1 Oxbow Lakes As Indicators of Geomorphic Change In

Total Page:16

File Type:pdf, Size:1020Kb

1 Oxbow Lakes As Indicators of Geomorphic Change In OXBOW LAKES AS INDICATORS OF GEOMORPHIC CHANGE IN SOUTHEASTERN MISSISSIPPI By JAMES L. RASMUSSEN A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2010 1 © 2010 James L. Rasmussen 2 To the family, friends and teachers who sparked my interests and nurtured my dreams, this milestone would not be possible without their support and the inquisitive nature they instilled in me 3 ACKNOWLEDGMENTS This dissertation would not have been possible without the help of many people. Guiding this adventure was my advisor Joann Mossa. Throughout it all, she patiently supported my research and teaching activities. I am very grateful for the field experiences she provided to me; they ultimately led to this work. I also want to thank my doctoral committee: Mike Binford, Mark Brenner and Pete Waylen. Without their example and instruction over the past eight years I would not be the Assistant Professor that I am today. Finally I want to thank the other faculty, staff and students at the University of Florida’s Geography Department; learning suffers in a vacuum and Florida Geography is fertile ground for the imagination. I have missed it dearly since I departed two years ago. All field-based research is fraught with difficulties but summer data collection on the forested floodplains of Mississippi is particularly trying. I was fortunate to have the support of The Pat Harrison Water Management District of southeastern Mississippi. Their help went far beyond logistical support and provided that vital local perspective that is crucial in the Earth and Environmental Sciences. I would also like to thank my field team of Justin Rose, Glenn Hermansen and Jon Rose. Over two summers they braved alligators, clouds of biting and stinging insects, poisonous snakes, lightning strikes and indescribably hot summer days; all on a floodplain overgrown with an invasive vine that often forced us to measure our rate of movement in meters per hour. Finally I want to thank my wife who was there every step of the way as I designed, planned, collected and compiled the research that follows in this dissertation. 4 TABLE OF CONTENTS page ACKNOWLEDGMENTS .................................................................................................. 4 LIST OF TABLES ............................................................................................................ 8 LIST OF FIGURES .......................................................................................................... 9 ABSTRACT ................................................................................................................... 12 CHAPTER 1 INTRODUCTION .................................................................................................... 15 Oxbow Lakes as Indicators of River Channel Change ............................................ 15 Sinuosity and the Clustering of Alluvial Cutoffs ....................................................... 17 The Infilling of Oxbow Lakes ................................................................................... 18 2 OXBOW LAKES AS INDICATORS OF RIVER CHANNEL CHANGE .................... 20 Introduction ............................................................................................................. 20 Measuring River Channel Change ................................................................... 20 Factors Affecting River Channel Change in the Study Area ............................. 22 Regional Setting ..................................................................................................... 27 The Leaf River Basin ........................................................................................ 27 Land Use History .............................................................................................. 30 The Study Reach .............................................................................................. 31 Materials and Methods............................................................................................ 33 Stream and Cutoff Cross Sections ................................................................... 33 Cutoff and Lake Age Estimates ........................................................................ 34 Lake Bed to Riverbed Elevation Changes ........................................................ 36 Results .................................................................................................................... 37 Channel Cross-Sectional Geometry Measurements ........................................ 37 Bed Elevation Measurements ........................................................................... 39 Discussion .............................................................................................................. 41 Changes in Channel Geometry ........................................................................ 41 Changes in Bed Elevation ................................................................................ 43 Conclusion .............................................................................................................. 47 3 SINUOSITY AND THE CLUSTERING OF ALLUVIAL CUTOFFS .......................... 62 Introduction ............................................................................................................. 62 Problems of Scale and Time in Study .............................................................. 62 Meandering and Alluvial Cutoffs in a Dynamic System .................................... 63 Self-Organizing Systems, Thresholds, and Criticality ....................................... 68 Regional Setting ..................................................................................................... 70 5 Materials and Methods............................................................................................ 72 Data Description and Origin ............................................................................. 72 Data Standards and Preparation ...................................................................... 73 Data Calculations ............................................................................................. 76 Results .................................................................................................................... 80 Alluvial Cutoffs .................................................................................................. 