Notes on Ant Larvae 1989-1991

Total Page:16

File Type:pdf, Size:1020Kb

Notes on Ant Larvae 1989-1991 University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Center for Systematic Entomology, Gainesville, Insecta Mundi Florida September 1991 Notes On Ant Larvae 1989-1991 George C. Wheeler Florida State Collection of Arthropods, Florida Department of Agriculture and Consumer Services, Gainesville, FL Jeanette Wheeler Florida State Collection of Arthropods, Florida Department of Agriculture and Consumer Services, Gainesville, FL Follow this and additional works at: https://digitalcommons.unl.edu/insectamundi Part of the Entomology Commons Wheeler, George C. and Wheeler, Jeanette, "Notes On Ant Larvae 1989-1991" (1991). Insecta Mundi. 427. https://digitalcommons.unl.edu/insectamundi/427 This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Vol. 5, No. 3-4, September-December 1991 167 Notes On Ant Larvae 1989-1991 George C. Wheeler' and Jeanette Wheeler Research Associates, Florida Collection of Arthropods Gainesville, Florida 3358 NE 58th Avenue Silver Springs, Florida 32688 Introduction species studied based solely upon the head. The 44 In 1976 we published "Ant Larvae: Review and drawings of the whole head are in anterior (=full- Synthesis," which we regarded as a summary of face) view and of the mouth parts enlarged. The our life-time of research. During the following drawings are quite good except that the diameters years so many new larvae were added to our of the hairs are greatly exaggerated. collection and so much was published about ant Pierce 1987. This author has written a thor- larvae that we decided another general treatment ough review of the relations between ants and was desirable; so in 1986 we published a "Ten-Year lycaenid larvae, but unfortunately has not named Supplement" to include additions and revisions to many of the ant species involved. The larvae of our Memoir. In 1987 and 1988 additional material several lycaenid species feed on ant brood. warranted a supplement to the "lo-year Supple- Wheeler and Wheeler 1989a. The printer failed ment" in 1989a. This article is the third supple- to heed many of the corrections we made on the ment to the Memoir. galley proof although our manuscript had been In the supplement, two genera are charac- corrected. This was especially true of Literature terized, one generic characterization is revised, and Cited. Therefore, we have prepared corrected copies references in the literature are increased by 43. of this part, which we will be glad to mail upon Changes in our Memoir (1976) and its supplements request. In addition the references on page 458 to (1986, 1989a) are noted. Amblyopone and Mystrium should have been deleted. Family Formicidae Hijlldobler and Wilson 1990. These authors Subfamily Myrmeciinae have cited many references to our publications on Body profile myrmecioid. Body hairs short.and ant larvae. We cite some of these in appropriate moderately abundant. Head hairs smooth and places here And hereafter. unbranched. Mandible large, pogonomyrmecoid. On page 22 is our figure showing our classifica- Labium with dorsal transverse welt, which is tion of the body profiles of ant larvae (1976: Fig. 3). densely beset with coarse spinules; palp a slight On page 21 they state: "Ant larvae have been elevation bearing 5-7 sensilla; opening of sericteries systematically described by Wheeler and Wheeler wide and salient. (1951-1986, syntheses 1976 and 1979), with a supplementary analysis supplied by Picquet Genus MYRMECIA Fabricius (1958)." This implies that Picquet's article sup- Body profile myrmecioid. Body hairs short; plements our publications, but a casual glance moderately numerous, uniformly