New Moon: Setting Intentions, Reflecting on New Beginnings First Quarter Moon: Commit to Moving Forward, Taking Action Full Moon

Total Page:16

File Type:pdf, Size:1020Kb

New Moon: Setting Intentions, Reflecting on New Beginnings First Quarter Moon: Commit to Moving Forward, Taking Action Full Moon Moon Phases New Moon: setting intentions, reflecting on new beginnings First quarter moon: Commit to moving forward, taking action Full Moon: Introspection, release what no longer serves you Last quarter moon: evaluate, move forward, gratitude Making Moon Water Using a clean glass jar, fill with distilled or spring water. Set outside under a full moon. Feel free to write down an intention for the coming moon cycle and place it under your jar. Let the moon charge your water overnight! Be sure to bring your moon water inside before the sun rises. Use your moon water to water your plants, take a bath, make tea, and many other things, all the while reflecting on your set intention. Moon Ritual M O O N W I S H E S M A N I F E S T I O N List your manifestations. Really focus internally to find out what you need. Start by lighting a candle, focus on getting present and letting go of anything bothering you. Spend a moment thinking about what you want to release and what you want to attract. Take the paper and jot down the things you'd like to manifest over the next month. Place the wish list someplace special (a box or a jar) and then set it outside to soak up the moonlight. Bring in your list before the sun hits it the next morning to preserve the moon vibes. Place the list somewhere where you can see it each day. Take a moment each day to look at your list and reflect. .
Recommended publications
  • For Creative Minds
    For Creative Minds The For Creative Minds educational section may be photocopied or printed from our website by the owner of this book for educational, non-commercial uses. Cross-curricular teaching activities, interactive quizzes, and more are available online. Go to www.ArbordalePublishing.com and click on the book’s cover to explore all the links. Moon Observations The months as we know them (January, February, etc.) are solar, based on how many days it takes the earth to revolve around the sun, roughly divided by twelve. A moon-th, or lunar (moon) month, is based on how long it takes the moon to orbit around the earth. The phases (shapes) of the moon change according to its cycle as it rotates around the earth, and the position of the moon with respect to the rising or setting sun. This cycle lasts about 29 ½ days. A (moon) month starts on “day one” with a new moon. The sun and the moon are in the same position and rise and set together. We can’t see the new moon. New Moon The moon rises and sets roughly 50 minutes later each day. The moon appears to “grow” or it waxes each day from a new moon to a full moon. The waxing moon’s bright side points at the setting Waxing sun and can be seen in the late afternoon on a clear day. Crescent A crescent moon is between new and half (less than half full), and may be waxing or waning. First Quarter The half-moon waxing or first quarter moon occurs about a week after the new moon.
    [Show full text]
  • Moons Phases and Tides
    Moon’s Phases and Tides Moon Phases Half of the Moon is always lit up by the sun. As the Moon orbits the Earth, we see different parts of the lighted area. From Earth, the lit portion we see of the moon waxes (grows) and wanes (shrinks). The revolution of the Moon around the Earth makes the Moon look as if it is changing shape in the sky The Moon passes through four major shapes during a cycle that repeats itself every 29.5 days. The phases always follow one another in the same order: New moon Waxing Crescent First quarter Waxing Gibbous Full moon Waning Gibbous Third (last) Quarter Waning Crescent • IF LIT FROM THE RIGHT, IT IS WAXING OR GROWING • IF DARKENING FROM THE RIGHT, IT IS WANING (SHRINKING) Tides • The Moon's gravitational pull on the Earth cause the seas and oceans to rise and fall in an endless cycle of low and high tides. • Much of the Earth's shoreline life depends on the tides. – Crabs, starfish, mussels, barnacles, etc. – Tides caused by the Moon • The Earth's tides are caused by the gravitational pull of the Moon. • The Earth bulges slightly both toward and away from the Moon. -As the Earth rotates daily, the bulges move across the Earth. • The moon pulls strongly on the water on the side of Earth closest to the moon, causing the water to bulge. • It also pulls less strongly on Earth and on the water on the far side of Earth, which results in tides. What causes tides? • Tides are the rise and fall of ocean water.
