Moonlight and Shadows © Bob Field 2006 How Bright Is the Moon?

Total Page:16

File Type:pdf, Size:1020Kb

Moonlight and Shadows © Bob Field 2006 How Bright Is the Moon? Moonlight and Shadows © Bob Field 2006 How bright is the moon? Why does its brightness vary so much with its phase? What is the ash gray light of the moon? What is the moon illusion? Why do we see only one side of the moon? Bob Field 1998 Location of Moon During Each Phase waxing Q1 G C Sunlight Full Earth New G C Q3 waning drbobfield©2006 waxing Chronological Phases of the Moon 7 10 4 0 15 age in days 1998 only age month + day 26 20 1999 add 11 23 2000 add 22 if > 30 waning subtract 30 When & Where does the Moon Wax & Wane? Waxing Phases Waning Phases S full new new full moon n moon moon n moon Dusk Dawn not to scale S What can you see at 12 o’clock? Dim Phases Bright Phases waxing n waning waning n waxing Noon Midnight not to scale S Waxing Gibbous and Crescent Phases The waning gibbous Moon’s face has turned 120 in about eight hours 6 hours before sunrise 2 hours after sunrise also note that the blue sky is brighter than the Moon’s dark ‘seas’ 12º 7 6 5 4 3 2 1 0 Daily Growth of the Waxing Moon Days 1-7 7 6 5 4 3 2 1 The crescent and nearly full moon phases linger because the terminator appears to move slowly near the moon’s limbs 3 am Photo 2 Days After Waning Last Quarter Moon Predawn Photo 4½ Days Before Waning Crescent Becomes New Moon Predawn Photo 1½ Days Before Waning Crescent Becomes New Moon Dusk Photo 3 Days Before Waxing Gibbous Becomes Full Moon Unlike the sun, the moon can hide from view easily 1 - below the horizon 2 - behind a hill or tree 3 - above the clouds or vapor 4 - among the clouds 5 - within 30 of the glare of the sun 6 - near horizon where light scatter is highest 7 - in plain view overhead 8 - in your blind spot or off your fovea the visible moon changes shape, brightness, height in sky, location, rise & set time The new moon occasionally reveals its presence dramatically with a solar eclipse S S S partial total annular duration is less than 8 minutes because moon lags sun by one diameter per hour totality is highly localized on Earth not to scale Angular diameter of Moon & Sun are each ½. The sun is 400 times larger and 400 times more distant 8000 than the moon. Is this a coincidence? 800,000 Why are solar eclipses rare? penumbra umbra sun moon If you were on the Moon, you wouldn’t see much change Earth A more accurate animation would show the Moon and its shadows moving not to scale How long is a Month? sidereal M one revolution M 27.3 days Earth M Earth synodal 1 1/12 revolutions 29.5 days Moon lags sun by 24 hours / 29.5 days or ~50 minutes / day or ~12 / day S not to scale Same hemisphere always faces earth How do we know? Is this a coincidence? Exceptions are called librations: motions of the earth and moon allow us to peek at 18% of back side How Bright is the Full Moon? Moon reflects about 7% of incident sunlight over a large area of space. The moon is darker than black velvet. The sun appears to be half a million times brighter than the full moon. What color is the sky at night? The stars are visible at night. The sky is blue because the moon (above the scene) is full. The stars produce trails during a long time exposure. The sky is blue because the moon (not within the scene) is full. How Bright is the Moon? reflectance of surface features varies from 5% to 15% What color is the Moon? If the Moon Were Made of Green Cheese color digitally altered Full Moon around Midnight Flattened Full Moon Setting in West Before Sunrise How Bright is the Moon? one stellar magnitude is a change 150M sun from earth -27 of 2.5 in apparent brightness 10M skylight -24 5 magnitudes = 100x change 25K earth from moon -18 300 full moon -13 200 twilight -15 to -9 30 half full moon -10.5 1 crescent -8 to -5? 