Biogenic Amine Levels, Reproduction and Social Dominance in the Queenless Ant Streblognathus Peetersi

Total Page:16

File Type:pdf, Size:1020Kb

Biogenic Amine Levels, Reproduction and Social Dominance in the Queenless Ant Streblognathus Peetersi Naturwissenschaften (2006) 93: 149–153 DOI 10.1007/s00114-006-0086-1 SHORT COMMUNICATION Virginie Cuvillier-Hot . Alain Lenoir Biogenic amine levels, reproduction and social dominance in the queenless ant Streblognathus peetersi Received: 9 May 2005 / Accepted: 6 January 2006 / Published online: 3 March 2006 # Springer-Verlag 2006 Abstract Social harmony often relies on ritualised dom- Introduction inance interactions between society members, particularly in queenless ant societies, where colony members do not Social dominance refers to an asymmetry of relationship have developmentally predetermined castes but have to among individuals, as defined by the outcomes of dyadic fight for their status in the reproductive and work encounters of a competitive or agonistic nature. Recent hierarchy. In this behavioural plasticity, their social studies on vertebrate and invertebrate species suggest that organisation resembles more that of vertebrates than differences in social status may reflect variations in mono- that of the “classic” social insects. The present study aminergic activity in the central nervous system (Bloch et investigates the neurochemistry of the queenless ant al. 2000; Huber et al. 2001; Kaplan et al. 2002; Reisner et species, Streblognathus peetersi, to better understand the al. 1996). The neurophysiological basis of social status, neural basis of the high behavioural plasticity observed in already extensively examined in vertebrates, has recently queenless ants. We report measurements of brain biogenic begun to be investigated in social insects. Some studies amines [octopamine, dopamine, serotonin] of S. peetersi have shown that biogenic amine levels are linked to the ants; they reveal a new set of biogenic amine influences social role of infertile Apis workers: foragers have higher on social organisation with no common features with levels of octopamine (OA) compared to nurses of the same other “primitively organised societies” (bumble bees) and age (Schulz et al. 2002; Wagener-Hulme et al. 1999), and some common features with “highly eusocial” species dancers have higher levels of dopamine than other foragers (honey bees). This similarity to honey bees may either (Bozic and Woodring 1998). Bloch and colleagues (Bloch confirm the heritage of queenless species from their et al. 2000) investigated the brain biogenic amine levels probably highly eusocial ancestors or highlight indepen- according to reproductive dominance in bumble bee dent patterns of biogenic amine influences on the social workers. They found that, in queen-right colonies, workers organisation of these highly derived species. with higher levels of octopamine had more developed ovaries and were more dominant than sisters of the same age, and that in queenless colonies, high dopamine levels . V. Cuvillier-Hot A. Lenoir were associated with the final stages of ovarian develop- Institut de Recherche sur la Biologie de l’Insecte, Université François Rabelais, CNRS UMR 6035, ment in workers. Faculté des Sciences, Most of the highly social insect species considered so Parc de Grandmont, far, have morphological castes that are determined by a 37200 Tours France specific developmental pathway that fixes the reproductive V. Cuvillier-Hot role and associated behavioural repertoire of each individ- Laboratoire d’Écologie, CNRS UMR 7625, ual in the colony. Queenless ant species, on the other hand, Université Pierre et Marie Curie, have colonies composed exclusively of monomorphic 75252 Paris Cedex 05, France workers, each one capable of mating and laying eggs, Present address: forming societies with a more plastic mode of organisation V. Cuvillier-Hot (*) (Peters 1993). In these colonies, the division of labour Laboratoire de Neuroimmunologie des Annélides, UMR 8017, depends on interindividual behavioural interactions that Université des Sciences et Techniques de Lille, determine not only gathering tasks but also more import- bâtiment SN3, antly, reproductive roles. As in most vertebrate societies, 59655 Villeneuve d’Ascq France e-mail: [email protected] the potential reproducers in a queenless ant colony form a Tel.: +33-32033-7099 dominance hierarchy through confrontations. Because Fax: +33-32043-4054 castes are determined through behavioural interactions, 150 the social position of individual workers changes fre- careful behavioural observation as already described in quently and rapidly. At each change in status, the ant must Cuvillier-Hot et al. (2004). Alpha ants, workers of high quickly adapt its behaviour to its new position. Such rank (beta to delta), and clearly subordinate workers behavioural plasticity is