The Aristarchus Campaigns: Collaboratively Measuring the Solar System Best Practices Best

Total Page:16

File Type:pdf, Size:1020Kb

The Aristarchus Campaigns: Collaboratively Measuring the Solar System Best Practices Best The Aristarchus Campaigns: Collaboratively measuring the Solar System Best Practices Best Jorge I. Zuluaga Juan C. Figueroa Keywords FACom-Instituto de Física-FCEN, Universidad de FACom-Instituto de Física-FCEN, Universidad de Citizen astronomy, lunar orbit, lunar distance, Antioquia & Sociedad Antioqueña de Astronomía Antioquia & Sociedad Antioqueña de Astronomía Moon calculations, speed of light, astronomical Colombia Colombia methods, astrometry, citizen science [email protected] Summary Citizen astronomy has proven to be one of the most effective ways to actively involve amateur astronomers in real scientific endeavours. We present here the Aristarchus Campaigns, a citizen astronomy project intended to collaboratively reproduce historical astronomical observations. During the campaign amateur astronomers were invited to use simple optical instruments to gather data about some common astronomical phenomena. This data was used to calculate the value of well-known physical and astronomical quantities such as the speed of light and the distance to, and size of the Moon. We describe the project and the results of the first two Aristarchus Campaigns. We argue that this type of simple campaign may help to engage the public with astronomy in developing counties and prepare their astronomical communities to par- ticipate in high-impact observational campaigns. Introduction using powerful lasers and retro-reflecting Today, the advent of advanced and arrays of mirrors placed on the lunar sur- accessible technological devices such Ancient astronomers devised inventive face by the Apollo astronauts, so that the as smartphones is opening new doors methods to measure the Solar System. distance is now known to within just a few for do-it-yourself astronomy. Many per- Using these methods, which are in princi- centimetres (Tapley, 2004; Dickey, 1994). sonal electronic devices such as smart- ple very simple, we can measure the sizes The diameter of and distance to the Sun phones come with a GPS receiver, fast of the Sun, the Moon and the planets, and have been determined to one part in a internet connections and precise clocks. their distances from us. One of the best billion and one part in a 100 billion respec- This gives us, the science communicators, known of these ancient methods was orig- tively (Schou, 1997; Muhleman, 1969) an incredible opportunity to involve astron- inally proposed by Aristarchus of Samos and the speed of light, which until a few omy enthusiasts, and the wider public, in (ca. 310–230 BCE) who devised proce- decades ago had only been constrained astronomy projects. They allow for in situ dures that used lunar phases and eclipses using astronomical methods, is now reg- measurements that would otherwise be to estimate the relative sizes and distances ularly measured in the laboratory so pre- prohibitively expensive and available only of the Moon and the Sun (Van Helden, cisely that it is known to roughly one part to professional scientific teams. 2010; Heath, 2013). in a billion (Sullivan, 2001). This scientific and sociological phenom- More recently, physical constants have In contrast to the classical methods devised enon is called citizen astronomy, or more attracted the attention of astronomers. by such pioneers as Aristarchus or Rømer, generally, citizen science (Raddick, 2010). Using the huge spatial and temporal most of these modern techniques are far scales natural to astronomy, astronomers from the reach and technological capacity Our citizen astronomy campaigns aimed to have devised ingenious ways to measure of most amateur astronomers. Therefore, reproduce historical astronomical obser- the values of these physical constants. measuring distances in the Solar System, vations and measurements that helped to Take for example the method devised by and constraining the physical constants determine the size of the local Universe. Ole Rømer (1644–1710) who measured the that govern it, today seems to be a mat- Here, we will give a background to the speed of light in vacuum by observing the ter of sophisticated instrumentation and project and the role that citizen astronomy periodic occultation of the moon Io by its advanced scientific capabilities. But, these plays in science outreach; we describe host planet, Jupiter (Cohen, 1940). classical methods have a great deal left the project and the specific campaigns to offer and still find a privileged place in that we have run with the participation of Now, many centuries after the invention astronomy and physics textbooks. They individuals and communities in Colombia of these historical methods, astronomers are used today as educational tools, not and abroad; summarise some the most and physicists have measured these quan- only for teaching science history, but also important scientific results of the cam- tities with exquisite precision using vastly for teaching the methods of astronomy and paigns; and discuss the challenges more elaborate tools and methods. The physics and inspiring new ways of thinking involved when organising and running this distance to the Moon can be determined about the results (Salvador, 2009). kind of initiative. CAPjournal, No. 17, June 2015 23 The Aristarchus Campaigns: Collaboratively measuring the Solar System over a geographic area covering not only Colombia but several neighbouring coun- tries. The Aristarchus Campaigns On 15 April 2014 a