    [Show full text]
  • Captain Vancouver, Longitude Errors, 1792
    Context: Captain Vancouver, longitude errors, 1792 Citation: Doe N.A., Captain Vancouver’s longitudes, 1792, Journal of Navigation, 48(3), pp.374-5, September 1995. Copyright restrictions: Please refer to Journal of Navigation for reproduction permission. Errors and omissions: None. Later references: None. Date posted: September 28, 2008. Author: Nick Doe, 1787 El Verano Drive, Gabriola, BC, Canada V0R 1X6 Phone: 250-247-7858, FAX: 250-247-7859 E-mail: [email protected] Captain Vancouver's Longitudes – 1792 Nicholas A. Doe (White Rock, B.C., Canada) 1. Introduction. Captain George Vancouver's survey of the North Pacific coast of America has been characterized as being among the most distinguished work of its kind ever done. For three summers, he and his men worked from dawn to dusk, exploring the many inlets of the coastal mountains, any one of which, according to the theoretical geographers of the time, might have provided a long-sought-for passage to the Atlantic Ocean. Vancouver returned to England in poor health,1 but with the help of his brother John, he managed to complete his charts and most of the book describing his voyage before he died in 1798.2 He was not popular with the British Establishment, and after his death, all of his notes and personal papers were lost, as were the logs and journals of several of his officers. Vancouver's voyage came at an interesting time of transition in the technology for determining longitude at sea.3 Even though he had died sixteen years earlier, John Harrison's long struggle to convince the Board of Longitude that marine chronometers were the answer was not quite over.
    [Show full text]
  • The Mathematics of the Chinese, Indian, Islamic and Gregorian Calendars
    Heavenly Mathematics: The Mathematics of the Chinese, Indian, Islamic and Gregorian Calendars Helmer Aslaksen Department of Mathematics National University of Singapore [email protected] www.math.nus.edu.sg/aslaksen/ www.chinesecalendar.net 1 Public Holidays There are 11 public holidays in Singapore. Three of them are secular. 1. New Year’s Day 2. Labour Day 3. National Day The remaining eight cultural, racial or reli- gious holidays consist of two Chinese, two Muslim, two Indian and two Christian. 2 Cultural, Racial or Religious Holidays 1. Chinese New Year and day after 2. Good Friday 3. Vesak Day 4. Deepavali 5. Christmas Day 6. Hari Raya Puasa 7. Hari Raya Haji Listed in order, except for the Muslim hol- idays, which can occur anytime during the year. Christmas Day falls on a fixed date, but all the others move. 3 A Quick Course in Astronomy The Earth revolves counterclockwise around the Sun in an elliptical orbit. The Earth ro- tates counterclockwise around an axis that is tilted 23.5 degrees. March equinox June December solstice solstice September equinox E E N S N S W W June equi Dec June equi Dec sol sol sol sol Beijing Singapore In the northern hemisphere, the day will be longest at the June solstice and shortest at the December solstice. At the two equinoxes day and night will be equally long. The equi- noxes and solstices are called the seasonal markers. 4 The Year The tropical year (or solar year) is the time from one March equinox to the next. The mean value is 365.2422 days.
    [Show full text]
  • Bright As the Full Moon: How Much to Light up the Night?
    Bright as The Full Moon: How Much to Light Up The Night? A reprint of the Illinois Coalition for Responsible Outdoor Lighting website page at http://www.illinoislighting.org/moonlight.html We humans are biologically a diurnal species. While all of our other senses function as well at night as during the day (or perhaps sometimes even more sharply), our eyesight is limited in its low-light capabilities. For tens of thousands of years, our ancestors were restricted in their ability to function between evening and morning twilight. The light from the flames of burning materials -- from sticks, to animal and vegetable fats, to natural fossil fuels -- extended their functionality into the night, especially in enclosed areas. Outdoors, another light source was commonly made use of to conduct activity outdoors at night: moonlight. We find references to the use of moonlight for nocturnal activity in many places in both the historic record and in folk wisdom. The moon provides its most substantial illumination of the landscape at the time of full moon (see below); full moons are particularly associated with nocturnal activity. The name "Harvest Moon", for the full moon occurring nearest to the autumnal equinox, refers to the fact that the moonlight at that time is bright enough (and moonrise occurs in conjunction with sunset) to allow harvesters in the northern hemisphere to continue their work in the fields into the night. The same effect gives us the name of the following full moon, the Hunter's Moon. Moonlight gardens, designed to be enjoyed during the night, were enjoyed in the orient for centuries; the 17th Century Taj Mahal in India featured a large garden meant to be visited during the cool of night.