80 Channel Sinuosity ............................................................................................ 83 Discussion .............................................................................................................. 84 Alluvial Cutoffs and Clustering .......................................................................... 84 Sinuosity and Cutoff Clusters ........................................................................... 87 Self-Organized Criticality and Sinuosity Changes over Time ........................... 89 Conclusions ............................................................................................................ 94 4 THE INFILLING OF OXBOW LAKES ................................................................... 114 Introduction ........................................................................................................... 114 Alluvial Cutoffs ................................................................................................ 114 Lake Sedimentation ........................................................................................ 117 Landform Longevity ........................................................................................ 120 Regional Setting ................................................................................................... 121 The Leaf and Chickasawhay Rivers of the Pascagoula Basin........................ 121 Detailed Field Study: Four Lakes ................................................................... 122 Materials and Methods.......................................................................................... 124 Lake Area and Perimeter Changes ................................................................ 124 Field Data Collection and Analysis ................................................................. 126 Lake Bathymetry Analysis .............................................................................. 131 Results and Discussion......................................................................................... 133 Alluvial Cutoffs and Oxbow Lakes .................................................................. 133 Stream Stage and Discharge ......................................................................... 136 Lake Surface Area Loss Over Time ............................................................... 138 Oxbow Lake Sedimentation: Core Results ..................................................... 142 Oxbow Lake Sedimentation: Lake Bathymetry ............................................... 144 The Effect of Connecting Channels between the River and Lake .................. 148 The Effect of Tributary Streams ...................................................................... 149 The Effect of Local Sources of Sediment ....................................................... 151 Final Thoughts on Oxbow Lake Sedimentation .............................................. 152 Conclusions .........................................................................................................
Recommended publications
  • The Huron River History Book
    THE HURON RIVER Robert Wittersheim Over 15,000 years ago, the Huron River was born as a small stream draining the late Pleistocene landscape. Its original destination was Lake Maumee at present day Ypsilanti where a large delta was formed. As centuries passed, ceding lake levels allowed the Huron to meander over new land eventually settling into its present valley. Its 125 mile journey today begins at Big Lake near Pontiac and ends in Lake Erie. The Huron’s watershed, which includes 367 miles of tributaries, drains over 900 square miles of land. The total drop in elevation from source to mouth is nearly 300 feet. The Huron’s upper third is clear and fast, even supporting a modest trout fishery. The middle third passes through and around many lakes in Livingston and Washtenaw Counties. Eight dams impede much of the Huron’s lower third as it flows through populous areas it helped create. Over 47 miles of this river winds through publicly owned lands, a legacy from visionaries long since passed. White Lake White Lake Mary Johnson The Great Lakes which surround Michigan and the thousands of smaller lakes, hundreds of rivers, streams and ponds were formed as the glacier ice that covered the land nearly 14,000 years ago was melting. The waters filled the depressions in the earth. The glaciers deposited rock, gravel and soil that had been gathered in their movement. This activity sculpted the land creating our landscape. In section 28 of Springfield Township, Oakland County, a body of water names Big Lake by the area pioneers is the source of the Huron River.
    [Show full text]
  • Lesson 4: Sediment Deposition and River Structures
    LESSON 4: SEDIMENT DEPOSITION AND RIVER STRUCTURES ESSENTIAL QUESTION: What combination of factors both natural and manmade is necessary for healthy river restoration and how does this enhance the sustainability of natural and human communities? GUIDING QUESTION: As rivers age and slow they deposit sediment and form sediment structures, how are sediments and sediment structures important to the river ecosystem? OVERVIEW: The focus of this lesson is the deposition and erosional effects of slow-moving water in low gradient areas. These “mature rivers” with decreasing gradient result in the settling and deposition of sediments and the formation sediment structures. The river’s fast-flowing zone, the thalweg, causes erosion of the river banks forming cliffs called cut-banks. On slower inside turns, sediment is deposited as point-bars. Where the gradient is particularly level, the river will branch into many separate channels that weave in and out, leaving gravel bar islands. Where two meanders meet, the river will straighten, leaving oxbow lakes in the former meander bends. TIME: One class period MATERIALS: . Lesson 4- Sediment Deposition and River Structures.pptx . Lesson 4a- Sediment Deposition and River Structures.pdf . StreamTable.pptx . StreamTable.pdf . Mass Wasting and Flash Floods.pptx . Mass Wasting and Flash Floods.pdf . Stream Table . Sand . Reflection Journal Pages (printable handout) . Vocabulary Notes (printable handout) PROCEDURE: 1. Review Essential Question and introduce Guiding Question. 2. Hand out first Reflection Journal page and have students take a minute to consider and respond to the questions then discuss responses and questions generated. 3. Handout and go over the Vocabulary Notes. Students will define the vocabulary words as they watch the PowerPoint Lesson.