total lunar eclipse was visible from most of the Americas and the Caribbean. Lunar eclipses are very com- mon phenomena that are spotted, photo- graphed, and even measured by hundreds of millions of observers. They provide well-known opportunities to measure the size of, and distance to, the Moon and the Sun, as recognised over two thousand years ago by Aristarchus of Samos (Heath, 2013). In 2014, a group of professional astrono- mers and astronomy undergraduate stu- dents at the University of Antioquia in Medellín, Colombia teamed up with the Sociedad Antioqueña de Astronomía — a regional astronomical association — and launched the Aristarchus Campaign. The campaign was intended to make the Figure 1. Screenshot of the iContact web-based application developed for the 5 July 2014 Aristarchus experience of observing the total lunar Campaign1. eclipse not only an enjoyable recreational activity, but also an opportunity to perform simple measurements using readily avail- The rise of citizen astronomy the past to study the evolution of comets, able astronomical equipment — such as measure the position of near-Earth aster- binoculars, small telescopes and cameras A recent, inadvertent example of the oids or observe the occultation of stars by — and personal electronic devices — like power of citizen astronomy took place Solar System objects (Ortiz, 2011). Projects mobile phones and tablets. on 15 February 2013. On a cold morning like these have led to new discoveries in Siberia, hundreds of thousands of and breakthroughs but, in most cases, The initiative was promoted by local citizens of several large cities around the the people enrolled in these campaigns astronomy clubs and through social net- Chelyabinsk region in Russia witnessed are experienced observers, whether works. An observing guide was written to only the second large asteroid impact professional or amateur. More simple observe and measure the lunar eclipse and ever recorded. Hundreds of pictures and astronomical campaigns, such as those the public in Medellin were encouraged to videos were taken that day by random described here, aim instead to measure submit their measurements and pictures observers and shared almost instantane- or to observe common astronomical phe- for potential scientific use. ously via social networks. The data col- nomena such as lunar and solar eclipses lected by these de facto citizen scien- and occultations, which use simpler and The weather in Colombia on the date of tists allowed professional astronomers more readily available instrumentation the eclipse made it very difficult for many around the world to study the phenome- and methods. These may serve as initial committed enthusiasts to perform most non in unprecedented detail (Brown, 2013; experiences for those who might then go of the measurements. However, despite Zuluaga, 2013). on to participate in more advanced pro- this slow start we were motivated by the jects. Mass participation in these simple enthusiastic response on social networks Another well-known citizen astronomy campaigns from communities in develop- and proposed, in the same year, several project is the Globe at Night project, a ing countries may prepare them for more similar campaigns. successful initiative intended to measure interesting and challenging collaborative light pollution around the world (Barringer, projects. We now call these observational initiatives, 2011). collectively, the Aristarchus Campaigns. In 2014, with all of this in mind, we designed At the time of writing, there have been three Collaborative astronomical observations and launched a new set of citizen astron- Aristarchus Campaigns: that involve many amateur and profes- omy projects in Colombia called the sional astronomers are not new (Meech, Aristarchus Campaigns. The projects 2005). These campaigns have been run in involved amateur astronomers distributed 24 CAPjournal, No. 17, June 2015 CAPjournal, No. 17, June 2015 Campaign 1: The 15 April 2014 campaign centred on the total lunar eclipse. Campaign 2: The 23 May 2014 campaign associated with the meteor storm of the 209P/Linear comet. Campaign 3: The
Recommended publications
  • For Creative Minds
    For Creative Minds The For Creative Minds educational section may be photocopied or printed from our website by the owner of this book for educational, non-commercial uses. Cross-curricular teaching activities, interactive quizzes, and more are available online. Go to www.ArbordalePublishing.com and click on the book’s cover to explore all the links. Moon Observations The months as we know them (January, February, etc.) are solar, based on how many days it takes the earth to revolve around the sun, roughly divided by twelve. A moon-th, or lunar (moon) month, is based on how long it takes the moon to orbit around the earth. The phases (shapes) of the moon change according to its cycle as it rotates around the earth, and the position of the moon with respect to the rising or setting sun. This cycle lasts about 29 ½ days. A (moon) month starts on “day one” with a new moon. The sun and the moon are in the same position and rise and set together. We can’t see the new moon. New Moon The moon rises and sets roughly 50 minutes later each day. The moon appears to “grow” or it waxes each day from a new moon to a full moon. The waxing moon’s bright side points at the setting Waxing sun and can be seen in the late afternoon on a clear day. Crescent A crescent moon is between new and half (less than half full), and may be waxing or waning. First Quarter The half-moon waxing or first quarter moon occurs about a week after the new moon.
