including cell thera- cord. Different sources of stem cells have been described, but some are associated with potential ethical issues. A rich source pies. Although stem cells have raised great hopes as of stem and progenitor cells that is, however, free of these ethi- an inexhaustible source of therapeutic products that cal issues, is the human umbilical cord (hUC, ref. 4). could be used for neuroprotection and neuroregenera- Stem cells derived from UC or UC blood (UCB) might be suit- tion in disorders affecting the brain and spinal cord, cer- able for neuroprotection. A few promising experimental stud- tain sources of stem cells are associated with potential ies using human UCB (hUCB)–derived mononuclear cells and ethical issues. The human umbilical cord (hUC) is a rich hUC-derived mesenchymal stem cells (hUC-MSCs), either from source of stem and progenitor cells including mesen- the blood or from Wharton’s jelly, have already been undertaken chymal stem cells (MSCs) derived either from the cord (5–8).
    [Show full text]
  • Umbilical Cord Lining Membrane and Wharton's Jelly-Derived Mesenchymal Stem Cells
    The Open Tissue Engineering and Regenerative Medicine Journal, 2011, 4, 21-27 21 Open Access Umbilical Cord Lining Membrane and Wharton’s Jelly-Derived Mesenchymal Stem Cells: the Similarities and Differences Marc G. Jeschke1,2,3, Gerd G. Gauglitz4, Thang T. Phan5, David N. Herndon6,7 and Katsuhiro Kita*,6 1Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, M4N 3M5, Canada 2Department of Surgery, University of Toronto, Ontario M4N 3M5, Canada 3Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada 4Department of Dermatology and Allergology, Ludwig Maximilians University, Munich, Germany 5Department of Surgery, Yong Loo Lin School of Medicine and Centre for Craniofacial & Regenerative Biology, National University of Singapore and Cell Research Corp. Pte, Lte, Singapore 6Department of Surgery and Shriners Hospitals for Children, The University of Texas Medical Branch, Galveston, TX 77550, USA 7Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX 77550, USA Abstract: The umbilical cord tissue has gained attention in recent years as a source of multipotent cells. Due to its wide- spread availability, the umbilical cord may be an excellent alternative source of cells for regenerative medicine. Anatomically, umbilical cord tissue is constituted of several different parts, and, accordingly, immunostaining of cord tissue sections revealed differential distribution of several markers and extracellular matrix, distinguishing the various layers. Wharton’s jelly is the major component filling the inner part of the umbilical cord tissue, and it has been commonly used as a source of obtaining multipotent cells from umbilical cord. We recently reported isolating mesenchymal stem cells from cord lining membrane (sub-amnion).
    [Show full text]
  • An Overview on Mesenchymal Stem Cells Derived from Extraembryonic Tissues: Supplement Sources and Isolation Methods
    Stem Cells and Cloning: Advances and Applications Dovepress open access to scientific and medical research Open Access Full Text Article REVIEW An Overview on Mesenchymal Stem Cells Derived from Extraembryonic Tissues: Supplement Sources and Isolation Methods This article was published in the following Dove Press journal: Stem Cells and Cloning: Advances and Applications Parvin Salehinejad1 Purpose: The main aim of this review was to provide an updated comprehensive report Mojgan Moshrefi2,3 regarding isolation methods of MSCs from human extra embryonic tissues, including cord Touba Eslaminejad4 blood, amniotic fluid, and different parts of the placenta and umbilical cord, with respect to the efficacy of these methods. 1Neuroscience Research Center, Institute of Neuropharmacology, Kerman Results: Extra embryonic tissues are the most available source for harvesting of mesench- University of Medical Sciences, Kerman, ymal stem cells (MSCs). They make a large number of cells accessible using non-invasive 2 Iran; Medical Nanotechnology and methods of isolation and the least immune-rejection reactions. A successful culture of Tissue Engineering Research Center, Yazd Reproductive Science Institute, Shahid primary cells requires obtaining a maximum yield of functional and viable cells from the Sadoughi University of Medical Sciences, tissues. In addition, there are many reports associated with their differentiation into various 3 Yazd, Iran; Research and Clinical Center kinds of cells, and there are some clinical trials regarding their utilization for patients. for Infertility, Yazd Reproductive Science Institute, Shahid Sadoughi University of Conclusion: Currently, cord blood-MSCs have been tested for cartilage and lung diseases. Medical Sciences, Yazd, Iran; Umbilical cord-MSCs were tested for liver and neural disorders.
