Editorial on Umbilical Cord Raajitha B* Department of Pharmacology, University of JNTU, Kakinada, Andhra Pradesh, India

Total Page:16

File Type:pdf, Size:1020Kb

Editorial on Umbilical Cord Raajitha B* Department of Pharmacology, University of JNTU, Kakinada, Andhra Pradesh, India Neonata f l OPEN ACCESS Freely available online l o B a io n l r o u g o y J Journal of Neonatal Biology ISSN: 2167-0897 Editorial Editorial on Umbilical Cord Raajitha B* Department of Pharmacology, University of JNTU, Kakinada, Andhra Pradesh, India INTRODUCTION of the umbilicus. The umbilical vein in the foetus proceeds to the liver's transverse fissure, where it breaks in two. The hepatic The umbilical cord (also known as the navel loop, birth cord, portal vein, which carries blood into the liver, is connected to one or funiculus umbilicalis) connects the developing embryo or of these branches. The second branch runs into the inferior vena foetus to the placenta in placental mammals. The umbilical cava, bypassing the liver which carries blood to the heart. cord is physiologically and genetically a part of the foetus during embryonic development and usually comprises two arteries and Problems and abnormalities one vein buried within Wharton's jelly in humans. The placenta provides oxygenated, nutrient-rich blood to the foetus through the A variety of anomalies can affect the umbilical cord, causing umbilical vein. The foetal heart, on the other hand, pumps low- complications for both the mother and the infant. oxygen, nutrient-depleted blood back to the placenta through the Entanglement of the cord, a knot in the cord, or a nuchal cord umbilical arteries. (the wrapping of the umbilical cord around the foetal neck) may Causes cause umbilical cord compression, although these conditions do not always cause foetal circulation obstruction. The yolk sac and allantois grow into the umbilical cord, which includes their remnants. By the fifth week of development, it has • Velamentous cord insertion evolved and has taken the place of the yolk sac as the embryo's • Single umbilical artery source of nutrients. The cord does not connect directly to the mother's circulatory system; rather, it connects to the placenta, • Umbilical cord prolapse which transports materials to and from the maternal blood • Vasa praevia without allowing direct mixing. Mesenchymal and epithelial stem cells can be found in the umbilical cord lining. Clinical trials have The umbilical cord in other animals used umbilical cord mesenchymal stem cells to treat osteoarthritis, autoimmune disorders, and a variety of other ailments. Their In certain mammals, such as cattle and sheep, the umbilical cord benefits include improved harvesting and multiplication, as has two separate umbilical veins. In the human umbilical cord, well as immunosuppressive properties that limit their use in there is just one umbilical vein. The mother will gnaw through the transplants. Wharton's jelly is a gelatinous material made primarily cord in certain species, separating the placenta from the offspring. of mucopolysaccharides that protects the blood vessels within The mother also eats the cord and placenta to provide nourishment the umbilical cord. It has one vein that transports oxygenated, and to eliminate tissues that may otherwise attract scavengers or nutrient-rich blood to the fetus and two arteries that transport predators. Hammerhead sharks, requiem sharks, and smooth- deoxygenated, nutrient-depleted blood away from the fetus. hound sharks are viviparous, meaning they have an umbilical cord Connection to fetal circulatory system attached totheir placenta. Animals that lay eggs tend to have a false umbilical cord that connects the embryo and yolk in a similar way The umbilical cord reaches the foetus from the belly, at the site to humans. Correspondence to: Raajitha, Department of Pharmacology, University of JNTU, Kakinada, Andhra Pradesh, India. E- mail: [email protected] Received: March 05, 2021, Accepted: March 16, 2021, Published: March 25, 2021 Citation: Raajitha B (2021) Editorial on Umbilical Cord. J Neonatal Biol. Vol: 10, Iss: 3 Copyright: © 2021 Raajitha B. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. J Neonatal Biol, Vol. 10 Iss. 3 No: 293 1.