unique among social insects. (foragers) were selected for brain biogenic amine level Queenless ants could prove useful in investigating the measurements. neural bases of behavioural plasticity. Unlike wasps, workers in queenless ant species are restricted by ecological constraints from forming new, independent Sample preparation colonies; their access to reproduction is entirely dependent on their rank in the dominance hierarchy. The strict Ants were quickly frozen in liquid N2; the heads were behavioural castes created by this social system make dissected in dried ice and the brains without the optic lobes queenless ants a particularly suitable model for studying were kept at −80°C until amine analysis. Each brain was the interactions between social environment and individual treated separately. The brain was placed in an Eppendorf behaviour in a context of high relatedness and develop- tube on ice with 100 μl of cold perchloric acid (0.1 M) mental similarity among colony members. Indeed, unlike mixed with an internal standard (DHBA, 50 pg/μl). queen-right ants, queenless ants all experience the same Samples were sonicated (Ultra Turax T25, Bioblock developmental program—that of a worker. For this reason, Scientific, Vernon Hills, IL), chilled for 20 min, and then we will compare our results mainly to bibliographic data centrifuged at 13.000 rpm for 10 min (4°C). The superna- that concern workers, rather than queens of other social tant was collected and filtered through a syringe-connected species. filter (Durapore membrane, 0.45 μm, SIGMA), and 20-μl The clear behavioural interactions displayed in queen- volume of this solution was injected in the chromatography less societies allow one to determine the “behavioural circuit. state” of each worker through behavioural observation. As emphasized by Page and Erber (2002), this is an important prerequisite in studies on the effect of the biogenic amine HPLC dosage of brain octopamine, dopamine levels on social behaviour. We chose to investigate the and serotonin relationship between social dominance and brain levels of octopamine, dopamine and serotonin in a queenless ant Biogenic amines were dosed by high-pressure liquid whose behavioural castes are well-defined. Streblognathus chromatography (HPLC) coupled with electrochemical peetersi is a monogynous queenless ant with colonies detection (Antec, electrode potential fixed at 800 mV). organised in three distinct groups: the alpha ant is the most Samples were injected using a Rheodyne 7725i injector dominant worker and the only one to mate and lay eggs; valve with a 20-μl injection loop. Brain extracts were workers of high social ranks are behaviourally dominant separated on a reversed phase C18 column (3.2×100 mm, (while submissive to the alpha), are rather young and do 5-μm particle size, LC-22C, BAS, West Lafayette, IN). not mate or lay eggs; workers of low social ranks are The mobile phase (pH 3) was composed of 3% methanol, subordinate to the other two groups, can be of any age and 7% acetonitrile and 90% citric acid 20 mM, monobasic also remain infertile. This species is particularly useful for phosphate sodium 10 mM, octanesulfonic acid 3 mM, two reasons: alpha and high-ranked workers (ranks beta to heptanesulfonic acid 3.25 mM, EDTA 0.1 mM, KCl 2 mM, delta) each show clear behavioural displays that allow their o-phosphoric acid 6%, and diethylamine 2%. The flow immediate and unequivocal identification (Cuvillier-Hot et rate was adjusted at 0.3 ml/min with a Gold 118 system al. 2004). In addition, the individuals are very large (∼2cm (Beckman, Fullerton, CA), and temperature was set at long), making behavioural observation easier and allowing 35°C (technical set-up from (Kodas et al. 2002)). External amine dosage at the individual level. standards (octopamine, dopamine, serotonin) were run before and after each set of biological samples. Materials and methods Statistical analysis Ant collection and housing Kruskal–Wallis and Mann–Whitney tests were used to test Entire colonies of S. peetersi were collected near the significance of the observed differences (XLStatistics). Magoebaskloof, Limpopo province, South Africa: three Differences were considered significant at α≤0.05. in January 2000, two in February 2001 and seven in April 2001. The ants were kept in plaster nests in the laboratory, at 25°C and under 12 h light : 12 h dark cycles. Colonies Results were fed daily with cockroach nymphs and crickets. Each ant was labelled with a plastic number glued onto the Figure 1 compares the levels of octopamine, dopamine and thorax. The dominance hierarchy was established by serotonin for each social category. Octopamine levels were 151 a Octopamine level per brain Discussion 1,6 * Individual dosage of brain monoamine levels revealed that 1,4 fertile alpha workers are clearly characterised by higher 1,2 levels of octopamine (Fig.