    [Show full text]
  • Geomorphic Classification of Rivers
    9.36 Geomorphic Classification of Rivers JM Buffington, U.S. Forest Service, Boise, ID, USA DR Montgomery, University of Washington, Seattle, WA, USA Published by Elsevier Inc. 9.36.1 Introduction 730 9.36.2 Purpose of Classification 730 9.36.3 Types of Channel Classification 731 9.36.3.1 Stream Order 731 9.36.3.2 Process Domains 732 9.36.3.3 Channel Pattern 732 9.36.3.4 Channel–Floodplain Interactions 735 9.36.3.5 Bed Material and Mobility 737 9.36.3.6 Channel Units 739 9.36.3.7 Hierarchical Classifications 739 9.36.3.8 Statistical Classifications 745 9.36.4 Use and Compatibility of Channel Classifications 745 9.36.5 The Rise and Fall of Classifications: Why Are Some Channel Classifications More Used Than Others? 747 9.36.6 Future Needs and Directions 753 9.36.6.1 Standardization and Sample Size 753 9.36.6.2 Remote Sensing 754 9.36.7 Conclusion 755 Acknowledgements 756 References 756 Appendix 762 9.36.1 Introduction 9.36.2 Purpose of Classification Over the last several decades, environmental legislation and a A basic tenet in geomorphology is that ‘form implies process.’As growing awareness of historical human disturbance to rivers such, numerous geomorphic classifications have been de- worldwide (Schumm, 1977; Collins et al., 2003; Surian and veloped for landscapes (Davis, 1899), hillslopes (Varnes, 1958), Rinaldi, 2003; Nilsson et al., 2005; Chin, 2006; Walter and and rivers (Section 9.36.3). The form–process paradigm is a Merritts, 2008) have fostered unprecedented collaboration potentially powerful tool for conducting quantitative geo- among scientists, land managers, and stakeholders to better morphic investigations.
    [Show full text]
  • 2019 Li, Z., Wu, X., and Gao, P.*, Experimental Study on the Process of Neck Cutoff
    Geomorphology 327 (2019) 215–229 Contents lists available at ScienceDirect Geomorphology journal homepage: www.elsevier.com/locate/geomorph Experimental study on the process of neck cutoff and channel adjustment in a highly sinuous meander under constant discharges Zhiwei Li a,b, Xinyu Wu a,PengGaoc,⁎ a School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410114, China b Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha 410114, China c Department of Geography, Syracuse University, Syracuse, NY 13244, USA article info abstract Article history: Neck cutoff is an essential process limiting evolution of meandering rivers, in particular, the highly sinuous ones. Received 29 July 2018 Yet this process is extremely difficult to replicate in laboratory flumes. Here we reproduced this process in a Received in revised form 1 November 2018 laboratory flume by reducing at the 1/2500 scale the current planform of the Qigongling Bend (centerline length Accepted 1 November 2018 13 km, channel width 1.2 km, and neck width 0.55 km) in the middle Yangtze River with geometric similarity. In Available online 07 November 2018 five runs with different constant input discharges, hydraulic parameters (water depth, surface velocity, and slope), bank line changes, and riverbed topography were measured by flow meter and point gauges; and bank Keywords: fl Meandering channel line migration and a neck cutoff process were captured by six overhead cameras mounted atop the ume. By Neck cutoff
    [Show full text]
  • Preprint 06-041
    SME Annual Meeting Mar. 27-Mar.29, 2006, St. Louis, MO Preprint 06-041 A MEANDER CUTOFF INTO A GRAVEL EXTRACTION POND, CLACKAMAS RIVER, OREGON P. J. Wampler, Grand Valley State Univ., Allendale, MI E. F. Schnitzer, Dept. of Geology and Mineral Industries, Albany, OR D. Cramer, Portland General Electric, Estacada, OR C. Lidstone, Lidstone and Assoc(s)., Fort Collins, CO Abstract Introduction The River Island mining site is located at approximately river mile The River Island site provides a unique opportunity to examine (RM) 15 on the Clackamas River, a large gravel-bed river in northwest the physical changes to a river channel resulting from avulsion into a Oregon. During major flooding in February 1996, rapid channel gravel extraction pond. Data from before and after the meander cutoff change occurred. The natural process of meander cutoff, slowed for allow