    [Show full text]
  • Moons Phases and Tides
    Moon’s Phases and Tides Moon Phases Half of the Moon is always lit up by the sun. As the Moon orbits the Earth, we see different parts of the lighted area. From Earth, the lit portion we see of the moon waxes (grows) and wanes (shrinks). The revolution of the Moon around the Earth makes the Moon look as if it is changing shape in the sky The Moon passes through four major shapes during a cycle that repeats itself every 29.5 days. The phases always follow one another in the same order: New moon Waxing Crescent First quarter Waxing Gibbous Full moon Waning Gibbous Third (last) Quarter Waning Crescent • IF LIT FROM THE RIGHT, IT IS WAXING OR GROWING • IF DARKENING FROM THE RIGHT, IT IS WANING (SHRINKING) Tides • The Moon's gravitational pull on the Earth cause the seas and oceans to rise and fall in an endless cycle of low and high tides. • Much of the Earth's shoreline life depends on the tides. – Crabs, starfish, mussels, barnacles, etc. – Tides caused by the Moon • The Earth's tides are caused by the gravitational pull of the Moon. • The Earth bulges slightly both toward and away from the Moon. -As the Earth rotates daily, the bulges move across the Earth. • The moon pulls strongly on the water on the side of Earth closest to the moon, causing the water to bulge. • It also pulls less strongly on Earth and on the water on the far side of Earth, which results in tides. What causes tides? • Tides are the rise and fall of ocean water.
    [Show full text]
  • The Mathematics of the Chinese, Indian, Islamic and Gregorian Calendars
    Heavenly Mathematics: The Mathematics of the Chinese, Indian, Islamic and Gregorian Calendars Helmer Aslaksen Department of Mathematics National University of Singapore [email protected] www.math.nus.edu.sg/aslaksen/ www.chinesecalendar.net 1 Public Holidays There are 11 public holidays in Singapore. Three of them are secular. 1. New Year’s Day 2. Labour Day 3. National Day The remaining eight cultural, racial or reli- gious holidays consist of two Chinese, two Muslim, two Indian and two Christian. 2 Cultural, Racial or Religious Holidays 1. Chinese New Year and day after 2. Good Friday 3. Vesak Day 4. Deepavali 5. Christmas Day 6. Hari Raya Puasa 7. Hari Raya Haji Listed in order, except for the Muslim hol- idays, which can occur anytime during the year. Christmas Day falls on a fixed date, but all the others move. 3 A Quick Course in Astronomy The Earth revolves counterclockwise around the Sun in an elliptical orbit. The Earth ro- tates counterclockwise around an axis that is tilted 23.5 degrees. March equinox June December solstice solstice September equinox E E N S N S W W June equi Dec June equi Dec sol sol sol sol Beijing Singapore In the northern hemisphere, the day will be longest at the June solstice and shortest at the December solstice. At the two equinoxes day and night will be equally long. The equi- noxes and solstices are called the seasonal markers. 4 The Year The tropical year (or solar year) is the time from one March equinox to the next. The mean value is 365.2422 days.
    [Show full text]
  • Bright As the Full Moon: How Much to Light up the Night?
    Bright as The Full Moon: How Much to Light Up The Night? A reprint of the Illinois Coalition for Responsible Outdoor Lighting website page at http://www.illinoislighting.org/moonlight.html We humans are biologically a diurnal species. While all of our other senses function as well at night as during the day (or perhaps sometimes even more sharply), our eyesight is limited in its low-light capabilities. For tens of thousands of years, our ancestors were restricted in their ability to function between evening and morning twilight. The light from the flames of burning materials -- from sticks, to animal and vegetable fats, to natural fossil fuels -- extended their functionality into the night, especially in enclosed areas. Outdoors, another light source was commonly made use of to conduct activity outdoors at night: moonlight. We find references to the use of moonlight for nocturnal activity in many places in both the historic record and in folk wisdom. The moon provides its most substantial illumination of the landscape at the time of full moon (see below); full moons are particularly associated with nocturnal activity. The name "Harvest Moon", for the full moon occurring nearest to the autumnal equinox, refers to the fact that the moonlight at that time is bright enough (and moonrise occurs in conjunction with sunset) to allow harvesters in the northern hemisphere to continue their work in the fields into the night. The same effect gives us the name of the following full moon, the Hunter's Moon. Moonlight gardens, designed to be enjoyed during the night, were enjoyed in the orient for centuries; the 17th Century Taj Mahal in India featured a large garden meant to be visited during the cool of night.