distributed, shows that this is incorrect as to its contents, while unbranched, smooth or more or less denticulate, Picquet's article was published in 1958; and a sup- rarely uncinate. Head subpyriform in anterior plement is something added later. view. Head hairs few, unbranched, smooth or Picquet 1958. The larvae of 18 species are denticulate. Labrum small, short and bilobed, described and figured. The author's conclusions posterior surface with large isolated spinules and from this study were expressed by a key to the sensilla of various sizes. Mandible large, pogono- George C. Wheeler died on February 19, 1991. Insecta Mundi myrmecoid and heavily sclerotized; basal half Platythyrea schultzi Fore1 usually bearing isolated spinules. Maxilla and Wheeler and Wheeler 1989b:51. Description. labium spinulose with many large isolated spin- ules. Genus PROBOLOMYRMEX Mayr Myrmecia sp. Probolomyrmex angusticeps M. R. Smith Hijlldobler and Wilson 1990:347, Fig. 8-48. Taylor 1965:348. Description of mature larvae Photograph of larvae. based on pharate pupa with figures on p. 348. Taylor said: "The Probolomyrmex larva is distin- Genus NOTHOMYRMECIA Clark guished from those of all other known ponerine Body profile myrmecioid. Body hairs short, ants by the shape of the body and the unique moderately abundant and unbranched; of 2- types: posterodorsal suspensory organ, which is analagous (1) rather stout, slightly curved and with minute (but clearly not homologus) with the dorsal 'door- denticles near the apex, on all somites; (2) shorter, knob' tubercles found in some genera of the tribe sharply bent and denticulate, on venter of anterior Ponerini (see G. C. and J. Wheeler, 1952, 1964)." somites. Head subcircular in anterior view. Head But we have to challange the above: body shape is hairs moderately numerous and moderately long, the one character that cannot be determined from smooth and unbranched. Labrum short, moderate- the prepupa. sized. Mandible large, pogonomyrmecoid. Maxilla Holldobler and Wilson 1990:348. "Workers... coarsely spinulose. Labium with a dorsal trans- carry the larvae by the [posterodorsall tubercles. verse welt, which is densely beset with coarse They also attach the larvae to the roof of the nest spinules. Hyopharynx with a few minute spinules. with the apparently adhesive outer surface of the knob-like endings." Nothomyrmecia macrops Clark Holldobler and Wilson (1990:165, Fig.3-19). A Tribe Proceratiini photograph of living larvae. Genus PROCERATIUM Roger Subfamily Ponerinae Proceratium watasei, P. itoi, P. japonicum Tribe Amblyoponini Masuko 1986. Queens cut holes in the integu- Genus AMBLYOPONE Dalla Torre ment of worker larvae and feed on the exuding hemolymph. Amblyopone silvestri Wheeler Masuko 1986. Queens cut holes in the integu- Tribe Ponerini ment of mature or nearly mature larvae and feed Genus HYPOPONERA Santschi upon the exuding larval hemolymph. Wheeler and Wheeler 1989b:52. Correction in Masuko 1990. The external anatomy of five characterization. instars is described and illustrated by SEM. Wheeler and Wheeler 1989a:458. Headings and Genus PLECTROCTENA F. Smith references should have been deleted by printer. Genus MYSTRIUM Roger Plectroctena conjugata Santschi Wheeler and Wheeler 1989b:52. Description. Wheeler and Wheeler 1989a:458. Headings and references should have been deleted by the printer. Genus PONERA Latreille Tribe Platythyreini Genus PLA NTHYREA Roger Ponera coarctata Latreille Picquet 1958:22, Figs. 24-27. Platythyrea lamellosa Roger Genus SIMOPELTA Mayr Wheeler and Wheeler 1989b:51. Description. Wheeler and Wheeler 1989b:52. Characteriza- tion. Vol. 5, No. 3-4, September-December 1991 Genus STREBLOGNATHUS Mayr