Recommended publications
  • Social Dominance and Reproductive Differentiation Mediated By
    © 2015. Published by The Company of Biologists Ltd | The Journal of Experimental Biology (2015) 218, 1091-1098 doi:10.1242/jeb.118414 RESEARCH ARTICLE Social dominance and reproductive differentiation mediated by dopaminergic signaling in a queenless ant Yasukazu Okada1,2,*, Ken Sasaki3, Satoshi Miyazaki2,4, Hiroyuki Shimoji2, Kazuki Tsuji5 and Toru Miura2 ABSTRACT (i.e. the unequal sharing of reproductive opportunity) is widespread In social Hymenoptera with no morphological caste, a dominant female in various animal taxa (Sherman et al., 1995; birds, Emlen and becomes an egg layer, whereas subordinates become sterile helpers. Wrege, 1992; mammals, Jarvis, 1981; Keane et al., 1994; Nievergelt The physiological mechanism that links dominance rank and fecundity et al., 2000). In extreme cases, it can result in the reproductive is an essential part of the emergence of sterile females, which reflects division of labor, such as in social insects and naked mole rats the primitive phase of eusociality. Recent studies suggest that (Wilson, 1971; Sherman et al., 1995; Reeve and Keller, 2001). brain biogenic amines are correlated with the ranks in dominance In highly eusocial insects (honeybees, most ants and termites), hierarchy. However, the actual causality between aminergic systems developmental differentiation of morphological caste is the basis of and phenotype (i.e. fecundity and aggressiveness) is largely unknown social organization (Wilson, 1971). By contrast, there are due to the pleiotropic functions of amines (e.g. age-dependent morphologically casteless social insects (some wasps, bumblebees polyethism) and the scarcity of manipulation experiments. To clarify and queenless ants) in which the dominance hierarchy plays a central the causality among dominance ranks, amine levels and phenotypes, role in division of labor.
    [Show full text]
  • Nest Distribution Varies with Dispersal Method and Familiarity-Mediated Aggression for Two Sympatric Ants
    Animal Behaviour 84 (2012) 1151e1158 Contents lists available at SciVerse ScienceDirect Animal Behaviour journal homepage: www.elsevier.com/locate/anbehav Nest distribution varies with dispersal method and familiarity-mediated aggression for two sympatric ants Colby J. Tanner*, Laurent Keller Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland article info Dispersal mechanisms and competition together play a key role in the spatial distribution of a pop- fi Article history: ulation. Species that disperse via ssion are likely to experience high levels of localized competitive Received 23 June 2012 pressure from conspecifics relative to species that disperse in other ways. Although fission dispersal Initial acceptance 19 July 2012 occurs in many species, its ecological and behavioural effects remain unclear. We compared foraging Final acceptance 7 August 2012 effort, nest spatial distribution and aggression of two sympatric ant species that differ in reproductive Available online 7 September 2012 dispersal: Streblognathus peetersi, which disperse by group fission, and Plectroctena mandibularis, which MS. number: 12-00484 disperse by solitary wingless queens. We found that although both species share space and have similar foraging strategies, they differ in nest distribution and aggressive behaviour. The spatial distribution of Keywords: S. peetersi nests was extremely aggregated, and workers were less aggressive towards conspecifics from familiarity-mediated aggression nearby nests than towards distant conspecifics and all heterospecific workers. By contrast, the spatial fission dispersal distribution of P. mandibularis nests was overdispersed, and workers were equally aggressive towards Plectroctena mandibularis fi fi spatial distribution conspeci c and heterospeci c competitors regardless of nest distance. Finally, laboratory experiments Streblognathus peetersi showed that familiarity led to the positive relationship between aggression and nest distance in S.