    [Show full text]
  • THIRTEEN MOONS Curriculum
    THIRTEEN MOONS Curriculum OJIBWAY CREE MOHAWK PRACTITIONER GUIDE LBS LEVELS 2 AND 3 13 MOONS – Teacher’s Guide 0 13 MOONS – Teacher’s Guide 1 © Ontario Native Literacy Coalition [2010] Table of Contents Introduction………………………………………………………………………………………………..4 Aboriginal Calendars………………………………………………………………………………..…5 OJIBWE Unit………………………………………………………………………………………………………………….6 Introduction & Pronunciation Guide…………………………………………………….8 Moons …………………………………………………………………………………………………..9 Numbers …………………………………………………………………………………………….12 Days of the Week …………………………………………………………………………….….14 Seasons ……………………………………………………………………………………………...15 CREE Unit…………………………………………………………………………………………………..16 Introduction ……………………………………………………………………………………….18 Moons ………………………………………………………………………………………………...19 Numbers ………………………………………………………………………………………….…20 Seasons and Days of the Week ………………………………………………………..…..22 MOHAWK Unit…………………………………………………………………………………………..24 Vowels………………………………………….………………………………………………..……26 Consonants……………………………………………………………………………………..…..27 Months…………………………………………………………………………………………..……29 Numbers………………………………………………………………………………………..……30 Days………………………………………………………………………………………………..…..32 Seasons…………………………………………………………………………………………..…..33 Cycle of Ceremonies……………………………………………………………………………34 Resources……………………………………………………………………………………………….…36 2011-2012 Calendars ……………………………………………………………………..…37 2011 Moon Phases ………………………………………………………………………..…..38 Sample Calendar Page …………………………………………………………………...….40 Task-Based Activities……………………………………………………………………………………44 Writing Activity
    [Show full text]
  • Phases of the Moon
    TA Guide for Notes Phases of the Moon Description In this activity, students stand around a bright light bulb in an otherwise dark room, holding a styrofoam ball at arm’s length. As they turn around, they watch the changing pattern of light and dark on the styrofoam ball which reproduces the phases of the Moon. Then, using a second ball as the Earth, students explore the geometry of the Sun-Earth-Moon system to predict the rise and set times of different phases of the Moon. The students “accidentally” stumble onto the alignment of the Sun, Earth and Moon during lunar and solar eclipses. Learning Goals After this tutorial, together with lecture materials, students should be able to • use the geometry of the Sun, Earth and Moon to illustrate the phases of the Moon and to predict the Moon’s rise and set times • illustrate the geometry of the Sun, Earth and Moon during lunar and solar eclipses, and explain why there are not eclipses every month Set-up 20 minutes The students will work together in groups of 3. In order to fit enough groups of students, you may need to use 2 light sources (shown at right). Set up one in the center of the lab and, if necessary, one in the center of the reading room (push the tables to the inside around the light. This will stop the students from getting too close to the light and messing up the geometry.) When both lights are needed, both TAs will be “A” TAs that lead the activity to their own groups of students.