numerous, short, unbranched, smooth. Mouth parts Wheeler and Wheeler 1989b:53. Characteriza- small. Mandible tetraponeroid. tion. Tetraponera (=Pachysima) latifrons Emery Streblognathus aethiopicus (F. Smith) Holldobler and Wilson 1990:166, Figs. 3-20 Wheeler and Wheeler 1989b:53. Characteriza- repeat Wheeler 1918, Fig. 9 and our 1956, Text tion. Fig. 5. Subfamily Cerapachyinae Subfamily Myrmicinae Genus CERAPACHYS F. Smith Tribe Myrmicini Genus MYRMICA Latreille Cerapachys turneri Fore1 Holldobler and Wilson 1990:569. Workers of Myrmica laevinodis Nylander species in this group store, after stinging, the Picquet 1958:30, Figs. 38-42. living larvae of Pheidole. Myrmica ruginodis Nylander Subfamily Dorylinae Picquet 1958:31, Fig. 43. Genus NEIVAMYRMEX Borgmeier Tribe Pheidolini Neivamyrmex pilosus (F. Smith) Genus APHAENOGASTER Mayr Akre and Torgerson 1968. The staphylinid beetle Diploeciton nevermanni Reichensperger is Aphaenogaster cockerelli (E. Andr6) predaceous on the ant brood. Holldobler and Wilson 1990:239, Fig 7-21. Photograph of larvae. Subfamily Leptanillinae Genus LEPTANILLA Emery Aphaenogaster gib bosa Latreille Picquet 1958:25, Figs. 32-35. Leptanilla japonica Baroni-Urbani Aphaenogaster subterranea Latreille Masuko 1987. Unique among ant larvae is a Picquet 1958:24, Figs. 28-31. pair of hemolymph feeding pores. Through these Holldobler and Wilson 1990:68, Fig 3-2. A good the queen feeds on the hemolymph of the larvae. photograph of larvae placed on food by workers. Masuko also found that when a worker moves a larva it grasps with its posterior mouth parts the peculiar anteroventral projection from the pro- Genus PHEIDOLE Westwood thorax of the larva. Wheeler and Wheeler 1988:185-189. Descrip- Pheidole bicornis Fore1 tion of young larvae. Letourneau 1990. Larvae of a clerid beetle Phyllobaenus sp. feed upon the Pheidole brood. Subfamily Pseudomyrmecinae Genus TETRAPONERA F. Smith Tribe Solenopsidini REVISED CHARACTERIZATION. Body profile Genus
Recommended publications
  • The World at the Time of Messel: Conference Volume
    T. Lehmann & S.F.K. Schaal (eds) The World at the Time of Messel - Conference Volume Time at the The World The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment and the History of Early Primates 22nd International Senckenberg Conference 2011 Frankfurt am Main, 15th - 19th November 2011 ISBN 978-3-929907-86-5 Conference Volume SENCKENBERG Gesellschaft für Naturforschung THOMAS LEHMANN & STEPHAN F.K. SCHAAL (eds) The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates 22nd International Senckenberg Conference Frankfurt am Main, 15th – 19th November 2011 Conference Volume Senckenberg Gesellschaft für Naturforschung IMPRINT The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates 22nd International Senckenberg Conference 15th – 19th November 2011, Frankfurt am Main, Germany Conference Volume Publisher PROF. DR. DR. H.C. VOLKER MOSBRUGGER Senckenberg Gesellschaft für Naturforschung Senckenberganlage 25, 60325 Frankfurt am Main, Germany Editors DR. THOMAS LEHMANN & DR. STEPHAN F.K. SCHAAL Senckenberg Research Institute and Natural History Museum Frankfurt Senckenberganlage 25, 60325 Frankfurt am Main, Germany [email protected]; [email protected] Language editors JOSEPH E.B. HOGAN & DR. KRISTER T. SMITH Layout JULIANE EBERHARDT & ANIKA VOGEL Cover Illustration EVELINE JUNQUEIRA Print Rhein-Main-Geschäftsdrucke, Hofheim-Wallau, Germany Citation LEHMANN, T. & SCHAAL, S.F.K. (eds) (2011). The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates. 22nd International Senckenberg Conference. 15th – 19th November 2011, Frankfurt am Main. Conference Volume. Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main. pp. 203.