Recommended publications
  • Histopathological Analysis of Patients with Abruptio
    HISTOPATHOLOGICAL ANALYSIS OF PATIENTS WITH ABRUPTIO PLACENTA IN A TERTIARY HEALTH CARE CENTRE Dissertation submitted in Partial fulfillment of the regulations required for the award of M.D. Degree in PATHOLOGY - BRANCH III THE TAMILNADU DR.M.G.R.MEDICAL UNIVERSITY CHENNAI MAY 2019 DECLARATION I hereby declare that the dissertation entitled “HISTOPATHOLOGICAL ANALYSIS OF PATIENTS WITH ABRUPTIO PLACENTA IN A TERTIARY HEALTH CARE CENTRE” is a bonafide research work done by me in the Department of Pathology, Coimbatore Medical College during the period from JANUARY 2017 TO JUNE 2018 under the guidance and supervision of Dr.G.S.THIRIVENI BALAJJI, M.D, Associate Professor, Department of Pathology, Coimbatore Medical College. This dissertation is submitted to The Tamilnadu Dr.MGR Medical University, Chennai towards the partial fulfillment of the requirement for the award of M.D., Degree (Branch III) in Pathology. I have not submitted this dissertation on any previous occasion to any University for the award of any Degree. Place : Coimbatore Dr. A. PETER SAMIDOSS Date : CERTIFICATE This is to certify that dissertation entitled “HISTOPATHOLOGICAL ANALYSIS OF PATIENTS WITH ABRUPTIO PLACENTA IN A TERTIARY HEALTH CARE CENTRE” is a bonafide work done by Dr. A. PETER SAMIDOSS, a postgraduate student in the Department of Pathology, Coimbatore Medical College, Coimbatore under guidance and supervision of Dr.G.S.THIRIVENI BALAJJI, M.D, Associate Professor, Department of Pathology, Coimbatore Medical College, Coimbatore in partial fulfillment of the regulations of the Tamil Nadu Dr. M. G. R. Medical University, Chennai towards the award of M.D. Degree (Branch III) in Pathology. Guide Head of the Department Dr.G.S.THIRIVENI BALAJJI, M.D, Prof.
    [Show full text]
  • Outcomes of Labour of Nuchal Cord
    wjpmr, 2020,6(8), 07-15 SJIF Impact Factor: 5.922 Research Article Ansam et al. WORLD JOURNAL OF PHARMACEUTICAL World Journal of Pharmaceutical and Medical Research AND MEDICAL RESEARCH ISSN 2455-3301 www.wjpmr.com WJPMR OUTCOMES OF LABOUR OF NUCHAL CORD Dr. Ansam Layth Abdulhameed*1 and Dr. Rozhan Yassin Khalil2 1Specialist Obstetrics & Gynaecology, Mosul, Iraq. 2Consultant Obstetrics & Gynaecology, Sulaymania, Iraq. *Corresponding Author: Dr. Ansam Layth Abdulhameed Specialist Obstetrics & Gynaecology, Mosul, Iraq. Article Received on 26/05/2020 Article Revised on 16/06/2020 Article Accepted on 06/07/2020 ABSTRACT Background: The nuchal cord is described as the umbilical cord around the fetal neck. It is classified as simple or multiple, loose or tight with the compression of the fetal neck. The term nuchal cord represents an umbilical cord that passes 360 degrees around the fetal neck. Objective: To find out perinatal outcomes in cases of labour of babies with nuchal cord and compared with other cases without nuchal cord. Patient and Methods: The prospective case-control study was conducted in maternity teaching hospital centre in Sulaimani / Kurdistan Region of Iraq, from June 2018 to April 2019. Cases of study divided into two groups. First group comprised of women in whom nuchal cord was present at the time of delivery they were labelled as cases. Second group was a control group composed of women in whom nuchal cord was absent at the time of delivery. Results: This study included (200) patients, (100) women with nuchal cord in labour. (59%) of the cases of nuchal cord in age group (20-29) years, (40%) of them were primigravida, delivery modes for women with nuchal cord were mainly normal vaginal delivery (76%) and cesarean section (24%).