    [Show full text]
  • Coversheet for Thesis in Sussex Research Online
    A University of Sussex PhD thesis Available online via Sussex Research Online: http://sro.sussex.ac.uk/ This thesis is protected by copyright which belongs to the author. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Please visit Sussex Research Online for more information and further details UNIVERSITY OF SUSSEX Submitted for the Degree of Doctor of Philosophy VICTORIA CATHERINE NORMAN Caste and Task Allocation in Ants SUMMARY Group living is a widely adopted strategy by many organisms and given the advantages offered by a social lifestyle, such as increased protection from predators or increased ability for resource exploitation, a wide variety of animals have adopted a social lifestyle. Arguably none have done this more successfully than the social insects. Indeed their efficient division of labour is often cited as a key attribute for the remarkable ecological and evolutionary success of these societies. Within the social insects the most obvious division of labour is reproductive, in which one or a few individuals monopolise reproduction while the majority of essentially sterile workers carry out the remaining tasks essential for colony survival. In almost all social insects, in particular ants, the age of a worker will predispose it to certain tasks, and in some social insects the workers vary in size such that task is associated with worker morphology.
    [Show full text]
  • Hymenoptera: Formicidae: Ponerinae)
    Molecular Phylogenetics and Taxonomic Revision of Ponerine Ants (Hymenoptera: Formicidae: Ponerinae) Item Type text; Electronic Dissertation Authors Schmidt, Chris Alan Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 10/10/2021 23:29:52 Link to Item http://hdl.handle.net/10150/194663 1 MOLECULAR PHYLOGENETICS AND TAXONOMIC REVISION OF PONERINE ANTS (HYMENOPTERA: FORMICIDAE: PONERINAE) by Chris A. Schmidt _____________________ A Dissertation Submitted to the Faculty of the GRADUATE INTERDISCIPLINARY PROGRAM IN INSECT SCIENCE In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 2009 2 2 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Dissertation Committee, we certify that we have read the dissertation prepared by Chris A. Schmidt entitled Molecular Phylogenetics and Taxonomic Revision of Ponerine Ants (Hymenoptera: Formicidae: Ponerinae) and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy _______________________________________________________________________ Date: 4/3/09 David Maddison _______________________________________________________________________ Date: 4/3/09 Judie Bronstein
    [Show full text]
  • The Higher Classification of the Ant Subfamily Ponerinae (Hymenoptera: Formicidae), with a Review of Ponerine Ecology and Behavior
    Zootaxa 3817 (1): 001–242 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Monograph ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3817.1.1 http://zoobank.org/urn:lsid:zoobank.org:pub:A3C10B34-7698-4C4D-94E5-DCF70B475603 ZOOTAXA 3817 The Higher Classification of the Ant Subfamily Ponerinae (Hymenoptera: Formicidae), with a Review of Ponerine Ecology and Behavior C.A. SCHMIDT1 & S.O. SHATTUCK2 1Graduate Interdisciplinary Program in Entomology and Insect Science, Gould-Simpson 1005, University of Arizona, Tucson, AZ 85721-0077. Current address: Native Seeds/SEARCH, 3584 E. River Rd., Tucson, AZ 85718. E-mail: [email protected] 2CSIRO Ecosystem Sciences, GPO Box 1700, Canberra, ACT 2601, Australia. Current address: Research School of Biology, Australian National University, Canberra, ACT, 0200 Magnolia Press Auckland, New Zealand Accepted by J. Longino: 21 Mar. 2014; published: 18 Jun. 2014 C.A. SCHMIDT & S.O. SHATTUCK The Higher Classification of the Ant Subfamily Ponerinae (Hymenoptera: Formicidae), with a Review of Ponerine Ecology and Behavior (Zootaxa 3817) 242 pp.; 30 cm. 18 Jun. 2014 ISBN 978-1-77557-419-4 (paperback) ISBN 978-1-77557-420-0 (Online edition) FIRST PUBLISHED IN 2014 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2014 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing.