    [Show full text]
  • Newly Discovered Sister Lineage Sheds Light on Early Ant Evolution
    Newly discovered sister lineage sheds light on early ant evolution Christian Rabeling†‡§, Jeremy M. Brown†¶, and Manfred Verhaagh‡ †Section of Integrative Biology, and ¶Center for Computational Biology and Bioinformatics, University of Texas, 1 University Station C0930, Austin, TX 78712; and ‡Staatliches Museum fu¨r Naturkunde Karlsruhe, Erbprinzenstr. 13, D-76133 Karlsruhe, Germany Edited by Bert Ho¨lldobler, Arizona State University, Tempe, AZ, and approved August 4, 2008 (received for review June 27, 2008) Ants are the world’s most conspicuous and important eusocial insects and their diversity, abundance, and extreme behavioral specializations make them a model system for several disciplines within the biological sciences. Here, we report the discovery of a new ant that appears to represent the sister lineage to all extant ants (Hymenoptera: Formicidae). The phylogenetic position of this cryptic predator from the soils of the Amazon rainforest was inferred from several nuclear genes, sequenced from a single leg. Martialis heureka (gen. et sp. nov.) also constitutes the sole representative of a new, morphologically distinct subfamily of ants, the Martialinae (subfam. nov.). Our analyses have reduced the likelihood of long-branch attraction artifacts that have trou- bled previous phylogenetic studies of early-diverging ants and therefore solidify the emerging view that the most basal extant ant lineages are cryptic, hypogaeic foragers. On the basis of morpho- logical and phylogenetic evidence we suggest that these special- EVOLUTION ized subterranean predators are the sole surviving representatives of a highly divergent lineage that arose near the dawn of ant diversification and have persisted in ecologically stable environ- ments like tropical soils over great spans of time.
    [Show full text]
  • Unravelling the Diversity Behind the Ophiocordyceps Unilateralis (Ophiocordycipitaceae) Complex: Three New Species of Zombie-Ant Fungi from the Brazilian Amazon
    Phytotaxa 220 (3): 224–238 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2015 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.220.3.2 Unravelling the diversity behind the Ophiocordyceps unilateralis (Ophiocordycipitaceae) complex: Three new species of zombie-ant fungi from the Brazilian Amazon JOÃO P. M. ARAÚJO1*, HARRY C. EVANS2, DAVID M. GEISER3, WILLIAM P. MACKAY4 & DAVID P. HUGHES1, 5* 1 Department of Biology, Penn State University, University Park, Pennsylvania, United States of America. 2 CAB International, E-UK, Egham, Surrey, United Kingdom 3 Department of Plant Pathology, Penn State University, University Park, Pennsylvania, United States of America. 4 Department of Biological Sciences, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas, United States of America. 5 Department of Entomology, Penn State University, University Park, Pennsylvania, United States of America. * email: [email protected]; [email protected] Abstract In tropical forests, one of the most commonly encountered relationships between parasites and insects is that between the fungus Ophiocordyceps (Ophiocordycipitaceae, Hypocreales, Ascomycota) and ants, especially within the tribe Campono- tini. Here, we describe three newly discovered host-specific species, Ophiocordyceps camponoti-atricipis, O. camponoti- bispinosi and O. camponoti-indiani, on Camponotus ants from the central Amazonian region of Brazil, which can readily be separated using morphological traits, in particular the shape and behavior of the ascospores. DNA sequence data support inclusion of these species within the Ophiocordyceps unilateralis complex. Introduction In tropical forests, social insects (ants, bees, termites and wasps) are the most abundant land-dwelling arthropods.