    [Show full text]
  • The Therapeutic Potential, Challenges and Future Clinical Directions of Stem Cells from the Wharton’S Jelly of the Human Umbilical Cord
    Stem Cell Rev and Rep (2013) 9:226–240 DOI 10.1007/s12015-012-9418-z The Therapeutic Potential, Challenges and Future Clinical Directions of Stem Cells from the Wharton’s Jelly of the Human Umbilical Cord Ariff Bongso & Chui-Yee Fong Published online: 12 December 2012 # Springer Science+Business Media New York 2012 Abstract Mesenchymal stem cells (MSCs) from bone mar- attractive autologous or allogeneic agents for the treatment of row, adult organs and fetuses face the disadvantages of inva- malignant and non-malignant hematopoietic and non- sive isolation, limited cell numbers and ethical constraints hematopoietic diseases. This review critically evaluates their while embryonic stem cells (ESCs) and induced pluripotent therapeutic value, the challenges and future directions for their stem cells (iPSCs) face the clinical hurdles of potential immu- clinical application. norejection and tumorigenesis respectively. These challenges have prompted interest in the study and evaluation of stem Keywords Standardization of derivation protocols . cells from birth-associated tissues. The umbilical cord (UC) Properties and applications of Wharton’s jelly stem cells . has been the most popular. Hematopoietic stem cells (HSCs) Umbilical cord compartments harvested from cord blood have been successfully used for the treatment of hematopoietic diseases. Stem cell populations have also been reported in other compartments of the UC Introduction viz., amnion, subamnion, perivascular region, Wharton’sjelly, umbilical blood vessel adventia and endothelium. Differences Various types of stem cells have been isolated to date in the in stemness characteristics between compartments have been human from a variety of tissues including preimplantation reported and hence derivation protocols using whole UC embryos, fetuses, birth-associated tissues and adult organs.
    [Show full text]
  • Blood Volume in Newborn Piglets: Effects of Time of Natural Cord Rupture, Intra-Uterine Growth Retardation, Asphyxia, and Prostaglandin-Induced Prematurity
    Pediatr. Res. 15: 53-57 (1981) asphyxia natural cord rupture blood volume prostaglandin F 2 intra-uterine growth retardation Blood Volume in Newborn Piglets: Effects of Time of Natural Cord Rupture, Intra-Uterine Growth Retardation, Asphyxia, and Prostaglandin-Induced Prematurity 137 OTWIN LINDERKAMP, , KLAUS BETKE, MONIKA GUNTNER, GIOK H. JAP, KLAUS P. RIEGEL, AND KURT WALSER Department of Pediatrics and Department of Veterinary Gynecology, University of Munich, Munich, Federal Republic of Germany Summary (27, 29, 32). Placental transfusion is accelerated by keeping the infant below the placenta (19, 27), by uterine contractions (32), Blood volume (BV), red cell mass (RCM; Cr-51) and plasma 125 and by respiration of the newborn (19). Placental transfusion is volume ( 1-labeled albumin) were measured in lOS piglets from prevented by holding the infant above the placenta (19, 27), by 28 Utters shortly after birth. Spontaneous cord rupture in healthy maternal hypotension ( 17), by tight nuchal cord ( 13), and by acute piglets occurred during delivery (n • 25) or within 190 sec of birth intrapartum asphyxia (5, 12, 13). Intra-uterine asphyxia results in (n • 82). Spontaneous and induced delay of cord rupture resulted prenatal transfusion to the fetus (12, 13, 33). In a time-dependent Increase in BV and RCM. BV (x ± S.D.) at It is to be assumed that blood volume in newborn mammals is birth was 72.5 ± 10.5 ml/kg (RCM, 23.6 ± 4.6 ml/kg) In the 25 similarly influenced by placental transfusion as in the human piglets with prenatal cord rupture and 110.5 ± 12.9 ml/kg (RCM, neonate.
    [Show full text]
  • Is Nuchal Cord a Cause of Concern?