    [Show full text]
  • The Insect Sting Pain Scale: How the Pain and Lethality of Ant, Wasp, and Bee Venoms Can Guide the Way for Human Benefit
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2019 1 (Article): Special Issue: "Arthropod Venom Components and their Potential Usage" 2 The Insect Sting Pain Scale: How the Pain and Lethality of Ant, 3 Wasp, and Bee Venoms Can Guide the Way for Human Benefit 4 Justin O. Schmidt 5 Southwestern Biological Institute, 1961 W. Brichta Dr., Tucson, AZ 85745, USA 6 Correspondence: [email protected]; Tel.: 1-520-884-9345 7 Received: date; Accepted: date; Published: date 8 9 Abstract: Pain is a natural bioassay for detecting and quantifying biological activities of venoms. The 10 painfulness of stings delivered by ants, wasps, and bees can be easily measured in the field or lab using the 11 stinging insect pain scale that rates the pain intensity from 1 to 4, with 1 being minor pain, and 4 being extreme, 12 debilitating, excruciating pain. The painfulness of stings of 96 species of stinging insects and the lethalities of 13 the venoms of 90 species was determined and utilized for pinpointing future promising directions for 14 investigating venoms having pharmaceutically active principles that could benefit humanity. The findings 15 suggest several under- or unexplored insect venoms worthy of future investigations, including: those that have 16 exceedingly painful venoms, yet with extremely low lethality – tarantula hawk wasps (Pepsis) and velvet ants 17 (Mutillidae); those that have extremely lethal venoms, yet induce very little pain – the ants, Daceton and 18 Tetraponera; and those that have venomous stings and are both painful and lethal – the ants Pogonomyrmex, 19 Paraponera, Myrmecia, Neoponera, and the social wasps Synoeca, Agelaia, and Brachygastra.
    [Show full text]
  • Synonymic List of Neotropical Ants (Hymenoptera: Formicidae)
    BIOTA COLOMBIANA Special Issue: List of Neotropical Ants Número monográfico: Lista de las hormigas neotropicales Fernando Fernández Sebastián Sendoya Volumen 5 - Número 1 (monográfico), Junio de 2004 Instituto de Ciencias Naturales Biota Colombiana 5 (1) 3 -105, 2004 Synonymic list of Neotropical ants (Hymenoptera: Formicidae) Fernando Fernández1 and Sebastián Sendoya2 1Profesor Asociado, Instituto de Ciencias Naturales, Facultad de Ciencias, Universidad Nacional de Colombia, AA 7495, Bogotá D.C, Colombia. [email protected] 2 Programa de Becas ABC, Sistema de Información en Biodiversidad y Proyecto Atlas de la Biodiversidad de Colombia, Instituto Alexander von Humboldt. [email protected] Key words: Formicidae, Ants, Taxa list, Neotropical Region, Synopsis Introduction Ant Phylogeny Ants are conspicuous and dominant all over the All ants belong to the family Formicidae, in the superfamily globe. Their diversity and abundance both peak in the tro- Vespoidea, within the order Hymenoptera. The most widely pical regions of the world and gradually decline towards accepted phylogentic schemes for the superfamily temperate latitudes. Nonetheless, certain species such as Vespoidea place the ants as a sister group to Vespidae + Formica can be locally abundant in some temperate Scoliidae (Brother & Carpenter 1993; Brothers 1999). countries. In the tropical and subtropical regions numerous Numerous studies have demonstrated the monophyletic species have been described, but many more remain to be nature of ants (Bolton 1994, 2003; Fernández 2003). Among discovered. Multiple studies have shown that ants represent the most widely accepted characters used to define ants as a high percentage of the biomass and individual count in a group are the presence of a metapleural gland in females canopy forests.