    [Show full text]
  • Ants in French Polynesia and the Pacific: Species Distributions and Conservation Concerns
    Ants in French Polynesia and the Pacific: species distributions and conservation concerns Paul Krushelnycky Dept of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, Hawaii Hervé Jourdan Centre de Biologie et de Gestion des Populations, INRA/IRD, Nouméa, New Caledonia The importance of ants • In most ecosystems, form a substantial portion of a communities’ biomass (1/3 of animal biomass and ¾ of insect biomass in Amazon rainforest) Photos © Alex Wild The importance of ants • In most ecosystems, form a substantial portion of a communities’ biomass (1/3 of animal biomass and ¾ of insect biomass in Amazon rainforest) • Involved in many important ecosystem processes: predator/prey relationships herbivory seed dispersal soil turning mutualisms Photos © Alex Wild The importance of ants • Important in shaping evolution of biotic communities and ecosystems Photos © Alex Wild Ants in the Pacific • Pacific archipelagoes the most remote in the world • Implications for understanding ant biogeography (patterns of dispersal, species/area relationships, community assembly) • Evolution of faunas with depauperate ant communities • Consequent effects of ant introductions Hypoponera zwaluwenburgi Ants in the Amblyopone zwaluwenburgi Pacific – current picture Ponera bableti Indigenous ants in the Pacific? Approx. 30 - 37 species have been labeled “wide-ranging Pacific natives”: Adelomyrmex hirsutus Ponera incerta Anochetus graeffei Ponera loi Camponotus chloroticus Ponera swezeyi Camponotus navigator Ponera tenuis Camponotus rufifrons
    [Show full text]
  • Composition of Canopy Ants (Hymenoptera: Formicidae) at Ton Nga Chang Wildlife Sanctuary, Songkhla Province, Thailand
    ORIGINAL ARTICLE Composition of canopy ants (Hymenoptera: Formicidae) at Ton Nga Chang Wildlife Sanctuary, Songkhla Province, Thailand Suparoek Watanasit1, Surachai Tongjerm2 and Decha Wiwatwitaya3 Abstract Watanasit, S., Tongjerm, S. and Wiwatwitaya, D. Composition of canopy ants (Hymenoptera: Formicidae) at Ton Nga Chang Wildlife Sanctuary, Songkhla Province, Thailand Songklanakarin J. Sci. Technol., Dec. 2005, 27(Suppl. 3) : 665-673 Canopy ants were examined in terms of a number of species and species composition between in high and low disturbance sites of lowland tropical rainforest at Ton Nga Chang Wildlife Sanctuary, Songkhla province, Thailand, from November 2001 to November 2002. A permanent plot of 100x100 m2 was set up and divided into 100 sub-units (10x10m2) on each study site. Pyrethroid fogging was two monthly applied to collect ants on three trees at random in a permanent plot. A total of 118 morphospecies in 29 genera belonging to six subfamilies were identified. The Formicinae subfamily found the highest species numbers (64 species) followed by Myrmicinae (32 species), Pseudomyrmecinae (10 species), Ponerinae (6 species), Dolichoderinae (5 species) and Aenictinae (1 species). Myrmicinae and Ponerinae showed a significant difference of mean species number between sites (P<0.05) while Formicinae and Myrmicinae also showed a significant difference of mean species number between months (P<0.05). However, there were no interactions between sites and months in any subfamily. Key words : ants, canopy, species composition, distrubance, Songkhla, Thailand 1M.Sc.(Zoology), Assoc. Prof. 2M.Sc. Student in Biology, Department of Biology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112 Thailand. 3D.Agr., Department of Forest Biology, Faculty of Forestry, Kasetsart University, Chatuchak, Bangkok 10900 Thailand.