1 clear night sky -7 0.1 Venus -4.3 0.03 Mars -2.8 0.02 Jupiter -2.5 0.01 Sirius -1.46 0.001 Betelgeuse +0.7 0.0001 average star +3 0.0001 lunar eclipse +2 to +4 The Ash Gray Light of the Moon Bob Field 1999 The Earth T T T as seen from the moon T T T Night and Day: T T The Earth goes through phases like the Moon, but opposite. The Earth is only visible from the near side of the Moon. Its location in the lunar sky varies greatly with lunar vantage point, but barely changes over time. This is what an impending lunar eclipse looks like from the near side of the Moon Sun moves Earth is one nearly diameter S stationary per hour and dark Our lunar eclipse is a solar eclipse for the Moon. Lunar surface temperatures drop 150 C in one hour. not to scale A partial lunar eclipse can last four hours penumbra full moon Earth umbra sunlight The Earth’s shadow is moving faster than the Moon The Moon may appear reddish due to refracted twilight passing through the Earth’s atmosphere to the Moon not to scale S S S S S S S S S S S S S S The Sun S S S S S S as seen from the moon S S S S S S S S S S S S S S S S The lunar day is S S S S S ~30 days long S S S S S because the Moon S S S rotates once in ~30 S S S S S S S S days about its axis S S S S S S S S S S S S Sun moves ~ one diameter per hour not to scale Moonlight phases: sunlight intensity varies with incident angle brightness depends on observer’s location features: composition: lighter rays & darker maria structure: craters & mountains origin: planetesimal impact theory 4.5 bya Origin of the Moon unusually large relative to its planet 1990’s impact theory - glancing blow 4.5 bya ejection by planetesimal approximately size of Mars from based on size, density, lunar explorations earth capture Science Year 2000 Year Science co-formation planetesimal impact Earth Story Lunar Features Selenography craters maria rays albedo true light regions have lower density materials like the calcium and aluminum silicates in the earth’s crust low gravity due to size and density cannot hold atmosphere or surface water minimal erosion forces no biological agents craters persist unlike on earth observer The view from the crater floor may be like a flat plain The moon is small and some craters are large. The rim of the crater is beyond the horizon. Microstructure & Composition of the Moon most fine grains and dust are bright because of light scattering Moon dust has dark iron and titanium coatings because meteorites deposit chemicals and solar wind sputters lighter atoms “gardening” effect on the moon: meteorites have tilled the surface to about 20 cm (at the rate of 1 cm per 10 million years) craters may be meteoric or plutonic (volcanic) darker regions like maria have heavier basaltic materials such as iron and magnesium silicates which come from lava flows and have smoother appearance opposition effect the brightness of the full moon reveals the extreme roughness of the the moon The Moon is NOT a mirror ! The surface is not smooth, so sunlight scatters rather than specularly reflect. The surface is not an ideal spherical shape, so shadows are cast by irregularities like craters. How Bright is the Earth (as seen on the moon)? Albedo of Earth averages 35% mostly due to clouds, vs. 7% for Moon. T T T T T Area of the Earth is T T 16 times the Moon. T Full earth shines on moon 5x16=80 times as bright as the full moon on earth, or 6000 times less bright than the sun. M longitudinal librations slow Moon’s orbit is not quite circular. M M It speeds up as it nears Earth. But Moon rotates at constant rate on Earth its axis. fast M not to scale diurnal librations earth’s radius is 1/60th orbital radius dusk observation n M Earth n dawn observation not to scale latitudinal librations 6.5 tilt of lunar axis n n EarthH new full moon moon what about tilted plane of moon’s orbit? not to scale Why does the Moon appear Larger near the horizon? The moon is actually slightly farther away (2%) from the observer when it is near the horizon, so it should appear smaller. n Also refraction by the atmosphere flattens the moon by up to 20%. How high in the sky is the Moon? summer full full M M M M M S moon M moon (winter) Q3 winter Q1 (summer) (spring) (spring) not to scale New moon and crescents are near the sun all year. Full moon appears to be in the opposite season. Quarter moons are off by ± a quarter cycle. The Full Moon Rises at Sunset & Sets at Sunrise same as sun solstices and equinoxes 30 N Winter Spring Summer Fall New 7 am SE 6 am E 5 am NE 6 am E Moon 5 pm SW 6 pm W 7 pm NW 6 pm W Full 5 pm NE 6 pm E 7 pm SE 6 pm E Moon 7 am NW 6 am W 5 am SW 6 am W opposite of sun approximate sun time (add 20 - 30 minutes to moonset due to moon’s orbital speed) When Q1 reaches its daily apex, the Earth has advanced a quarter rotation into the next “season”.