    [Show full text]
  • The Coexistence
    Myrmecological News 16 75-91 Vienna, January 2012 Convergent evolution of wingless reproductives across all subfamilies of ants, and sporadic loss of winged queens (Hymenoptera: Formicidae) Christian PEETERS Abstract Flight is a one-off event in ants, hence after mating, the wing muscles of winged queens can function as protein reserves during independent colony foundation (ICF). Another strategy occurring in many unrelated lineages is dependent colony foundation (DCF). DCF does not require queens with expensive wing muscles because dispersal is on foot, and a found- ress relies on nestmate workers to feed her first brood of workers. The shift to DCF seems the reason why wingless reproductives (ergatoid queens, short-winged queens, and gamergates) evolved independently in more than 50 genera belonging to 16 subfamilies. In various species they occur together with winged queens (in the same or different popu- lations), in other species winged queens were replaced completely. Because wingless reproductives are the product of convergence, there is tremendous heterogeneity in morphological characteristics as well as selective contexts. These novel reproductive phenotypes cannot function without nestmate workers (foundresses forage in only few species), hence addi- tional investment in workers is needed. Key words: Colony foundation, flight, reproduction, dispersal, brachyptery, ergatoid queens, gamergates, review. Myrmecol. News 16: 75-91 (online 4 November 2011) ISSN 1994-4136 (print), ISSN 1997-3500 (online) Received 3 November 2009; revision received 25 July 2011; accepted 1 August 2011 Subject Editor: Birgit C. Schlick-Steiner Christian Peeters, Laboratoire Ecologie & Evolution, CNRS UMR 7625, Université Pierre et Marie Curie, 7 quai Saint Bernard, 75005 Paris, France.
    [Show full text]
  • Fertility Signalling and Reproductive Skew in Queenless Ants
    ANIMAL BEHAVIOUR, 2004, 68, 1209–1219 doi:10.1016/j.anbehav.2003.11.026 Fertility signalling and reproductive skew in queenless ants VIRGINIE CUVILLIER-HOT*†, ALAIN LENOIR†, ROBIN CREWE‡, CHRISTIAN MALOSSE§ & CHRISTIAN PEETERS* *Laboratoire d’E´cologie, Universite´ Pierre et Marie Curie, Paris yInstitut de Recherche sur la Biologie de l’Insecte, Faculte´ des Sciences, Tours zFaculty of Natural & Agricultural Sciences, University of Pretoria xUnite´ de Phytopharmacie, Institut National de Recherche Agronomique de Versailles (Received 27 May 2003; initial acceptance 17 September 2003; final acceptance 24 November 2003; published online 29 September 2004; MS. number: A9622) Social insects often show an extreme reproductive skew. In queenless ants, colonies consist of morphologically identical workers that can all potentially reproduce sexually. Similarly to that in social vertebrates, aggression in these ants functions to select the reproductive(s). We investigated the mechanisms underlying reproductive skew in the monogynous queenless ant Streblognathus peetersi. Behavioural observations of disturbed hierarchies were integrated with physiological measures of fertility (vitellogenin titre in the haemolymph) and chemical analysis of cuticular hydrocarbons, which are putative fertility pheromones. This multifaceted approach revealed that the colony reproductive is determined as a result of aggression between high-ranking workers, but once an alpha is established, chemical signalling is enough to maintain reproductive skew. As already reported in several species of ants and also in a social wasp, egg layers have distinct profiles of cuticular hydrocarbons compared with infertile workers. Importantly, ‘high rankers’ who are unable to lay eggs also have a specific cuticular profile; this is consistent with their intermediate state of fertility indicated by vitellogenin levels.