evaluation of changes to river geometry, sediment transport, several years by dike construction, was accelerated by erosion into temperature, habitat, and channel form. gravel extraction ponds on the inside of a meander bend during the An avulsion is defined as a lateral migration or cutoff of a river. It flood. involves the diversion of water from the primary channel into a new In a matter of hours, the river cut off a meander and began flowing channel that is either created during the event or reoccupied. through a series of gravel pits located on the inside of the meander Avulsions may be rapid or take many years to complete (Slingerland bend. The cutoff resulted in a reduction in reach length of and Smith, 2004).
    [Show full text]
  • Oxbow Lakes White Paper
    Mississippi-Alabama Sea Grant Legal Program University of Mississippi School of Law Kinard Hall, Wing E – Room 256 University, MS 38677 (662) 915-7775 [email protected] PUBLIC RIGHTS ON MISSISSIPPI PUBLIC WATERS A White Paper Prepared by Josh Clemons, J.D. Independent Consultant and Former Research Counsel April 2011 This white paper was commissioned by the Mississippi Department of Wildlife, Fisheries, and Parks. The following information is intended as independent research only and does not constitute legal representation of MDWFP or any of its constituents by the Mississippi-Alabama Sea Grant Legal Program. It represents our interpretation of the relevant laws. This product was prepared by the Mississippi-Alabama Sea Grant Legal Program under award number NA06OAR4170078 from the Mississippi-Alabama Sea Grant Consortium and National Oceanic and Atmospheric Administration, U.S. Department of Commerce. The statements, findings, conclusions, and recommendations are those of the authors and do not necessarily reflect the views of NOAA or the U.S. Department of Commerce. MASGP 11-008-13 The Mississippi Code declares, in sweeping language, that the policy of the State of Mississippi is to allow its citizens to enjoy the bounty of her woods and waters: Hunting, trapping and fishing are vital parts of the heritage of the State of Mississippi. It shall be the public policy of the State of Mississippi to protect and preserve these activities. The Mississippi Commission on Wildlife, Fisheries and Parks, acting by and through the Mississippi Department of Wildlife, Fisheries and Parks, may regulate hunting, trapping and fishing activities in the State of Mississippi, consistent with its powers and duties under the law.
    [Show full text]
  • Classifying Rivers - Three Stages of River Development
    Classifying Rivers - Three Stages of River Development River Characteristics - Sediment Transport - River Velocity - Terminology The illustrations below represent the 3 general classifications into which rivers are placed according to specific characteristics. These categories are: Youthful, Mature and Old Age. A Rejuvenated River, one with a gradient that is raised by the earth's movement, can be an old age river that returns to a Youthful State, and which repeats the cycle of stages once again. A brief overview of each stage of river development begins after the images. A list of pertinent vocabulary appears at the bottom of this document. You may wish to consult it so that you will be aware of terminology used in the descriptive text that follows. Characteristics found in the 3 Stages of River Development: L. Immoor 2006 Geoteach.com 1 Youthful River: Perhaps the most dynamic of all rivers is a Youthful River. Rafters seeking an exciting ride will surely gravitate towards a young river for their recreational thrills. Characteristically youthful rivers are found at higher elevations, in mountainous areas, where the slope of the land is steeper. Water that flows over such a landscape will flow very fast. Youthful rivers can be a tributary of a larger and older river, hundreds of miles away and, in fact, they may be close to the headwaters (the beginning) of that larger river. Upon observation of a Youthful River, here is what one might see: 1. The river flowing down a steep gradient (slope). 2. The channel is deeper than it is wide and V-shaped due to downcutting rather than lateral (side-to-side) erosion.