Recommended publications
  • New Candidate Pits and Caves at High Latitudes on the Near Side of the Moon
    52nd Lunar and Planetary Science Conference 2021 (LPI Contrib. No. 2548) 2733.pdf NEW CANDIDATE PITS AND CAVES AT HIGH LATITUDES ON THE NEAR SIDE OF THE MOON. 1,2 1,3,4 1 2 Wynnie Avent II and Pascal Lee ,​ S​ ETI Institute, Mountain View, VA, USA, V​ irginia Polytechnic Institute ​ ​ ​ 3 4 ​ and State University Blacksburg, VA, USA. M​ ars Institute, N​ ASA Ames Research Center. ​ ​ Summary: 35 new candidate pits are identified ​ in Anaxagoras and Philolaus, two high-latitude impact structures on the near side of the Moon. Introduction: Since the discovery in 2009 of the Marius Hills Pit (Haruyama et al. 2009), a.k.a. the “Haruyama Cavern”, over 300 hundred pits have been identified on the Moon (Wagner & Robinson 2014, Robinson & Wagner 2018). Lunar pits are small (10 to 150 m across), steep-walled, negative relief features (topographic depressions), surrounded by funnel-shaped outer slopes and, unlike impact craters, no raised rim. They are interpreted as collapse features resulting from the fall of the roof of shallow (a few Figure 1: Location of studied craters (Polar meters deep) subsurface voids, generally lava cavities. projection). Although pits on the Moon are found in mare basalt, impact melt deposits, and highland terrain of the >300 Methods: Like previous studies searching for pits pits known, all but 16 are in impact melts (Robinson & (Wagner & Robinson 2014, Robinson & Wagner 2018, Wagner 2018). Many pits are likely lava tube skylights, Lee 2018a,b,c), we used imaging data collected by the providing access to underground networks of NASA Lunar Reconnaissance Orbiter (LRO) Narrow tunnel-shaped caves, including possibly complex Angle Camera (NAC).
    [Show full text]
  • Moons Phases and Tides
    Moon’s Phases and Tides Moon Phases Half of the Moon is always lit up by the sun. As the Moon orbits the Earth, we see different parts of the lighted area. From Earth, the lit portion we see of the moon waxes (grows) and wanes (shrinks). The revolution of the Moon around the Earth makes the Moon look as if it is changing shape in the sky The Moon passes through four major shapes during a cycle that repeats itself every 29.5 days. The phases always follow one another in the same order: New moon Waxing Crescent First quarter Waxing Gibbous Full moon Waning Gibbous Third (last) Quarter Waning Crescent • IF LIT FROM THE RIGHT, IT IS WAXING OR GROWING • IF DARKENING FROM THE RIGHT, IT IS WANING (SHRINKING) Tides • The Moon's gravitational pull on the Earth cause the seas and oceans to rise and fall in an endless cycle of low and high tides. • Much of the Earth's shoreline life depends on the tides. – Crabs, starfish, mussels, barnacles, etc. – Tides caused by the Moon • The Earth's tides are caused by the gravitational pull of the Moon. • The Earth bulges slightly both toward and away from the Moon. -As the Earth rotates daily, the bulges move across the Earth. • The moon pulls strongly on the water on the side of Earth closest to the moon, causing the water to bulge. • It also pulls less strongly on Earth and on the water on the far side of Earth, which results in tides. What causes tides? • Tides are the rise and fall of ocean water.