    [Show full text]
  • Editorial on Umbilical Cord Raajitha B* Department of Pharmacology, University of JNTU, Kakinada, Andhra Pradesh, India
    Neonata f l OPEN ACCESS Freely available online l o B a io n l r o u g o y J Journal of Neonatal Biology ISSN: 2167-0897 Editorial Editorial on Umbilical Cord Raajitha B* Department of Pharmacology, University of JNTU, Kakinada, Andhra Pradesh, India INTRODUCTION of the umbilicus. The umbilical vein in the foetus proceeds to the liver's transverse fissure, where it breaks in two. The hepatic The umbilical cord (also known as the navel loop, birth cord, portal vein, which carries blood into the liver, is connected to one or funiculus umbilicalis) connects the developing embryo or of these branches. The second branch runs into the inferior vena foetus to the placenta in placental mammals. The umbilical cava, bypassing the liver which carries blood to the heart. cord is physiologically and genetically a part of the foetus during embryonic development and usually comprises two arteries and Problems and abnormalities one vein buried within Wharton's jelly in humans. The placenta provides oxygenated, nutrient-rich blood to the foetus through the A variety of anomalies can affect the umbilical cord, causing umbilical vein. The foetal heart, on the other hand, pumps low- complications for both the mother and the infant. oxygen, nutrient-depleted blood back to the placenta through the Entanglement of the cord, a knot in the cord, or a nuchal cord umbilical arteries. (the wrapping of the umbilical cord around the foetal neck) may Causes cause umbilical cord compression, although these conditions do not always cause foetal circulation obstruction. The yolk sac and allantois grow into the umbilical cord, which includes their remnants.
    [Show full text]
  • Mesenchymal Stromal Cells from Wharton’S Jelly (WJ-Mscs): Coupling Their Hidden Differentiative Program to Their Frank Immunomodulatory Phenotype
    Chapter 20 Mesenchymal Stromal Cells From Wharton’s Jelly (WJ-MSCs): Coupling Their Hidden Differentiative Program to Their Frank Immunomodulatory Phenotype Rita Anzalone1, Radka Opatrilova2, Peter Kruzliak2, Aldo Gerbino1 and Giampiero La Rocca1 1University of Palermo, Palermo, Italy; 2University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic Chapter Outline Embryological Origin and Histology of Human Umbilical Cord 271 Wharton’s Jelly Mesenchymal Stromal Cells Can Be Molecular Features of Wharton’s Jelly Mesenchymal Stromal Differentiated to Hepatocyte-Like Cells 275 Cells 273 Immunomodulatory Activity of Wharton’s Jelly Mesenchymal Wharton’s Jelly Mesenchymal Stromal Cells Are Multipotent Stromal Cells 276 Stem Cells 273 Conclusion 277 Wharton’s Jelly Mesenchymal Stromal Cell Differentiation Acknowledgments 277 Toward Insulin-Producing Cells 274 References 277 EMBRYOLOGICAL ORIGIN AND HISTOLOGY OF HUMAN UMBILICAL CORD The first complete description of the umbilical cord (UC) tissue was given by Thomas Wharton, whose book “Adenografia sive glandularum totius corporis descriptio,” was published in London in 1656. This allowed to first define the features of the peculiar tissue constituting the bulk of the cord, now known as Wharton’s jelly (WJ), that is nowadays classified as a mature mucoid connective tissue. The embryological origin of the UC is quite complex because different extraembryonic tissues concur to its formation: extraembryonic mesoderm, extraembryonic endoderm, amnioblasts. There is a vast literature on the development of the UC tissues since the first phases of differentiation and specification of its constituents. With respect to the difficulties to work with human embryos, studies on animal models shed new light on the developmental origin of the cells found in mature UC.