    [Show full text]
  • ACANTHOMYRMEX Basispinosus
    ACANTHOMYRMEX basispinosus. Acanthomyrmex basispinosus Moffett, 1986c: 67, figs. 8A, 9-14 (s.w.) INDONESIA (Sulawesi). Status as species: Bolton, 1995b: 53; Yamada, Ito, et al. 2018: 10. careoscrobis. Acanthomyrmex careoscrobis Moffett, 1986c: 78, figs. 39A, 40-43 (w.) BORNEO (East Malaysia: Sarawak). Yamada, Ito, et al. 2018: 7, 18 (s. ergatoid q., m.). Status as species: Bolton, 1995b: 53; Pfeiffer, et al. 2011: 44; Yamada, Ito, et al. 2018: 15 (redescription). concavus. Acanthomyrmex concavus Moffett, 1986c: 80, figs. 39B-C, 44-47 (w.) BORNEO (East Malaysia: Sarawak, Sabah). Status as species: Bolton, 1995b: 53; Pfeiffer, et al. 2011: 44; Yamada, Ito, et al. 2018: 10. crassispinus. Acanthomyrmex crassispina Wheeler, W.M. 1930a: 101, fig. 2 (w.) TAIWAN. Moffett, 1986c: 69 (s.). Status as species: Chapman & Capco, 1951: 114; Moffett, 1986c: 69 (redescription); Bolton, 1995b: 53; Lin & Wu, 1998: 86 (redescription); Lin & Wu, 2003: 64; Terayama, 2009: 187; Yamada, Ito, et al. 2018: 10. dusun. Acanthomyrmex dusun Wheeler, W.M. 1919e: 89 (s.) BORNEO (East Malaysia: Sarawak). [Misspelled as dusan by Chapman & Capco, 1951: 115.] Status as species: Chapman & Capco, 1951: 115; Moffett, 1986c: 70 (redescription); Bolton, 1995b: 53; Pfeiffer, et al. 2011: 44; Yamada, Ito, et al. 2018: 10. dyak. Acanthomyrmex dyak Wheeler, W.M. 1919e: 86 (s.w.) BORNEO (East Malaysia: Sarawak). Status as species: Chapman & Capco, 1951: 115. Junior synonym of ferox: Moffett, 1986c: 70; Bolton, 1995b: 53. ferox. Acanthomyrmex ferox Emery, 1893f: 245 (footnote), pl. 6, fig. 11 (w.) WEST MALAYSIA. [Acanthomyrmex ferox Emery, 1893a: cclxxvi. Nomen nudum.] Moffett, 1986c: 72 (s.q.m.). Status as species: Emery, 1900d: 678; Emery, 1924d: 235; Chapman & Capco, 1951: 115; Moffett, 1985a: 165; Moffett, 1986c: 70 (redescription); Bolton, 1995b: 53; Jaitrong & Nabhitabhata, 2005: 10; Pfeiffer, et al.
    [Show full text]
  • Wildlife Trade Operation Proposal – Queen of Ants
    Wildlife Trade Operation Proposal – Queen of Ants 1. Title and Introduction 1.1/1.2 Scientific and Common Names Please refer to Attachment A, outlining the ant species subject to harvest and the expected annual harvest quota, which will not be exceeded. 1.3 Location of harvest Harvest will be conducted on privately owned land, non-protected public spaces such as footpaths, roads and parks in Victoria and from other approved Wildlife Trade Operations. Taxa not found in Victoria will be legally sourced from other approved WTOs or collected by Queen of Ants’ representatives from unprotected areas. This may include public spaces such as roadsides and unprotected council parks, and other property privately owned by the representatives. 1.4 Description of what is being harvested Please refer to Attachment A for an outline of the taxa to be harvested. The harvest is of live adult queen ants which are newly mated. 1.5 Is the species protected under State or Federal legislation Ants are non-listed invertebrates and are as such unprotected under Victorian and other State Legislation. Under Federal legislation the only protection to these species relates to the export of native wildlife, which this application seeks to satisfy. No species listed under the EPBC Act as threatened (excluding the conservation dependent category) or listed as endangered, vulnerable or least concern under Victorian legislation will be harvested. 2. Statement of general goal/aims The applicant has recently begun trading queen ants throughout Victoria as a personal hobby and has received strong overseas interest for the species of ants found.