    [Show full text]
  • Dwarf Planet Ceres
    Dwarf Planet Ceres drishtiias.com/printpdf/dwarf-planet-ceres Why in News As per the data collected by NASA’s Dawn spacecraft, dwarf planet Ceres reportedly has salty water underground. Dawn (2007-18) was a mission to the two most massive bodies in the main asteroid belt - Vesta and Ceres. Key Points 1/3 Latest Findings: The scientists have given Ceres the status of an “ocean world” as it has a big reservoir of salty water underneath its frigid surface. This has led to an increased interest of scientists that the dwarf planet was maybe habitable or has the potential to be. Ocean Worlds is a term for ‘Water in the Solar System and Beyond’. The salty water originated in a brine reservoir spread hundreds of miles and about 40 km beneath the surface of the Ceres. Further, there is an evidence that Ceres remains geologically active with cryovolcanism - volcanoes oozing icy material. Instead of molten rock, cryovolcanoes or salty-mud volcanoes release frigid, salty water sometimes mixed with mud. Subsurface Oceans on other Celestial Bodies: Jupiter’s moon Europa, Saturn’s moon Enceladus, Neptune’s moon Triton, and the dwarf planet Pluto. This provides scientists a means to understand the history of the solar system. Ceres: It is the largest object in the asteroid belt between Mars and Jupiter. It was the first member of the asteroid belt to be discovered when Giuseppe Piazzi spotted it in 1801. It is the only dwarf planet located in the inner solar system (includes planets Mercury, Venus, Earth and Mars). Scientists classified it as a dwarf planet in 2006.
    [Show full text]
  • Summer ASTRONOMICAL CALENDAR
    2020 Buhl Planetarium & Observatory ASTRONOMICAL CALENDAR Summer JUNE 2020 1 Mon M13 globular cluster well-placed for observation (Use telescope in Hercules) 3 Wed Mercury at highest point in evening sky (Look west-northwest at sunset) 5 Fri Full Moon (Strawberry Moon) 9 Tues Moon within 3 degrees of both Jupiter and Saturn (Look south before dawn) 13 Sat Moon within 3 degrees of Mars (Look southeast before dawn) Moon at last quarter phase 20 Sat Summer solstice 21 Sun New Moon 27 Sat Bootid meteor shower peak (Best displays soon after dusk) 28 Sun Moon at first quarter phase JULY 2020 5 Sun Full Moon (Buck Moon) Penumbral lunar eclipse (Look south midnight into Monday) Moon within 2 degrees of Jupiter (Look south midnight into Monday) 6 Mon Moon within 3 degrees of Saturn (Look southwest before dawn) 8 Wed Venus at greatest brightness (Look east at dawn) 11 Sat Moon within 2 degrees of Mars (Look south before dawn) 12 Sun Moon at last quarter phase 14 Tues Jupiter at opposition (Look south midnight into Wednesday) 17 Fri Moon just over 3 degrees from Venus (Look east before dawn) 20 Mon New Moon; Saturn at opposition (Look south midnight into Tuesday) 27 Mon Moon at first quarter phase 28 Tues Piscis Austrinid meteor shower peak (Best displays before dawn) 29 Wed Southern Delta Aquariid and Alpha Capricornid meteor showers peak AUGUST 2020 1 Sat Moon within 2 degrees of Jupiter (Look southeast after dusk) 2 Sun Moon within 3 degrees of Saturn (Look southeast after dusk) 3 Mon Full Moon (Sturgeon Moon) 9 Sun Conjunction of the Moon and
    [Show full text]
  • The Rings and Inner Moons of Uranus and Neptune: Recent Advances and Open Questions
    Workshop on the Study of the Ice Giant Planets (2014) 2031.pdf THE RINGS AND INNER MOONS OF URANUS AND NEPTUNE: RECENT ADVANCES AND OPEN QUESTIONS. Mark R. Showalter1, 1SETI Institute (189 Bernardo Avenue, Mountain View, CA 94043, mshowal- [email protected]! ). The legacy of the Voyager mission still dominates patterns or “modes” seem to require ongoing perturba- our knowledge of the Uranus and Neptune ring-moon tions. It has long been hypothesized that numerous systems. That legacy includes the first clear images of small, unseen ring-moons are responsible, just as the nine narrow, dense Uranian rings and of the ring- Ophelia and Cordelia “shepherd” ring ε. However, arcs of Neptune. Voyager’s cameras also first revealed none of the missing moons were seen by Voyager, sug- eleven small, inner moons at Uranus and six at Nep- gesting that they must be quite small. Furthermore, the tune. The interplay between these rings and moons absence of moons in most of the gaps of Saturn’s rings, continues to raise fundamental dynamical questions; after a decade-long search by Cassini’s cameras, sug- each moon and each ring contributes a piece of the gests that confinement mechanisms other than shep- story of how these systems formed and evolved. herding might be viable. However, the details of these Nevertheless, Earth-based observations have pro- processes are unknown. vided and continue to provide invaluable new insights The outermost µ ring of Uranus shares its orbit into the behavior of these systems. Our most detailed with the tiny moon Mab. Keck and Hubble images knowledge of the rings’ geometry has come from spanning the visual and near-infrared reveal that this Earth-based stellar occultations; one fortuitous stellar ring is distinctly blue, unlike any other ring in the solar alignment revealed the moon Larissa well before Voy- system except one—Saturn’s E ring.