    ISSN: 2638-1575 Madridge Journal of Women’s Health and Emancipation Research Article Open Access Is Nuchal Cord a cause of concern? Surekha Tayade1*, Jaya Kore1, Atul Tayade2, Neha Gangane1, Ketki Thool1 and Jyoti Borkar1 1Department of Obstetrics and Gynecology, Mahatma Gandhi Institute of Medical Sciences, Sewagram, India 2Department of Radiodiagnosis, Mahatma Gandhi Institute of Medical Sciences, Sewagram, India Article Info Abstract *Corresponding author: Context: The controversy about whether nuchal cord is a cause of concern and its Surekha Tayade adverse effect on perinatal outcome still persists. Authors express varying views and Professor Department of Obstetrics and Gynecology hence managing pregnancy with cord around the neck has its own concerns. Thus study Mahatma Gandhi Institute of Medical was carried out to find out the incidence of nuchal cord and its implications. Sciences Sewagram, 442102 Method: This was a prospective, cross sectional, comparative study carried out in the India Kasturba Hospital of MGIMS, Sewagram a rural medical tertiary care institute. All Tel: +917887519832 deliveries over a period of one year, were enrollled and studied for nuchal cord, tight or E-mail: [email protected] loose cord, number of turns, fetal heart rate irregulaties, pregnancy and perinatal Received: May 15, 2018 outcome. Accepted: June 19, 2018 Results: Total women with nuchal cord in labour room were 1116 (2.56%) of which Published: June 23, 2018 85.21 percent had single turn around the babies neck. Most of the babies ( 77.96 %) had Citation: Tayade S, Kore J, Tayade A, Gangane a loose nuchal cord, however 22.04 percent had a tight cord.
    [Show full text]
  • Messages from the Placentae Across Multiple Species a 50 Years
    Placenta 84 (2019) 14–27 Contents lists available at ScienceDirect Placenta journal homepage: www.elsevier.com/locate/placenta Messages from the placentae across multiple species: A 50 years exploration T Hiroaki Soma Saitama Medical University, Japan ARTICLE INFO ABSTRACT Keywords: This review explores eight aspects of placentation in multiple mammalian. Gestational trophoblastic disease 1) Specialities of gestational trophoblastic disease. SUA(Single umbilical artery) 2) Clinical significance of single umbilical artery (SUA) syndrome. DIC(Disseminated intravascular coagulation) in 3) Pulmonary trophoblast embolism in pregnant chinchillas and DIC in pregnant giant panda. giant panda 4) Genetics status and placental behaviors during Japanese serow and related antelopes. Placentation in Japanese serow 5) Specific living style and placentation of the Sloth and Proboscis monkey. Hydatidiform mole in chimpanzee Placentation in different living elephant 6) Similarities of placental structures between human and great apes. Manatee and hyrax 7) Similarities of placental forms in elephants, manatees and rock hyrax with different living styles. Specific placental findings of Himalayan people 8) Specialities of placental pathology in Himalayan mountain people. Conclusions: It was taught that every mammalian species held on placental forms applied to different environ- mental life for their infants, even though their gestational lengths were different. 1. Introduction of effective chemotherapeutic agents. In 1959, I was fortunate tore- ceive an invitation from Prof. Kurt Benirschke at the Boston Lying-in Last October, Scientific American published a special issue about a Hospital. Before that, I had written to Prof. Arthur T. Hertig, Chairman baby's first organ, the placenta [1]. It is full of surprises and amazing of Pathology, Harvard Medical School, asking to study human tropho- science.