    [Show full text]
  • Moon Phases Calendar 2021
    jpl.nasa.gov/edu F F F F F M F E E M E E F E E M A B B B F B A E B M B A J R E M 2 B R 2 A A 2 1 R J B 1 8 M 0 1 7 9 A 5 N R A 2 5 6 - J 1 - M R A - 1 4 2 N - - A M 2 1 1 1 1 6 3 R J 9 8 A M 2 N 0 4 2 A A 2 R - - 1 J A 2 2 N 8 R F A 2 R A 2 0 2 1 E P - J N 4 2 8 2 2 - A A 2 B R 0 9 7 P J N 1 7 4 - 3 R A 3 A A - N 1 1 P 5 J P 2 R 9 - A A R 1 7 P 0 N 1 - 3 R J 1 1 A 1 A 6 1 N P 2 Education R - 1 1 A 1 - 8 2 P 2021 5 9 02 R A 1 2 0 P - R 2 5 D 2 E A 6 C P R D 2 2 7- 7 E M 3 - C M 1 A Y 2 A 6 Y 3 D E 2 C M A 1 Y 9 - 4 - D 2 1 E 5 0 C M A 18 Y 1 D E 1 C M A 11 Y MOON PHASES- 1 1 2 7 - 1 D E C 8 M 1 A 0 Y 1 D E C 9 4 M -9 A Y 2 0 - 2 D E C 3 5 M A Y 2 6 N O V 28 - DEC 2 1 N U J - 7 2 Y A M N O V 27 2 N U 20-26 J V 9 - O 3 N N U 19 J V 0 1 N O N U 18 J - 6 2 1 1 - 1 V 1 O N N U 11 J 7 V 1 O N N 0 3 1 U 2 - J 5 - 8 V 1 O N 3 N U 4 V J 4 O 2 V N O 0 - N 3 N - 9 U 5 2 J 2 T C 8 N O 2 7 U J 2 1 T - C 1 L 8 2 - O U 2 J T 0 C 2 9 L 1 6 U O - 9 1 T J 3 - L C 1 0 1 O U T 2 5 J 2 1 1 7 C L T 2 1 1 - - U O T C 8 7 J L C 1 O 0 T U O 6 3 - 3 J L - C 2 9 T 7 4 O 2 5 U 2 8 2 L J C 1 - 2 7 9 P - U P 1 3 L O 4 1 1 1 E 2 0 E J - 1 9 P U 2 L 8 2 - S 2 4 S - 2 J E 5 9 - P 3 1 G 1 - U 6 - 1 S 2 1 3 0 E G P J 1 U 7 1 2 2 3 6 P G S E U 3 A P G E U S P G A P G E G G S G U A E U S E U U A U U S A S A A A A Education jpl.nasa.gov/edu Education jpl.nasa.gov/edu MOON PHASES MOON PHASES O V E R H E A D J J J J D J J F D J I N S P A J W F A C E A J A A D I E A J A V F E E A A J D E E A N J N F N A N N E O N E E A N C W R B N J T A I E H D J N V B C A F E E N N C B A J D
    [Show full text]
  • Solar and Lunar Eclipses Reading
    Eclipses What would you think if you were walking home from school on a sunny afternoon and the sun began to disappear? Would you be frightened? On rare occasions, the moon completely blocks the sun. The sky grows as dark as night even in the middle of a clear day. The air gets cool and the sky becomes an eerie color. If you don’t know what is happening, you can become very frightened. The moon doesn’t usually go directly between Earth and the sun or directly behind Earth. As the diagram below shows, the moon’s orbit around Earth is slightly tilted with respect to Earth’s orbit around the sun. As a result, in most months the moon revolves completely around Earth without the moon moving into Earth’s shadow or the moon’s shadow hitting Earth. When the moon’s shadow hits Earth or Earth’s shadow hits the moon, an eclipse occurs. An eclipse (ih klips) occurs when an object in space comes between the sun and a third object, and casts a shadow on that object. There are two types of eclipses: solar eclipses and lunar eclipses. (The words solar and lunar come from the Latin words for “sun” and “moon.”) The Tilt of the Moon’s Orbit The moon’s orbit is tilted with respect to Earth’s orbit. So the moon rarely goes directly between Earth and the sun. Solar Eclipses During a new moon, the moon is almost exactly between Earth and the sun. But most months, as you have seen, the moon travels a little above or below the sun in the sky.
    [Show full text]
  • The Indian Luni-Solar Calendar and the Concept of Adhik-Maas
    Volume -3, Issue-3, July 2013 The Indian Luni-Solar Calendar and the giving rise to alternative periods of light and darkness. All human and animal life has evolved accordingly, Concept of Adhik-Maas (Extra-Month) keeping awake during the day-light but sleeping through the dark nights. Even plants follow a daily rhythm. Of Introduction: course some crafty beings have turned nocturnal to take The Hindu calendar is basically a lunar calendar and is advantage of the darkness, e.g., the beasts of prey, blood– based on the cycles of the Moon. In a purely lunar sucker mosquitoes, thieves and burglars, and of course calendar - like the Islamic calendar - months move astronomers. forward by about 11 days every solar year. But the Hindu calendar, which is actually luni-solar, tries to fit together The next natural clock in terms of importance is the the cycle of lunar months and the solar year in a single revolution of the Earth around the Sun. Early humans framework, by adding adhik-maas every 2-3 years. The noticed that over a certain period of time, the seasons concept of Adhik-Maas is unique to the traditional Hindu changed, following a fixed pattern. Near the tropics - for lunar calendars. For example, in 2012 calendar, there instance, over most of India - the hot summer gives way were 13 months with an Adhik-Maas falling between to rain, which in turn is followed by a cool winter. th th August 18 and September 16 . Further away from the equator, there were four distinct seasons - spring, summer, autumn, winter.