    [Show full text]
  • Sediment-Triggered Meander Deformation in the Amazon Basin
    Sediment-triggered meander deformation in the Amazon Basin Joshua Ahmed, José A. Constantine & Thomas Dunne 1 Jose A. Constantine, Thomas Dunne, Carl Legleiter & Eli D. Lazarus Sediment and long-term channel and floodplain evolution across the Amazon Basin 2 Meandering rivers & their importance 3 Controls on meander migration • Curvature • Discharge • Floodplain composition • Vegetation • Sediment? 4 Alluvial sediment • The substrate transported through our river systems • The substrate that builds numerous bedforms, the bedforms that create habitats, the same material that creates the floodplains on which we build and extract our resources. Yet there is supposedly no real connection between this and channel morphodynamics? 5 6 7 Study site: Amazon Basin 8 9 What we did • methods 10 Results 11 Results 12 Results 13 Results 14 Results 15 Proposed mechanisms 16 Summary • Rivers with high sediment supplies migrate more and generate more cutoffs • Greater populations of oxbow lakes (created by cutoffs) mean larger voids in the floodplain • Greater numbers of voids mean more potential sediment accommodation space (to be occupied by fines) • DAMS – connectivity • Rich diversity of habitats 17 36,139 ha Dam, Maderia Finer and Olexy, 2015, New dams on the Maderia River 18 For further information 19 For more information Ahmed et al. In prep i.e., coming soon… to a journal near you 20 References • Constantine, J. A. and T. Dunne (2008). "Meander cutoff and the controls on the production of oxbow lakes." Geology 36(1): 23-26. • Dietrich, W. E., et al. (1979). "Flow and Sediment Transport in a Sand Bedded Meander." The Journal of Geology 87(3): 305-315.
    [Show full text]
  • Modification of Meander Migration by Bank Failures
    JournalofGeophysicalResearch: EarthSurface RESEARCH ARTICLE Modification of meander migration by bank failures 10.1002/2013JF002952 D. Motta1, E. J. Langendoen2,J.D.Abad3, and M. H. García1 Key Points: 1Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA, • Cantilever failure impacts migration 2National Sedimentation Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Oxford, Mississippi, through horizontal/vertical floodplain 3 material heterogeneity USA, Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA • Planar failure in low-cohesion floodplain materials can affect meander evolution Abstract Meander migration and planform evolution depend on the resistance to erosion of the • Stratigraphy of the floodplain floodplain materials. To date, research to quantify meandering river adjustment has largely focused on materials can significantly affect meander evolution resistance to erosion properties that vary horizontally. This paper evaluates the combined effect of horizontal and vertical floodplain material heterogeneity on meander migration by simulating fluvial Correspondence to: erosion and cantilever and planar bank mass failure processes responsible for bank retreat. The impact of D. Motta, stream bank failures on meander migration is conceptualized in our RVR Meander model through a bank [email protected] armoring factor associated with the dynamics of slump blocks produced by cantilever and planar failures. Simulation periods smaller than the time to cutoff are considered, such that all planform complexity is Citation: caused by bank erosion processes and floodplain heterogeneity and not by cutoff dynamics. Cantilever Motta, D., E. J. Langendoen, J. D. Abad, failure continuously affects meander migration, because it is primarily controlled by the fluvial erosion at and M.