    [Show full text]
  • Low-Lying Placenta
    LOW- LYING PLACENTA LOW-LYING PLACENTA WHAT IS PLACENTA PRAEVIA? The placenta develops along with the baby in the uterus (womb) during pregnancy. It connects the baby with the mother’s blood system and provides the baby with its source of oxygen and nourishment. The placenta is delivered after the baby and is also called the afterbirth. In some women the placenta attaches low in the uterus and may be near, or cover a part, or lie over the cervix (entrance to the womb). If it is shown in early ultrasound scans, it is called a low-lying placenta. In most cases, the placenta moves upwards as the uterus enlarges. For some women the placenta continues to lie in the lower part of the uterus in the last months of pregnancy. This condition is known as placenta praevia. If the placenta covers the cervix, this is known as major placenta praevia. Normal Placenta Placenta Praevia Major Placenta Praevia WHAT ARE THE RISKS TO MY BABY AND ME? When the placenta is in the lower part of the womb, there is a risk that you may bleed in the second half of pregnancy. Bleeding from placenta praevia can be heavy, and so put the life of the mother and baby at risk. However, deaths from placenta praevia are rare. You are more likely to need a caesarean section because the placenta is in the way of your baby being born. HOW IS PLACENTA PRAEVIA DIAGNOSED? A low-lying placenta may be suspected during the routine 20-week ultrasound scan. Most women who have a low-lying placenta at the routine 20-week scan will not go on to have a low-lying placenta later in the pregnancy – only 1 in 10 go on to have a placenta praevia.
    [Show full text]
  • FASD Effects of Alcohol on a Fetus
    EFFECTS OF ALCOHOL ON A FETUS “Of all the substances of abuse (including cocaine, heroin, and marijuana), alcohol produces by far the most serious neurobehavioral effects in the fetus.” —Institute of Medicine Report to Congress, 19961 Prenatal exposure to alcohol can damage a fetus at any time, causing problems that persist throughout the individual’s life. There is no known safe level of alcohol use in pregnancy. WHAT IS THE SCOPE OF THE PROBLEM? identified in virtually every part of the body, including the brain, face, eyes, ears, heart, kidneys, and bones. No Alcohol is one of the most dangerous teratogens, which single mechanism can account for all the problems that are substances that can damage a developing fetus.1 Every alcohol causes. Rather, alcohol sets in motion many time a pregnant woman has a drink, her unborn child processes at different sites in the developing fetus: has one, too. Alcohol, like carbon monoxide from cigarettes, passes easily through the placenta from the • Alcohol can trigger cell death in a number of ways, mother's bloodstream into her baby's blood (See Figure causing different parts of the fetus to develop abnormally. 1)—and puts her fetus at risk of having a fetal alcohol • Alcohol can disrupt the way nerve cells develop, travel spectrum disorder (FASD). The blood alcohol level to form different parts of the brain, and function. (BAC) of the fetus becomes equal to or greater than the blood alcohol level of the mother. Because the fetus • By constricting the blood vessels, alcohol interferes with cannot break down alcohol the way an adult can, its BAC blood flow in the placenta, which hinders the delivery 2 remains high for a longer period of time.
    [Show full text]
  • The Effect of Nuchal Cord on Perinatal Mortality and Long-Term Offspring Morbidity
    Journal of Perinatology https://doi.org/10.1038/s41372-019-0511-x ARTICLE The effect of nuchal cord on perinatal mortality and long-term offspring morbidity 1 1 2 1 Roee Masad ● Gil Gutvirtz ● Tamar Wainstock ● Eyal Sheiner Received: 28 May 2019 / Revised: 11 August 2019 / Accepted: 16 August 2019 © The Author(s), under exclusive licence to Springer Nature America, Inc. 2019 Abstract Objective To evaluate perinatal and long-term cardiovascular and respiratory morbidities of children born with nuchal cord. Study design A large population-based cohort analysis of singleton deliveries was conducted. Maternal and birth char- acteristics, as well as cardiovascular and respiratory morbidity incidence were evaluated. Kaplan–Meier survival curves were used to compare cumulative hospitalization incidence between groups. Cox regression models were used to control for possible confounders and follow-up length. Results 243,682 deliveries were included. Of them, 34,332 (14.1%) were diagnosed with nuchal cord. Perinatal mortality rate was comparable between groups (0.5 vs. 0.6%, p = 0.16). Kaplan–Meier survival curves demonstrated no significant p = p = 1234567890();,: 1234567890();,: differences in cumulative cardiovascular or respiratory morbidity incidence between groups (log rank 0.69 and 0.10, respectively). Cox regression models reaffirmed a comparable risk for hospitalization between groups (aHR = 0.99 (95% CI 0.85–1.14, p = 0.87) and aHR = 0.97 (95% CI 0.92–1.02, p = 0.28). Conclusions Nuchal cord is not associated with higher rate of perinatal mortality nor long-term cardiorespiratory morbidity. Introduction Controversy exists in the literature regarding the sig- nificance of nuchal cord.