    [Show full text]
  • THIRTEEN MOONS Curriculum
    THIRTEEN MOONS Curriculum OJIBWAY CREE MOHAWK PRACTITIONER GUIDE LBS LEVELS 2 AND 3 13 MOONS – Teacher’s Guide 0 13 MOONS – Teacher’s Guide 1 © Ontario Native Literacy Coalition [2010] Table of Contents Introduction………………………………………………………………………………………………..4 Aboriginal Calendars………………………………………………………………………………..…5 OJIBWE Unit………………………………………………………………………………………………………………….6 Introduction & Pronunciation Guide…………………………………………………….8 Moons …………………………………………………………………………………………………..9 Numbers …………………………………………………………………………………………….12 Days of the Week …………………………………………………………………………….….14 Seasons ……………………………………………………………………………………………...15 CREE Unit…………………………………………………………………………………………………..16 Introduction ……………………………………………………………………………………….18 Moons ………………………………………………………………………………………………...19 Numbers ………………………………………………………………………………………….…20 Seasons and Days of the Week ………………………………………………………..…..22 MOHAWK Unit…………………………………………………………………………………………..24 Vowels………………………………………….………………………………………………..……26 Consonants……………………………………………………………………………………..…..27 Months…………………………………………………………………………………………..……29 Numbers………………………………………………………………………………………..……30 Days………………………………………………………………………………………………..…..32 Seasons…………………………………………………………………………………………..…..33 Cycle of Ceremonies……………………………………………………………………………34 Resources……………………………………………………………………………………………….…36 2011-2012 Calendars ……………………………………………………………………..…37 2011 Moon Phases ………………………………………………………………………..…..38 Sample Calendar Page …………………………………………………………………...….40 Task-Based Activities……………………………………………………………………………………44 Writing Activity
    [Show full text]
  • THE PENNY MOON and QUARTER EARTH School Adapted from a Physics Forum Activity At
    ~ LPI EDUCATION/PUBLIC OUTREACH SCIENCE ACTIVITIES ~ Ages: 5th grade – high THE PENNY MOON AND QUARTER EARTH school Adapted from a Physics Forum activity at: http://www.phvsicsforums.com/ Duration: 10 minutes OVERVIEW — The students will use a penny and a quarter to model the Moon’s rotation on its axis and Materials: revolution around the Earth, and demonstrate that the Moon keeps the same face toward One penny and one the Earth. quarter per pair of students OBJECTIVE — Overhead projector, or The students will: elmo, or video Demonstrate the motion of the Moon’s rotation and revolution. projector Compare what we would see of the Moon if it did not rotate to what we see when its period of rotation is the same as its orbital period. Projected image of student overhead BEFORE YOU START: Do not introduce this topic along with the reason for lunar phases; students may become confused and assume that the Moon’s rotation is related to its phases. Prepare to show the student overhead projected for the class to see. ACTIVITY — 1. Ask your students to describe which parts of the Moon they see. Does the Moon turn? Can we see its far side? Allow time for your students to discuss this and share their opinions. 2. Hand out the pennies and quarters so that each pair of students has both. Tell the students that they will be creating a model of the Earth and Moon. Which object is Earth? [the quarter] Which one is the Moon? [the penny] 3. Turn on the projected student overhead.