    [Show full text]
  • A Guide to the Ants of Sabangau
    A Guide to the Ants of Sabangau The Orangutan Tropical Peatland Project November 2014 A Guide to the Ants of Sabangau All original text, layout and illustrations are by Stijn Schreven (e-mail: [email protected]), supple- mented by quotations (with permission) from taxonomic revisions or monographs by Donat Agosti, Barry Bolton, Wolfgang Dorow, Katsuyuki Eguchi, Shingo Hosoishi, John LaPolla, Bernhard Seifert and Philip Ward. The guide was edited by Mark Harrison and Nicholas Marchant. All microscopic photography is from Antbase.net and AntWeb.org, with additional images from Andrew Walmsley Photography, Erik Frank, Stijn Schreven and Thea Powell. The project was devised by Mark Harrison and Eric Perlett, developed by Eric Perlett, and coordinated in the field by Nicholas Marchant. Sample identification, taxonomic research and fieldwork was by Stijn Schreven, Eric Perlett, Benjamin Jarrett, Fransiskus Agus Harsanto, Ari Purwanto and Abdul Azis. Front cover photo: Workers of Polyrhachis (Myrma) sp., photographer: Erik Frank/ OuTrop. Back cover photo: Sabangau forest, photographer: Stijn Schreven/ OuTrop. © 2014, The Orangutan Tropical Peatland Project. All rights reserved. Email [email protected] Website www.outrop.com Citation: Schreven SJJ, Perlett E, Jarrett BJM, Harsanto FA, Purwanto A, Azis A, Marchant NC, Harrison ME (2014). A Guide to the Ants of Sabangau. The Orangutan Tropical Peatland Project, Palangka Raya, Indonesia. The views expressed in this report are those of the authors and do not necessarily represent those of OuTrop’s partners or sponsors. The Orangutan Tropical Peatland Project is registered in the UK as a non-profit organisation (Company No. 06761511) and is supported by the Orangutan Tropical Peatland Trust (UK Registered Charity No.
    [Show full text]
  • Nutritional Ecology of the Carpenter Ant Camponotus Pennsylvanicus (De Geer): Macronutrient Preference and Particle Consumption
    Nutritional Ecology of the Carpenter Ant Camponotus pennsylvanicus (De Geer): Macronutrient Preference and Particle Consumption Colleen A. Cannon Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Entomology Richard D. Fell, Chairman Jeffrey R. Bloomquist Richard E. Keyel Charles Kugler Donald E. Mullins June 12, 1998 Blacksburg, Virginia Keywords: diet, feeding behavior, food, foraging, Formicidae Copyright 1998, Colleen A. Cannon Nutritional Ecology of the Carpenter Ant Camponotus pennsylvanicus (De Geer): Macronutrient Preference and Particle Consumption Colleen A. Cannon (ABSTRACT) The nutritional ecology of the black carpenter ant, Camponotus pennsylvanicus (De Geer) was investigated by examining macronutrient preference and particle consumption in foraging workers. The crops of foragers collected in the field were analyzed for macronutrient content at two-week intervals through the active season. Choice tests were conducted at similar intervals during the active season to determine preference within and between macronutrient groups. Isolated individuals and small social groups were fed fluorescent microspheres in the laboratory to establish the fate of particles ingested by workers of both castes. Under natural conditions, foragers chiefly collected carbohydrate and nitrogenous material. Carbohydrate predominated in the crop and consisted largely of simple sugars. A small amount of glycogen was present. Carbohydrate levels did not vary with time. Lipid levels in the crop were quite low. The level of nitrogen compounds in the crop was approximately half that of carbohydrate, and exhibited seasonal dependence. Peaks in nitrogen foraging occurred in June and September, months associated with the completion of brood rearing in Camponotus.
    [Show full text]
  • The Functions and Evolution of Social Fluid Exchange in Ant Colonies (Hymenoptera: Formicidae) Marie-Pierre Meurville & Adria C
    ISSN 1997-3500 Myrmecological News myrmecologicalnews.org Myrmecol. News 31: 1-30 doi: 10.25849/myrmecol.news_031:001 13 January 2021 Review Article Trophallaxis: the functions and evolution of social fluid exchange in ant colonies (Hymenoptera: Formicidae) Marie-Pierre Meurville & Adria C. LeBoeuf Abstract Trophallaxis is a complex social fluid exchange emblematic of social insects and of ants in particular. Trophallaxis behaviors are present in approximately half of all ant genera, distributed over 11 subfamilies. Across biological life, intra- and inter-species exchanged fluids tend to occur in only the most fitness-relevant behavioral contexts, typically transmitting endogenously produced molecules adapted to exert influence on the receiver’s physiology or behavior. Despite this, many aspects of trophallaxis remain poorly understood, such as the prevalence of the different forms of trophallaxis, the components transmitted, their roles in colony physiology and how these behaviors have evolved. With this review, we define the forms of trophallaxis observed in ants and bring together current knowledge on the mechanics of trophallaxis, the contents of the fluids transmitted, the contexts in which trophallaxis occurs and the roles these behaviors play in colony life. We identify six contexts where trophallaxis occurs: nourishment, short- and long-term decision making, immune defense, social maintenance, aggression, and inoculation and maintenance of the gut microbiota. Though many ideas have been put forth on the evolution of trophallaxis, our analyses support the idea that stomodeal trophallaxis has become a fixed aspect of colony life primarily in species that drink liquid food and, further, that the adoption of this behavior was key for some lineages in establishing ecological dominance.