    [Show full text]
  • A Guide to Obstetrical Coding Production of This Document Is Made Possible by Financial Contributions from Health Canada and Provincial and Territorial Governments
    ICD-10-CA | CCI A Guide to Obstetrical Coding Production of this document is made possible by financial contributions from Health Canada and provincial and territorial governments. The views expressed herein do not necessarily represent the views of Health Canada or any provincial or territorial government. Unless otherwise indicated, this product uses data provided by Canada’s provinces and territories. All rights reserved. The contents of this publication may be reproduced unaltered, in whole or in part and by any means, solely for non-commercial purposes, provided that the Canadian Institute for Health Information is properly and fully acknowledged as the copyright owner. Any reproduction or use of this publication or its contents for any commercial purpose requires the prior written authorization of the Canadian Institute for Health Information. Reproduction or use that suggests endorsement by, or affiliation with, the Canadian Institute for Health Information is prohibited. For permission or information, please contact CIHI: Canadian Institute for Health Information 495 Richmond Road, Suite 600 Ottawa, Ontario K2A 4H6 Phone: 613-241-7860 Fax: 613-241-8120 www.cihi.ca [email protected] © 2018 Canadian Institute for Health Information Cette publication est aussi disponible en français sous le titre Guide de codification des données en obstétrique. Table of contents About CIHI ................................................................................................................................. 6 Chapter 1: Introduction ..............................................................................................................
    [Show full text]
  • Antepartum Haemorrhage
    OBSTETRICS AND GYNAECOLOGY CLINICAL PRACTICE GUIDELINE Antepartum haemorrhage Scope (Staff): WNHS Obstetrics and Gynaecology Directorate staff Scope (Area): Obstetrics and Gynaecology Directorate clinical areas at KEMH, OPH and home visiting (e.g. Community Midwifery Program) This document should be read in conjunction with this Disclaimer Contents Initial management: MFAU APH QRG ................................................. 2 Subsequent management of APH: QRG ............................................. 5 Management of an APH ........................................................................ 7 Key points ............................................................................................................... 7 Background information .......................................................................................... 7 Causes of APH ....................................................................................................... 7 Defining the severity of an APH .............................................................................. 8 Initial assessment ................................................................................................... 8 Emergency management ........................................................................................ 9 Maternal well-being ................................................................................................. 9 History taking .......................................................................................................
    [Show full text]
  • Glossary of Common MCH Terms and Acronyms
    Glossary of Common MCH Terms and Acronyms General Terms and Definitions Term/Acronym Definition Accountable Care Organizations that coordinate and provide the full range of health care services for Organization individuals. The ACA provides incentives for providers who join together to form such ACO organizations and who agree to be accountable for the quality, cost, and overall care of their patients. Adolescence Stage of physical and psychological development that occurs between puberty and adulthood. The age range associated with adolescence includes the teen age years but sometimes includes ages younger than 13 or older than 19 years of age. Antepartum fetal Fetal death occurring before the initiation of labor. death Authorization An act of a legislative body that establishes government programs, defines the scope of programs, and sets a ceiling for how much can be spent on them. Birth defect A structural abnormality present at birth, irrespective of whether the defect is caused by a genetic factor or by prenatal events that are not genetic. Cost Sharing The amount an individual pays for health services above and beyond the cost of the insurance coverage premium. This includes co-pays, co-insurance, and deductibles. Crude birth rate Number of live births per 1000 population in a given year. Birth spacing The time interval from one child’s birth until the next child’s birth. It is generally recommended that at least a two-year interval between births is important for maternal and child health and survival. BMI Body mass index (BMI) is a measure of body weight that takes into account height.
    [Show full text]