    [Show full text]
  • Captain Vancouver, Longitude Errors, 1792
    Context: Captain Vancouver, longitude errors, 1792 Citation: Doe N.A., Captain Vancouver’s longitudes, 1792, Journal of Navigation, 48(3), pp.374-5, September 1995. Copyright restrictions: Please refer to Journal of Navigation for reproduction permission. Errors and omissions: None. Later references: None. Date posted: September 28, 2008. Author: Nick Doe, 1787 El Verano Drive, Gabriola, BC, Canada V0R 1X6 Phone: 250-247-7858, FAX: 250-247-7859 E-mail: [email protected] Captain Vancouver's Longitudes – 1792 Nicholas A. Doe (White Rock, B.C., Canada) 1. Introduction. Captain George Vancouver's survey of the North Pacific coast of America has been characterized as being among the most distinguished work of its kind ever done. For three summers, he and his men worked from dawn to dusk, exploring the many inlets of the coastal mountains, any one of which, according to the theoretical geographers of the time, might have provided a long-sought-for passage to the Atlantic Ocean. Vancouver returned to England in poor health,1 but with the help of his brother John, he managed to complete his charts and most of the book describing his voyage before he died in 1798.2 He was not popular with the British Establishment, and after his death, all of his notes and personal papers were lost, as were the logs and journals of several of his officers. Vancouver's voyage came at an interesting time of transition in the technology for determining longitude at sea.3 Even though he had died sixteen years earlier, John Harrison's long struggle to convince the Board of Longitude that marine chronometers were the answer was not quite over.
    [Show full text]
  • Lab # 12: Surface of the Moon
    Name: Date: 12 Surface of the Moon 12.1 Introduction One can learn a lot about the Moon by looking at the lunar surface. Even before astronauts landed on the Moon, scientists had enough data to formulate theories about the formation and evolution of the Earth’s only natural satellite. However, since the Moon rotates once for every time it orbits around the Earth, we can only see one side of the Moon from the surface of the Earth. Until spacecraft were sent to orbit the Moon, we only knew half the story. The type of orbit our Moon makes around the Earth is called a synchronous orbit. This phenomenon is shown graphically in Figure 12.1 below. If we imagine that there is one large mountain on the hemisphere facing the Earth (denoted by the small triangle on the Moon), then this mountain is always visible to us no matter where the Moon is in its orbit. As the Moon orbits around the Earth, it turns slightly so we always see the same hemisphere. Figure 12.1: The Moon’s synchronous orbit. (Not drawn to scale.) On the Moon, there are extensive lava flows, rugged highlands and many impact craters of all sizes. The overlapping of these features implies relative ages. Because of the lack of ongoing mountain building processes, or weathering by wind and water, the accumulation of volcanic processes and impact cratering is readily visible. Thus by looking at the images of the Moon, one can trace the history of the lunar surface. 129 Lab Goals: to discuss the Moon’s terrain, craters, and the theory of relative ages; to • use pictures of the Moon to deduce relative ages and formation processes of surface features Materials: Moon pictures, ruler, calculator • 12.2 Craters and Maria A crater is formed when a meteor from space strikes the lunar surface.
    [Show full text]
  • Glossary Glossary
    Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts.