    [Show full text]
  • The Human Umbilical Cord Stem Cells Improve the Viability of OA Degenerated Chondrocytes
    4474 MOLECULAR MEDICINE REPORTS 17: 4474-4482, 2018 The human umbilical cord stem cells improve the viability of OA degenerated chondrocytes HAO WANG1*, XU YAN2*, YUXIN JIANG3, ZHENG WANG2, YUFEI LI4 and QINGDONG SHAO2 1Teaching Center of Experimental Medicine, Shanghai Medical College, Fudan University, Shanghai 200032; 2Department of Orthopedics, 455th Hospital of PLA, Shanghai 200052; 3School of Medicine, Dalian Medical University, Dalian, Liaoning 116044; 4Department of Plastic Surgery, 455th Hospital of PLA, Shanghai 200052, P.R. China Received July 11, 2017; Accepted December 5, 2017 DOI: 10.3892/mmr.2018.8413 Abstract. Osteoarthritis (OA) affects a large number of hUC-MSCs have a predominant expression of stem cell patients; however, human umbilical cord stem cells exhibit ther- markers, while the hematopoietic and endothelial markers apeutic potential for treating OA. The aim of the present study were absent. Osteogenic, chondrogenic and adipogenic was to explore the interaction between human umbilical cord differentiation was observed in certain induction conditions. stem cells and degenerated chondrocytes, and the therapeutic hUC-MSCs improved the proliferation of OA chondrocytes potential of human umbilical cord stem cells on degenerated and downregulated the expression of inflammatory cytokines, chondrocytes. Human umbilical cord-derived mesenchymal while OA chondrocytes promoted MSCs to differentiate into stem cells (hUC-MSCs) were harvested from human umbilical chondrocytes. Taken together, the co-culture of hUC-MSCs cords,
    [Show full text]
  • Current Status and Future Prospects of Perinatal Stem Cells
    G C A T T A C G G C A T genes Review Current Status and Future Prospects of Perinatal Stem Cells Paz de la Torre and Ana I. Flores * Grupo de Medicina Regenerativa, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Avda. Cordoba s/n, 28041 Madrid, Spain; [email protected] * Correspondence: anaisabel.fl[email protected] or afl[email protected] Abstract: The placenta is a temporary organ that is discarded after birth and is one of the most promising sources of various cells and tissues for use in regenerative medicine and tissue engineering, both in experimental and clinical settings. The placenta has unique, intrinsic features because it plays many roles during gestation: it is formed by cells from two individuals (mother and fetus), contributes to the development and growth of an allogeneic fetus, and has two independent and interacting circulatory systems. Different stem and progenitor cell types can be isolated from the different perinatal tissues making them particularly interesting candidates for use in cell therapy and regenerative medicine. The primary source of perinatal stem cells is cord blood. Cord blood has been a well-known source of hematopoietic stem/progenitor cells since 1974. Biobanked cord blood has been used to treat different hematological and immunological disorders for over 30 years. Other perinatal tissues that are routinely discarded as medical waste contain non-hematopoietic cells with potential therapeutic value. Indeed, in advanced perinatal cell therapy trials, mesenchymal stromal cells are the most commonly used. Here, we review one by one the different perinatal tissues and the different perinatal stem cells isolated with their phenotypical characteristics and the preclinical uses of these cells in numerous pathologies.
    [Show full text]
  • Perinatal Derivatives: Where Do We Stand? a Roadmap of the Human Placenta and Consensus for Tissue