    [Show full text]
  • Lake Restoration Report
    Lake Restoration Program 2020 Report and 2021 Plan A cooperative dredging project between DNR and the City of Council Bluffs removed over 500,000 CY of sand from Lake Manawa (Monona County), providing materials for a local levee-building project and improving water quality within the lake. Watershed ponds, constructed at West Lake Park in Scott County, will protect the four lakes in the Lake of the Hills Complex for many years. Mariposa Lake (Jasper County) following restoration, completed in 2020. The project included building two new ponds in the park to protect the lake, dredging, shoreline stabilization, and fish habitat. Submitted To Joint Appropriations Subcommittee on Transportation, Infrastructure, and Capitals and Legislative Services Agency 1 Executive Summary The Fiscal Year 2020 Iowa Lake Restoration Report and Fiscal Year 2021 Plan provides a status of past appropriated legislatively directed funding; outlines the future needs and demands for lake restoration in Iowa; and identifies a prioritized group of lakes and the associated costs for restoration. Iowans value water quality and desire safe healthy lakes that provide a full complement of aesthetic, ecological and recreational benefits. A recently completed water-based recreational use survey by Iowa State University found that six of 10 Iowans visit our lakes multiple times each year and spend $1.2 billion annually in their pursuit of outdoor lake recreation. The most popular activities are fishing, picnicking, wildlife viewing, boating, hiking/biking, swimming and beach use. In addition, visitations at lakes that have completed watershed and lake improvements efforts continue to exceed the state average and their own pre-restoration visitation levels.
    [Show full text]
  • EES - Streams ____1
    Name: __________________________ Date: _______ Pd. _______ EES - Streams ____1. Stream A has a steeper slope than ____4. In the two diagrams below, the length of stream B. However, the average water the arrows represents the relative velocities velocity of stream B is greater than that of of stream flow at various places in a stream. stream A. Which is the most reasonable Diagram I shows the different water explanation for this? velocities across the surface. Diagram II (1) Stream B has a higher average shows the different water velocities at temperature. various depths. (2) Stream B has more friction to overcome along its banks. (3) Stream B has a greater volume of water. (4) Stream B has a curved streambed. ____2. The diagram below represents a cross section of sedimentary deposits. Where would this type of deposition most likely occur? At which location in the stream is the water velocity greatest? (1) at the sides along the bottom (2) at the sides near the surface (3) at the center along the bottom (4) at the center near the surface ____5. The map below represents a view of a flowing stream. The letters identify locations (1) in a lake fed by a stream in the stream near the interface between (2) beneath a large glacier land and water. At which two locations is (3) at the rapids in a stream erosion due to flowing water likely to be (4) at the base of a shifting sand dune greatest? ____3. Stream velocity and stream discharge were recorded continuously at the same location in a stream channel.
    [Show full text]
  • Lake Restoration Report
    Lake Restoration Program 2019 Report and 2020 Plan Watershed Improvement: Over 200 watershed practices, like the bio-retention cells pictured here were installed around Easter Lake to capture storm water and improve water quality In-Lake Work: Numerous practices were installed including dredging 678,000 cubic yards of excess sediment from the lake After: Easter Lake Grand Re-Opening Celebration June 2019 Submitted To Joint Appropriations Subcommittee on Transportation, Infrastructure, and Capitals and Legislative Services Agency Executive Summary The 2019 Iowa Lake Restoration Report and 2020 Plan outlines the need and demand for lake restoration in Iowa; identifies a prioritized group of lakes and the associated costs for restoration; and provides the status of past appropriated legislatively directed funding. Iowans value water quality and desire safe healthy lakes that provide a full complement of aesthetic, ecological and recreational benefits. A recently completed water-based recreational use survey by Iowa State University found that six of 10 Iowans visit our lakes multiple times each year and spend $1.2 billion annually in their pursuit of outdoor lake recreation. The most popular activities are fishing, picnicking, wildlife viewing, boating, hiking/biking, swimming and beach use. In addition, visitations at lakes that have completed watershed and lake improvements efforts continue to exceed the state average and their own pre-restoration visitation levels. People are also willing to drive farther for lakes with better water quality and more amenities. Legislative Action Goals of Iowa’s Lake Restoration Program include: improved water quality, a diverse, balanced aquatic community, and sustained public use benefits. Many of our Iowa Lakes, similar to our nation’s lakes, are impaired and suffer from excessive algae growth and sedimentation due to nutrient loading and soil loss.
    [Show full text]