Italian Alder (Alnus Cordata)

Total Page:16

File Type:pdf, Size:1020Kb

Italian Alder (Alnus Cordata) Technical guidelines for genetic conservation and use Italian alder Alnus cordata Alnus cordata Aln Alnus cordata Fulvio Ducci¹ and Andrea Tani² ¹ CRA-ISSEL (Silviculture Research Centre), Arezzo, Italy ² Faculty of Forestry, University of Florence, Florence, Italy These Technical Guidelines are intended to assist those who cherish the valuable Italian alder genepool and its inheritance, through conserving valuable seed sources or use in practical forestry. The focus is on conserving the genetic diversity of the species at the European scale. The recommendations provided in this module should be regarded as a commonly agreed basis to be complemented and further developed in local, national or regional conditions. The Guidelines are based on the available knowledge of the species and on widely accepted methods for the conservation of forest genetic resources. Biology and ecology Italian alder (Alnus cordata (Lo- isel) Desf.) is a monoecious, wind- pollinated tree. There are two recognized bo- tanical varieties: rotundifolia and genuina. The spe- cies reaches repro- ductive maturity at about 10-12 years of age. Flower buds appear in early summer, just before leaf buds burst, and flowering starts the following winter. Male flowers contain 5-6 cat- kins. The female catkins are axillary to male catkins and develop into pseudo-cones. These ripen during the winter, turning from green to brown, and open the following spring. The seed is wind-dispersed. Buds and pseudo-cones are the largest among alders. Leaves are typically heart- shaped. In spring, bud-burst occurs relatively late. Leaves ItalianAlnus alderAlnus cordataItalian aldercordataAlnus cordataItalian alderAlnus cordata ItalianAlnus alderAlnus cordataItalian aldercordataAlnus cordataItalian alderAlnus cordata ItalianAlnus alderAlnus cordataItalian cordataalderAlnus cordataItalian alderAlnus cordata AlnusItalian alderAlnus cordataItalian c alderAlnus cordata commonly remain green after Distribution Importance and use the first frosts of winter and per- sist until the end of December. Italian alder grows at alti- Italian alder is found in small Italian alder is a fast-growing, tudes of 200 m (on northern areas of the southern Apennines multipurpose species that can slopes) to 1600 m, depending on (Basilicata, Calabria and Cam- also improve soil fertility though rainfall and temperature. It can pania) and mountains in north- symbiotic nitrogen fixation with reach a height of 25 m or more in eastern Corsica. Both varieties Actinomyces alni (Frankia alni). natural forests, with stem diam- (rotundifolia and genuina) grow It is grown as an ornamental eter of more than 65 cm at breast in southern Italy whereas only tree and also produces valu- height. Italian alder is a heliophil- rotundifolia is found in Corsica. able wood. The dried flower in- ous pioneer species and it can dustry uses the pseudo-cones rapidly colonize gaps created by for Christmas floral ornaments. felling in beech (Fagus sylvatica) In mountainous areas, and chestnut (Castanea sativa) it is planted for soil stands. This allows the species protection. In recent to develop pure stands. It is also decades, Italian alder able to invade black pine (Pinus has been widely used, in Italy, nigra) stands in wet conditions. as a shelter species with wal- Adventitious buds commonly nut (Juglans regia), wild cherry survive on stumps after forest (Prunus avium) and other no- fires and are able to produce ble hardwoods in intensive for- shoots very quickly. est tree-farming programmes. In Italian alder will grow on most France, the potential of this spe- soils, but planting in clay soils cies for biomass production is should be avoided. being considered. Alder timber is reddish-or- ange, with relatively wide an- nual rings resulting from the fast growth typical of the species. In general, the quality of the timber is similar to that of hy- brid poplar, although it is heavier, shrinks much more and has high modulus of rupture. The timber breaks down rapidly when ex- posed to air, but is durable when immersed in water. The timber is used for turning and carving as well as for the production of moulding, furniture, panelling and plywood. ItalianAlnus alderAlnus cordataItalian aldercordataAlnus cordataItalian alderAlnus cordata ItalianAlnus alderAlnus cordataItalian aldercordataAlnus cordataItalian alderAlnus cordata ItalianAlnus alderAlnus cordataItalian cordataalderAlnus cordataItalian alderAlnus cordata AlnusItalian alderAlnus cordataItalian c alderAlnus cordata Genetic knowledge Threats to severely damaged near their low- genetic diversity er altitude limits. Climate change could also result in a reduction in Studies on intra-specific varia- Despite its limited