    fbioe-08-610544 December 14, 2020 Time: 16:16 # 1 REVIEW published: 17 December 2020 doi: 10.3389/fbioe.2020.610544 Perinatal Derivatives: Where Do We Stand? A Roadmap of the Human Placenta and Consensus for Tissue Edited by: Martijn van Griensven, and Cell Nomenclature Maastricht University, Netherlands Antonietta Rosa Silini1*†, Roberta Di Pietro2,3†, Ingrid Lang-Olip4†, Francesco Alviano5, Reviewed by: Asmita Banerjee6, Mariangela Basile2,3, Veronika Borutinskaite7, Günther Eissner8, Diana Farmer, 9 10 11 12 University of California System, Alexandra Gellhaus , Bernd Giebel , Yong-Can Huang , Aleksandar Janev , 12 4 13,14 United States Mateja Erdani Kreft , Nadja Kupper , Ana Clara Abadía-Molina , Aijun Wang, Enrique G. Olivares13,14,15, Assunta Pandolfi3,16, Andrea Papait1,17, Michela Pozzobon18, University of California, Davis, Carmen Ruiz-Ruiz13,14, Olga Soritau19, Sergiu Susman20,21, Dariusz Szukiewicz22, United States Adelheid Weidinger6, Susanne Wolbank6, Berthold Huppertz4† and Ornella Parolini17,23† *Correspondence: 1 Centro di Ricerca E. Menni, Fondazione Poliambulanza-Istituto Ospedaliero, Brescia, Italy, 2 Department of Medicine Antonietta Rosa Silini and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy, 3 StemTeCh Group, G. d’Annunzio [email protected] Foundation, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy, 4 Division of Cell Biology, Histology and Embryology, †These authors have contributed Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria,
    [Show full text]
  • A Roadmap of the Human Placenta and Consensus for Tissue and Cell
    fbioe-08-610544 December 14, 2020 Time: 16:16 # 1 REVIEW published: 17 December 2020 doi: 10.3389/fbioe.2020.610544 Perinatal Derivatives: Where Do We Stand? A Roadmap of the Human Placenta and Consensus for Tissue Edited by: Martijn van Griensven, and Cell Nomenclature Maastricht University, Netherlands Antonietta Rosa Silini1*†, Roberta Di Pietro2,3†, Ingrid Lang-Olip4†, Francesco Alviano5, Reviewed by: Asmita Banerjee6, Mariangela Basile2,3, Veronika Borutinskaite7, Günther Eissner8, Diana Farmer, 9 10 11 12 University of California System, Alexandra Gellhaus , Bernd Giebel , Yong-Can Huang , Aleksandar Janev , 12 4 13,14 United States Mateja Erdani Kreft , Nadja Kupper , Ana Clara Abadía-Molina , Aijun Wang, Enrique G. Olivares13,14,15, Assunta Pandolfi3,16, Andrea Papait1,17, Michela Pozzobon18, University of California, Davis, Carmen Ruiz-Ruiz13,14, Olga Soritau19, Sergiu Susman20,21, Dariusz Szukiewicz22, United States Adelheid Weidinger6, Susanne Wolbank6, Berthold Huppertz4† and Ornella Parolini17,23† *Correspondence: 1 Centro di Ricerca E. Menni, Fondazione Poliambulanza-Istituto Ospedaliero, Brescia, Italy, 2 Department of Medicine Antonietta Rosa Silini and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy, 3 StemTeCh Group, G. d’Annunzio [email protected] Foundation, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy, 4 Division of Cell Biology, Histology and Embryology, †These authors have contributed Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria,
    [Show full text]
  • Human Umbilical Cord Lining Cells As Novel Feeder Layer for Ex Vivo Cultivation of Limbal Epithelial Cells
    Nanotechnology and Regenerative Medicine Human Umbilical Cord Lining Cells as Novel Feeder Layer for Ex Vivo Cultivation of Limbal Epithelial Cells Leonard Pek-Kiang Ang,1,2 Preeti Jain,3 Toan Thang Phan,4 and Hasan Mahmud Reza3 1Lang Eye Centre, Singapore 2Singapore National Eye Centre, Singapore 3Department of Pharmaceutical Sciences, North South University (NSU), Dhaka, Bangladesh 4Department of Surgery and Faculty of Dentistry, National University of Singapore, Singapore Correspondence: Hasan Mahmud PURPOSE. To determine the effectiveness of human umbilical cord-derived mucin-expressing Reza, Department of Pharmaceutical cord lining epithelial cells (CLEC-muc) as feeder cells in a coculture system for the cultivation Sciences, North South University, of human limbal stem cells. Bashundhara, Dhaka 1229, Bangla- desh; METHODS. Human CLEC-muc were cultured in PTTe-1 medium and treated with mitomycin C [email protected]. to arrest their growth to make the feeder layer. Single-cell suspension of limbal cells was LP-KA and HMR contributed equally prepared from corneal rim collected from the Singapore Eye Bank. Limbal cells were cultured to the work presented here and in a coculture system with CLEC-muc as well as 3T3 cells as feeder layer. We compared the should therefore be regarded as colony-forming efficiency and cell morphology of the limbal cells cultured in the two different equivalent authors. feeder layers. We also compared the expression level of several putative limbal stem cell Submitted: October 29, 2014 markers, such as HES1, ABCG2, DNP63, and BMI1, in the cultured limbal cells by Accepted: May 5, 2015 immunostaining and quantitative (q)RT-PCR.
    [Show full text]