    [Show full text]
  • The Mathematics of the Chinese, Indian, Islamic and Gregorian Calendars
    Heavenly Mathematics: The Mathematics of the Chinese, Indian, Islamic and Gregorian Calendars Helmer Aslaksen Department of Mathematics National University of Singapore [email protected] www.math.nus.edu.sg/aslaksen/ www.chinesecalendar.net 1 Public Holidays There are 11 public holidays in Singapore. Three of them are secular. 1. New Year’s Day 2. Labour Day 3. National Day The remaining eight cultural, racial or reli- gious holidays consist of two Chinese, two Muslim, two Indian and two Christian. 2 Cultural, Racial or Religious Holidays 1. Chinese New Year and day after 2. Good Friday 3. Vesak Day 4. Deepavali 5. Christmas Day 6. Hari Raya Puasa 7. Hari Raya Haji Listed in order, except for the Muslim hol- idays, which can occur anytime during the year. Christmas Day falls on a fixed date, but all the others move. 3 A Quick Course in Astronomy The Earth revolves counterclockwise around the Sun in an elliptical orbit. The Earth ro- tates counterclockwise around an axis that is tilted 23.5 degrees. March equinox June December solstice solstice September equinox E E N S N S W W June equi Dec June equi Dec sol sol sol sol Beijing Singapore In the northern hemisphere, the day will be longest at the June solstice and shortest at the December solstice. At the two equinoxes day and night will be equally long. The equi- noxes and solstices are called the seasonal markers. 4 The Year The tropical year (or solar year) is the time from one March equinox to the next. The mean value is 365.2422 days.
    [Show full text]
  • Lunariceprospecting V1.0.Pdf
    WHITE PAPER Ice Prospecting: Your Guide to Getting Rich on the Moon Version 1.0 // May 2019 // This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License. Kevin M. Cannon ([email protected]) Introduction Water ice has been detected indirectly and directly within permanently shadowed regions (PSRs) at both poles of the Moon. This ice is stable against sublimation on billion-year timescales, and represents an attractive target for mining to produce oxygen and hydrogen for propellant, and water and oxygen for human life support. However, the mere presence of ice at the poles does not provide much information: Where is it exactly? How much is there? Is it thick layers of pure ice, or small amounts mixed in the soil? How hard is it to excavate? This white paper attempts to offer answers to these questions based on interpretations of the best data currently available. New prospecting missions in the future–particularly landers and Figure 1. Ice accumulation mechanisms. rovers–will continue to change and improve our understanding of ice on the Moon. This guide will be updated on an ongoing expected to be old. (2) Solar wind. The solar wind is a stream of basis to incorporate new findings. electrons, protons and other particles that are constantly colliding with the unprotected surface of the Moon. This Why is there ice on the Moon? process can create individual OH and H2O molecules that are Two factors create conditions that allow ice to accumulate able to ballistically hop across the surface, eventually migrating and persist at the lunar poles: (1) the Moon has a very small axial to the PSRs.
    [Show full text]
  • The Moon Illusion and Size–Distance Scaling—Evidence for Shared Neural Patterns
    The Moon Illusion and Size–Distance Scaling—Evidence for Shared Neural Patterns Ralph Weidner1*, Thorsten Plewan1,2*, Qi Chen1, Axel Buchner3, Peter H. Weiss1,4, and Gereon R. Fink1,4 Abstract ■ A moon near to the horizon is perceived larger than a moon pathway areas including the lingual and fusiform gyri. The func- at the zenith, although—obviously—the moon does not change tional role of these areas was further explored in a second ex- its size. In this study, the neural mechanisms underlying the periment. Left V3v was found to be involved in integrating “moon illusion” were investigated using a virtual 3-D environ- retinal size and distance information, thus indicating that the ment and fMRI. Illusory perception of an increased moon size brain regions that dynamically integrate retinal size and distance was associated with increased neural activity in ventral visual play a key role in generating the moon illusion. ■ INTRODUCTION psia; Sperandio, Kaderali, Chouinard, Frey, & Goodale, Although the moon does not change its size, the moon 2013; Enright, 1989; Roscoe, 1989). near to the horizon is perceived as relatively larger com- One concept of size constancy scaling implies that the pared with when it is located at the zenith. This phenome- retinal image size and the estimated distance of an object non is called the “moon illusion” and is one of the oldest are conjointly considered, thereby enabling constant size visual illusions known (Ross & Plug, 2002). Despite exten- perception of objects at different distances (Kaufman & sive research, no consensus has been reached regarding Kaufman, 2000). With respect to the moon illusion, appar- the underlying perceptual and neural correlates (Ross & ent distance theories, for example, propose that “the per- Plug, 2002; Hershenson, 1989).