natural range, genetic diversity through loss of tion have pointed out that ge- Italian alder is not considered an suitable habitats. Other threats netic diversity at individual level endangered species. It has expe- are connected with competition is very high. However, compar- rienced little human intervention, with beech and other species ing Italian populations, variation largely because it grows over and the isolation due to reduc- in morphological traits, such as a wide range of elevations and tion and/or absence of geneflow leaf size and leaf shape, is small. can spread very rapidly. Natural between populations. Comparisons of growth rate have regeneration occurs readily and The nursery system may also never shown large differences in seedling growth is rapid in clear contribute to the reduction of more than 30 years of observa- cuts or gaps in forests. Moreo- diversity variability in new planta- tions in provenance trials. ver, most of its natural range oc- tions, if seed collection activities In spite of the small species curs within protected areas. are based on only a very few range area in Italy, the absence The most important threats mother trees. of natural barriers allows the pol- to Italian alder diversity are the len and the seeds to maintain tree’s limited natural range, the sufficient gene flow to prevent reduction of clear cutting in differentiation among popula- mixed forests and in protected tions. Studies, including Corsi- areas, unauthorized grazing in can populations, show consid- forests and the isotherm shift in erable differences compared to the Mediterranean region due to Italian alder: these populations climate change. The increase in are more resistant to drought temperature may force beech–al- than the Italians ones. der ecosystems to shift to higher Self-pollination proved to be elevations. As a result, large parts very low in controlled pollina- of populations tion experiments carried out in could disap- plantations aimed at obtaining pear or be full-sib progenies. This should be taken into account in the design of the seed orchards; ramets from the same clone must be planted as far apart as possible. ItalianAlnus alderAlnus cordataItalian aldercordataAlnus cordataItalian alderAlnus cordata ItalianAlnus alderAlnus cordataItalian aldercordataAlnus cordataItalian alderAlnus cordata ItalianAlnus alderAlnus cordataItalian cordataalderAlnus cordataItalian alderAlnus cordata AlnusItalian alderAlnus cordataItalian c alderAlnus cordata Guidelines for genetic by harvesting. nursery, where the micro-site conservation and use Seed should be collected factors should be appropriate from 30-40 well scattered trees for maximum seedling survival The first long-term action is to per seed stand. Nearly ripe and development. Extreme con- ensure the in situ conservation pseudo-cones should be col- ditions for the range required of existing populations accord- lected in mid-October and early by seedlings should be avoided ing to dynamic gene conserva- November to ensure that viable (pH, minerals, temperatures, tion criteria. Italian alder can be seeds material is ob- light, water supply, etc.) as these managed in high forest or tained. The pseu- may impose selection pressures coppice systems. High do-cones should which only allow those that are forest management be dried at 38-40°C best adapted to these conditions can be applied for 15-18 hours to survive. to mixed or pure and between 5 Seed collection should be stands. In both and 6% air hu- regularly rotated among several cases the best midity. stands, so that different popula- regeneration Seeds can be tions or subpopulations are sam- method for stored up to about pled. Similarly, different groups Italian alder 2-3 years at 5-7°C of trees within a stand should is the crea- and 5-6% air humidity. be used for successive collec- tion of small Indeed, concerning the tions. Stands should be selected clear cuts seed preparation and pre-treat- across a range of altitudes to en- or strips (e.g. ments, precise temperature and sure that the full range of genetic 20 x 200 m). The best results moisture requirements during the variation is captured. for regeneration are achieved seed extraction and conserva- Seedlings should be planted where mineral soil is exposed, tion should be met (temperature on a site that matches the re- i.e. when top soil layers are for between -3° and +3°C and mois- quirements of the species. This some reason disturbed by ero- ture of the seed-bed between will help ensure seedling survival. sion or ‘ploughed’ by animals or 5 and 7%), as well as chilling Seedlings should be carefully la- by humans. A typical situation conditions (±5°C and 70-80% belled to ensure that is represented on slopes along moisture) should be carefully their origin can roads where light is plentiful and supplied.