    [Show full text]
  • Regulation of Queen Development Through Worker Aggression in A
    Behavioral Ecology 2 Behavioral Ecology doi:10.1093/beheco/ars062 Advance Access publication 26 April 2012 stress may be used to inhibit queen development in wasps (25 °C, 12:12 light/day) and fed live crickets (Acheta domesticus) (Jeanne 2009), and observations of antennal drumming in Po- twice per week, which workers paralyze in the foraging arena Original Article listes fuscatus have been linked to regulation of caste develop- and bring into the nest. All colonies used in this experiment ment (Suryanarayanan et al. 2011). In the ant Myrmica, workers were headed by gamergates (mated reproductive workers). have been observed biting queen-destined larvae at the end of the breeding season, piercing the larval cuticle, and a portion JH application and induction of queen development Regulation of queen development through of these larvae revert to worker development (Brian 1973). In the context of these previous studies, we hypothesized that To confirm that JHA application could induce queen develop- worker aggression in a predatory ant mechanical stress may serve as a mechanism to regulate queen ment in H. saltator, we tested the effect of topical application development in ants, particularly species from the relatively of JHA on final instar larvae (fourth instar). Twenty to thirty basal subfamily Ponerinae whose members share a number of fourth instar larvae (4.1–6.5 mm in length) were taken from April 26 ancestral characters in morphology and behavior that may limit a single mature colony and divided evenly between 2 groups Clint A. Penick and Ju¨rgen Liebig worker control over larval feeding (Schmidt 2009).
    [Show full text]
  • Stings of Some Species of Lordomynna and Mayriella (Formicidae: Myrmicinae)
    INSECTA MUNDI, Vol. 11, Nos. 3-4, September-December, 1997 193 Stings of some species of Lordomynna and Mayriella (Formicidae: Myrmicinae) Charles Kugler Biology Department, Radford University, Radford, VA 24142 Abstract: The sting apparatus and pygidium are described for eight of20 Lordomyrma species and one of five Mayriella species. The apparatus of L. epinotaiis is distinctly different from that of other Lordomyrma species. Comparisons with other genera suggest affinities of species of Lordomymw to species of Cyphoidris and Lachnomyrmex, while Mayriella abstinens Forel shares unusual features with those of P/'Oattct butteli. Introduction into two halves and a separate sting. The stings were mounted in glycerin jelly for ease of precise This paper describes the sting apparatus in positioning and repositioning for different views. eight species of Lordomyrma that were once mem- The other sclerites were usually mounted in Cana- bers of four different genera. The stings of five da balsam. Lordomyrma species were partially described by Voucher specimens identified with the label Kugler (1978), but at the time three were consid- "Kugler 1995 Dissection voucher" or "Voucher spec- ered to be in the genus Prodicroaspis or Promera­ imen, Kugler study 1976" are deposited in the noplus (Promeranoplus rouxi Emery, one an unde- Museum of Comparative Zoology, Cambridge, Mas- termined species of Promeranoplus, and Prodi­ sachusetts. croaspis sarasini Emery). These genera are now Most preparations were drawn and measured considered synonyms of Lordomyrma (Bolldobler using a Zeiss KF-2 phase contrast microscope with and Wilson 1990, p. 14; Bolton 1994, p. 106). In an ocular grid. Accuracy is estimated at plus or addi tion, during a revision of Rogeria (Kugler 1994) minus O.OOlmm at 400X magnification.
    [Show full text]