    [Show full text]
  • Phases of the Moon
    TA Guide for Notes Phases of the Moon Description In this activity, students stand around a bright light bulb in an otherwise dark room, holding a styrofoam ball at arm’s length. As they turn around, they watch the changing pattern of light and dark on the styrofoam ball which reproduces the phases of the Moon. Then, using a second ball as the Earth, students explore the geometry of the Sun-Earth-Moon system to predict the rise and set times of different phases of the Moon. The students “accidentally” stumble onto the alignment of the Sun, Earth and Moon during lunar and solar eclipses. Learning Goals After this tutorial, together with lecture materials, students should be able to • use the geometry of the Sun, Earth and Moon to illustrate the phases of the Moon and to predict the Moon’s rise and set times • illustrate the geometry of the Sun, Earth and Moon during lunar and solar eclipses, and explain why there are not eclipses every month Set-up 20 minutes The students will work together in groups of 3. In order to fit enough groups of students, you may need to use 2 light sources (shown at right). Set up one in the center of the lab and, if necessary, one in the center of the reading room (push the tables to the inside around the light. This will stop the students from getting too close to the light and messing up the geometry.) When both lights are needed, both TAs will be “A” TAs that lead the activity to their own groups of students.
    [Show full text]
  • Moon Phases Calendar 2021
    jpl.nasa.gov/edu F F F F F M F E E M E E F E E M A B B B F B A E B M B A J R E M 2 B R 2 A A 2 1 R J B 1 8 M 0 1 7 9 A 5 N R A 2 5 6 - J 1 - M R A - 1 4 2 N - - A M 2 1 1 1 1 6 3 R J 9 8 A M 2 N 0 4 2 A A 2 R - - 1 J A 2 2 N 8 R F A 2 R A 2 0 2 1 E P - J N 4 2 8 2 2 - A A 2 B R 0 9 7 P J N 1 7 4 - 3 R A 3 A A - N 1 1 P 5 J P 2 R 9 - A A R 1 7 P 0 N 1 - 3 R J 1 1 A 1 A 6 1 N P 2 Education R - 1 1 A 1 - 8 2 P 2021 5 9 02 R A 1 2 0 P - R 2 5 D 2 E A 6 C P R D 2 2 7- 7 E M 3 - C M 1 A Y 2 A 6 Y 3 D E 2 C M A 1 Y 9 - 4 - D 2 1 E 5 0 C M A 18 Y 1 D E 1 C M A 11 Y MOON PHASES- 1 1 2 7 - 1 D E C 8 M 1 A 0 Y 1 D E C 9 4 M -9 A Y 2 0 - 2 D E C 3 5 M A Y 2 6 N O V 28 - DEC 2 1 N U J - 7 2 Y A M N O V 27 2 N U 20-26 J V 9 - O 3 N N U 19 J V 0 1 N O N U 18 J - 6 2 1 1 - 1 V 1 O N N U 11 J 7 V 1 O N N 0 3 1 U 2 - J 5 - 8 V 1 O N 3 N U 4 V J 4 O 2 V N O 0 - N 3 N - 9 U 5 2 J 2 T C 8 N O 2 7 U J 2 1 T - C 1 L 8 2 - O U 2 J T 0 C 2 9 L 1 6 U O - 9 1 T J 3 - L C 1 0 1 O U T 2 5 J 2 1 1 7 C L T 2 1 1 - - U O T C 8 7 J L C 1 O 0 T U O 6 3 - 3 J L - C 2 9 T 7 4 O 2 5 U 2 8 2 L J C 1 - 2 7 9 P - U P 1 3 L O 4 1 1 1 E 2 0 E J - 1 9 P U 2 L 8 2 - S 2 4 S - 2 J E 5 9 - P 3 1 G 1 - U 6 - 1 S 2 1 3 0 E G P J 1 U 7 1 2 2 3 6 P G S E U 3 A P G E U S P G A P G E G G S G U A E U S E U U A U U S A S A A A A Education jpl.nasa.gov/edu Education jpl.nasa.gov/edu MOON PHASES MOON PHASES O V E R H E A D J J J J D J J F D J I N S P A J W F A C E A J A A D I E A J A V F E E A A J D E E A N J N F N A N N E O N E E A N C W R B N J T A I E H D J N V B C A F E E N N C B A J D
    [Show full text]