    [Show full text]
  • Djvu Document
    Vol. 5, No. 3-4, September-December 1991 167 Notes On Ant Larvae 1989-1991 George C Wheeler1 and .Jeanette Wheeler Research ASSOCiates, F10nda Collection of Arthropods Gainesville, Florida 3358 NE 58th Avenue Silver Springs, Florida 32688 Introduction species studied based solely upon the head. The 44 In 1976 we pUblished "Ant Larvae: Revi~w and drawings of the whole head are in antel im ( full- Synthesis," ..",him we regarded as a summary of face) view and of the mouth parts enlarged. The our life-time of research. During the following drawings are quite good except that the diameters yeals so many new lalvae wele added to OUI of t~ hair~;~~tJy e~gge~ated collection and so much was published about ant larvae that we decided another general treat.ment was desirable; so in 1986 we published a "Ten-Year lycaenid larvae, but unfortunately has not named Supplement" to include additions and revisions to many of the ant species involved. Tire lal vae of our Memoir. In 1987 and 1988 additional material several lycaenid species feed on ant brood. warranted a supplement to the "10-year Supple­ Wneeler and Wneeler 1989a. The pnnter faIled ment" in 1989a. This article is the third supple- to~eed ma;yo~ the4:orrections we ma~e in the ment to the Memoir. gal ey proo alt ough our manuscript a been In the supplement, two genera are charac- corrected. This 'Nas especially true of Literature terized, one generic characterization is revised, and Cited. Therefore, we have prepared corrected copies references in the literature are increased by 43.
    [Show full text]
  • The Endocrinology and Evolution of Tropical Social Wasps: from Casteless Groups to High Societies
    1 The endocrinology and evolution of tropical social wasps: from casteless groups to high societies Hans Kelstrup A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2012 Reading Committee: Lynn M. Riddiford, Chair James W. Truman Jeff Riffell Program Authorized to Offer Degree: Biology Department 2 ©Copyright 2012 Hans Kelstrup 3 University of Washington Abstract The endocrinology and evolution of tropical social wasps: from casteless groups to high societies Hans Kelstrup Chair of the Supervisory Committee: Dr. Lynn M. Riddiford Biology Department The endocrinology and behavior of three social vespid wasps was studied in northeast Brazil (São Cristóvão, Sergipe) from 2010-2011. There were two main objectives of this work: to test a hypothesis on the origin of reproductive castes (i.e. queen and worker phenotypes) in a communal species (Zethus miniatus: Eumeninae), and to describe the endocrinology of two highly eusocial swarm founding species (Polybia micans and Synoeca surinama: Polistinae). Wasps offer an unparalleled opportunity for research on social evolution due to the continuous range of social organization among extant species. Yet little work has been devoted to the study of wasp physiology beyond Polistes, a large genus of primitively eusocial paper wasps. In Polistes, juvenile hormone (JH) has been shown to be important for reproduction, dominance, chemical signaling (e.g., cuticular hydrocarbons (CHCs)) in queens while promoting the early onset of certain tasks in workers. Evidence for a similar mechanism in bees and ants suggests a dual function of JH was intact in the last common ancestor of these groups (the sting- 4 possessing Hymenoptera).
    [Show full text]
  • Lach Et Al 2009 Ant Ecology.Pdf
    Ant Ecology This page intentionally left blank Ant Ecology EDITED BY Lori Lach, Catherine L. Parr, and Kirsti L. Abbott 1 3 Great Clarendon Street, Oxford OX26DP Oxford University Press is a department of the University of Oxford. It furthers the University’s objective of excellence in research, scholarship, and education by publishing worldwide in Oxford New York Auckland Cape Town Dar es Salaam Hong Kong Karachi Kuala Lumpur Madrid Melbourne Mexico City Nairobi New Delhi Shanghai Taipei Toronto With offices in Argentina Austria Brazil Chile Czech Republic France Greece Guatemala Hungary Italy Japan Poland Portugal Singapore South Korea Switzerland Thailand Turkey Ukraine Vietnam Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries Published in the United States by Oxford University Press Inc., New York # Oxford University Press 2010 The moral rights of the author have been asserted Database right Oxford University Press (maker) First published 2010 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, or under terms agreed with the appropriate reprographics rights organization. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above You must not circulate this book in any other binding or cover and you must impose the same condition on any acquirer British Library Cataloguing in Publication Data Data available Library of Congress Cataloging in Publication Data Data available Typeset by SPI Publisher Services, Pondicherry, India Printed in Great Britain on acid-free paper by CPI Antony Rowe, Chippenham, Wiltshire ISBN 978–0–19–954463–9 13579108642 Contents Foreword, Edward O.
    [Show full text]