    [Show full text]
  • Summer ASTRONOMICAL CALENDAR
    2020 Buhl Planetarium & Observatory ASTRONOMICAL CALENDAR Summer JUNE 2020 1 Mon M13 globular cluster well-placed for observation (Use telescope in Hercules) 3 Wed Mercury at highest point in evening sky (Look west-northwest at sunset) 5 Fri Full Moon (Strawberry Moon) 9 Tues Moon within 3 degrees of both Jupiter and Saturn (Look south before dawn) 13 Sat Moon within 3 degrees of Mars (Look southeast before dawn) Moon at last quarter phase 20 Sat Summer solstice 21 Sun New Moon 27 Sat Bootid meteor shower peak (Best displays soon after dusk) 28 Sun Moon at first quarter phase JULY 2020 5 Sun Full Moon (Buck Moon) Penumbral lunar eclipse (Look south midnight into Monday) Moon within 2 degrees of Jupiter (Look south midnight into Monday) 6 Mon Moon within 3 degrees of Saturn (Look southwest before dawn) 8 Wed Venus at greatest brightness (Look east at dawn) 11 Sat Moon within 2 degrees of Mars (Look south before dawn) 12 Sun Moon at last quarter phase 14 Tues Jupiter at opposition (Look south midnight into Wednesday) 17 Fri Moon just over 3 degrees from Venus (Look east before dawn) 20 Mon New Moon; Saturn at opposition (Look south midnight into Tuesday) 27 Mon Moon at first quarter phase 28 Tues Piscis Austrinid meteor shower peak (Best displays before dawn) 29 Wed Southern Delta Aquariid and Alpha Capricornid meteor showers peak AUGUST 2020 1 Sat Moon within 2 degrees of Jupiter (Look southeast after dusk) 2 Sun Moon within 3 degrees of Saturn (Look southeast after dusk) 3 Mon Full Moon (Sturgeon Moon) 9 Sun Conjunction of the Moon and
    [Show full text]
  • Rare Astronomical Sights and Sounds
    Jonathan Powell Rare Astronomical Sights and Sounds The Patrick Moore The Patrick Moore Practical Astronomy Series More information about this series at http://www.springer.com/series/3192 Rare Astronomical Sights and Sounds Jonathan Powell Jonathan Powell Ebbw Vale, United Kingdom ISSN 1431-9756 ISSN 2197-6562 (electronic) The Patrick Moore Practical Astronomy Series ISBN 978-3-319-97700-3 ISBN 978-3-319-97701-0 (eBook) https://doi.org/10.1007/978-3-319-97701-0 Library of Congress Control Number: 2018953700 © Springer Nature Switzerland AG 2018 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.