    [Show full text]
  • New Moon: Setting Intentions, Reflecting on New Beginnings First Quarter Moon: Commit to Moving Forward, Taking Action Full Moon
    Moon Phases New Moon: setting intentions, reflecting on new beginnings First quarter moon: Commit to moving forward, taking action Full Moon: Introspection, release what no longer serves you Last quarter moon: evaluate, move forward, gratitude Making Moon Water Using a clean glass jar, fill with distilled or spring water. Set outside under a full moon. Feel free to write down an intention for the coming moon cycle and place it under your jar. Let the moon charge your water overnight! Be sure to bring your moon water inside before the sun rises. Use your moon water to water your plants, take a bath, make tea, and many other things, all the while reflecting on your set intention. Moon Ritual M O O N W I S H E S M A N I F E S T I O N List your manifestations. Really focus internally to find out what you need. Start by lighting a candle, focus on getting present and letting go of anything bothering you. Spend a moment thinking about what you want to release and what you want to attract. Take the paper and jot down the things you'd like to manifest over the next month. Place the wish list someplace special (a box or a jar) and then set it outside to soak up the moonlight. Bring in your list before the sun hits it the next morning to preserve the moon vibes. Place the list somewhere where you can see it each day. Take a moment each day to look at your list and reflect.
    [Show full text]
  • Planit! User Guide
    ALL-IN-ONE PLANNING APP FOR LANDSCAPE PHOTOGRAPHERS QUICK USER GUIDES The Sun and the Moon Rise and Set The Rise and Set page shows the 1 time of the sunrise, sunset, moonrise, and moonset on a day as A sunrise always happens before a The azimuth of the Sun or the well as their azimuth. Moon is shown as thick color sunset on the same day. However, on lines on the map . some days, the moonset could take place before the moonrise within the Confused about which line same day. On those days, we might 3 means what? Just look at the show either the next day’s moonset or colors of the icons and lines. the previous day’s moonrise Within the app, everything depending on the current time. In any related to the Sun is in orange. case, the left one is always moonrise Everything related to the Moon and the right one is always moonset. is in blue. Sunrise: a lighter orange Sunset: a darker orange Moonrise: a lighter blue 2 Moonset: a darker blue 4 You may see a little superscript “+1” or “1-” to some of the moonrise or moonset times. The “+1” or “1-” sign means the event happens on the next day or the previous day, respectively. Perpetual Day and Perpetual Night This is a very short day ( If further north, there is no Sometimes there is no sunrise only 2 hours) in Iceland. sunrise or sunset. or sunset for a given day. It is called the perpetual day when the Sun never sets, or perpetual night when the Sun never rises.
    [Show full text]
  • Lunar Exploration Efforts
    Module 3 – Nautical Science Unit 4 – Astronomy Chapter 13 - The Moon Section 1 – The Moon What You Will Learn to Do Demonstrate understanding of astronomy and how it pertains to our solar system and its related bodies: Moon, Sun, stars and planets Objectives 1. Recognize basic facts about the Moon such as size, distance from Earth and atmosphere 2. Describe the geographical structure of the Moon 3. Describe the surface features of the Moon 4. Explain those theories that describe Moon craters and their formations Objectives 5. Describe the mountain ranges and riles on the surface of the Moon 6. Explain the effect moonquakes have on the Moon 7. Describe how the Moon’s motion causes its phases 8. Explain the basic reasons for Moon exploration Key Terms CPS Key Term Questions 1 - 12 Key Terms Maria - Mare or Maria (plural); Any of the several dark plains on the Moon and Mars; Latin word for “Sea” Reflectance - The ratio of the intensity of reflected radiation to that of the radiation that initially hits the surface. Key Terms Impact Crater - The cup shaped depression or cavity on the surface of the Earth or other heavenly bodies. Breccia - Rock composed of angular fragments of older rocks melded together as a result of a meteor impact. Regolith - The layer of disintegrated rock fragments (dust), just above the solid rock of the Moon’s crust. Key Terms Rilles - Cracks in the lunar surface similar to shallow, meandering river beds on the Earth. Phases The Moon’s motion in its orbit (of the Moon) - causes its phases (progressive changes in the visible portion of the Moon).
    [Show full text]