    [Show full text]
  • Moon Phases Calendar 2021
    jpl.nasa.gov/edu F F F F F M F E E M E E F E E M A B B B F B A E B M B A J R E M 2 B R 2 A A 2 1 R J B 1 8 M 0 1 7 9 A 5 N R A 2 5 6 - J 1 - M R A - 1 4 2 N - - A M 2 1 1 1 1 6 3 R J 9 8 A M 2 N 0 4 2 A A 2 R - - 1 J A 2 2 N 8 R F A 2 R A 2 0 2 1 E P - J N 4 2 8 2 2 - A A 2 B R 0 9 7 P J N 1 7 4 - 3 R A 3 A A - N 1 1 P 5 J P 2 R 9 - A A R 1 7 P 0 N 1 - 3 R J 1 1 A 1 A 6 1 N P 2 Education R - 1 1 A 1 - 8 2 P 2021 5 9 02 R A 1 2 0 P - R 2 5 D 2 E A 6 C P R D 2 2 7- 7 E M 3 - C M 1 A Y 2 A 6 Y 3 D E 2 C M A 1 Y 9 - 4 - D 2 1 E 5 0 C M A 18 Y 1 D E 1 C M A 11 Y MOON PHASES- 1 1 2 7 - 1 D E C 8 M 1 A 0 Y 1 D E C 9 4 M -9 A Y 2 0 - 2 D E C 3 5 M A Y 2 6 N O V 28 - DEC 2 1 N U J - 7 2 Y A M N O V 27 2 N U 20-26 J V 9 - O 3 N N U 19 J V 0 1 N O N U 18 J - 6 2 1 1 - 1 V 1 O N N U 11 J 7 V 1 O N N 0 3 1 U 2 - J 5 - 8 V 1 O N 3 N U 4 V J 4 O 2 V N O 0 - N 3 N - 9 U 5 2 J 2 T C 8 N O 2 7 U J 2 1 T - C 1 L 8 2 - O U 2 J T 0 C 2 9 L 1 6 U O - 9 1 T J 3 - L C 1 0 1 O U T 2 5 J 2 1 1 7 C L T 2 1 1 - - U O T C 8 7 J L C 1 O 0 T U O 6 3 - 3 J L - C 2 9 T 7 4 O 2 5 U 2 8 2 L J C 1 - 2 7 9 P - U P 1 3 L O 4 1 1 1 E 2 0 E J - 1 9 P U 2 L 8 2 - S 2 4 S - 2 J E 5 9 - P 3 1 G 1 - U 6 - 1 S 2 1 3 0 E G P J 1 U 7 1 2 2 3 6 P G S E U 3 A P G E U S P G A P G E G G S G U A E U S E U U A U U S A S A A A A Education jpl.nasa.gov/edu Education jpl.nasa.gov/edu MOON PHASES MOON PHASES O V E R H E A D J J J J D J J F D J I N S P A J W F A C E A J A A D I E A J A V F E E A A J D E E A N J N F N A N N E O N E E A N C W R B N J T A I E H D J N V B C A F E E N N C B A J D
    [Show full text]
  • TESTS of the GIANT IMPACT HYPOTHESIS. J. H. Jones, Mail Code SN2, NASA Johnson Space Cen- Ter, Houston TX 77058, USA ([email protected])
    Origin of the Earth and Moon Conference 4045.pdf TESTS OF THE GIANT IMPACT HYPOTHESIS. J. H. Jones, Mail Code SN2, NASA Johnson Space Cen- ter, Houston TX 77058, USA ([email protected]). Introduction: The Giant Impact hypothesis [1] mantle. The best argument against this is the observa- has gained popularity as a means of producing a vola- tion of Meisel et al. [9] that the Os isotopic composi- tile-depleted Moon, that still has a chemical affinity to tion of fertile spinel lherzolites approaches chondritic. the Earth [e.g., 2]. As Taylor’s Axiom decrees, the Because Os is compatible and Re incompatible during best models of lunar origin are testable, but this is basalt genesis, this close approach to chondritic Os difficult with the Giant Impact model [1]. The energy would not ordinarily be expected if spinel lherzolites associated with the impact is sufficient to totally melt formed by the mixing of random, differentiated litholo- and partially vaporize the Earth [3]. And this means gies. Thus, it seems likely that there are mantle sam- that there should be no geological vestige of earlier ples that have never been processed by a magma ocean. times. Accordingly, it is important to devise tests that may be used to evaluate the Giant Impact hypothesis. Are Tungsten Isotopes in the Earth and Moon Three such tests are discussed here. None of these is the Same? No. Lee and coworkers [10, 11] have pre- supportive of the Giant Impact model, but neither do sented W isotopic data for both the Earth and Moon.
    [Show full text]