Recommended publications
  • 48 European Invertebrate Survey Nederland
    issn 0169 - 2402 februari 2009 48 european invertebrate survey nieuwsbrief nederland 2 Nieuwsbrief European Invertebrate Survey – Nederland, 48 (2009) NIEUWSBRIEF van de EUROPEAN INVERTEBRATE SURVEY – NEDERLAND Nummer 48 - februari 2009 Contactorgaan voor de medewerkers van de Van de redactie werkgroepen van de European Invertebrate Survey – Nederland Deze extra nieuwsbrief, in kleur uitgegeven, is geheel gewijd aan het EIS-jubileum. De lezingen die Menno Schilthuizen en Informatie: Matthijs Schouten op de jubileumdag hebben gegeven kunt u Bureau EIS-Nederland, hier nog eens nalezen. Postbus 9517, 2300 RA Leiden tel. 071-5687670 / fax 071-5687666 Verder sluiten we de succesvolle inventarisatie van Naturalis- e-mail [email protected] terrein af. Het totaal aantal van 1569 soorten is al indrukwek- website www.naturalis.nl/eis kend, de grote hoeveelheid bijzonderheden is nog verbazing- wekkender. Het lijkt er op dat half-verwaarloosde terreinen in Wordt aan medewerkers gratis toegezonden. de stad een paradijs zijn voor schildwespen. Op deze plek wil ik alle personen bedanken die op een of andere manier hebben bijgedragen aan de soortenlijst. Tevens worden de fotografen Redactie: John T. Smit & Roy Kleukers bedankt voor het ter beschikking stellen van hun foto’s. Bij de soortenlijst worden zij met name genoemd, de beelden van de jubileumdag zijn voornamelijk van Berry van der Hoorn © copyright 2009 Stichting European Invertebrate Survey (Naturalis) en EIS-medewerkers. – Nederland, Leiden. Niets in deze uitgave mag worden vermenigvuldigd en/of openbaar Na zo’n mal jubileum van 33,3 jaar is het natuurlijk de vraag gemaakt door middel van fotokopie, microfilm of welke andere wijze wanneer het volgende feestje zal plaatsvinden.
    [Show full text]
  • Global Survey of Ex Situ Betulaceae Collections Global Survey of Ex Situ Betulaceae Collections
    Global Survey of Ex situ Betulaceae Collections Global Survey of Ex situ Betulaceae Collections By Emily Beech, Kirsty Shaw and Meirion Jones June 2015 Recommended citation: Beech, E., Shaw, K., & Jones, M. 2015. Global Survey of Ex situ Betulaceae Collections. BGCI. Acknowledgements BGCI gratefully acknowledges the many botanic gardens around the world that have contributed data to this survey (a full list of contributing gardens is provided in Annex 2). BGCI would also like to acknowledge the assistance of the following organisations in the promotion of the survey and the collection of data, including the Royal Botanic Gardens Edinburgh, Yorkshire Arboretum, University of Liverpool Ness Botanic Gardens, and Stone Lane Gardens & Arboretum (U.K.), and the Morton Arboretum (U.S.A). We would also like to thank contributors to The Red List of Betulaceae, which was a precursor to this ex situ survey. BOTANIC GARDENS CONSERVATION INTERNATIONAL (BGCI) BGCI is a membership organization linking botanic gardens is over 100 countries in a shared commitment to biodiversity conservation, sustainable use and environmental education. BGCI aims to mobilize botanic gardens and work with partners to secure plant diversity for the well-being of people and the planet. BGCI provides the Secretariat for the IUCN/SSC Global Tree Specialist Group. www.bgci.org FAUNA & FLORA INTERNATIONAL (FFI) FFI, founded in 1903 and the world’s oldest international conservation organization, acts to conserve threatened species and ecosystems worldwide, choosing solutions that are sustainable, based on sound science and take account of human needs. www.fauna-flora.org GLOBAL TREES CAMPAIGN (GTC) GTC is undertaken through a partnership between BGCI and FFI, working with a wide range of other organisations around the world, to save the world’s most threated trees and the habitats which they grow through the provision of information, delivery of conservation action and support for sustainable use.
    [Show full text]
  • Desirable Plant List
    Carpinteria-Summerland Fire Protection District High Fire Hazard Area Desirable Plant List Desirable Qualities for Landscape Plants within Carpinteria/Summerland High Fire Hazard areas • Ability to store water in leaves or • Ability to withstand drought. stems. • Prostrate or prone in form. • Produces limited dead and fine • Ability to withstand severe pruning. material. • Low levels of volatile oils or resins. • Extensive root systems for controlling erosion. • Ability to resprout after a fire. • High levels of salt or other compounds within its issues that can contribute to fire resistance. PLANT LIST LEGEND Geographical Area ......... ............. Water Needs..... ............. Evergreen/Deciduous C-Coastal ............. ............. H-High . ............. ............. E-Evergreen IV-Interior Valley ............. ............. M-Moderate....... ............. D-Deciduous D-Deserts ............. ............. L-Low... ............. ............. E/D-Partly or ............. ............. VL -Very Low .... ............. Summer Deciduous Comment Code 1 Not for use in coastal areas......... ............ 13 ........ Tends to be short lived. 2 Should not be used on steep slopes........ 14 ........ High fire resistance. 3 May be damaged by frost. .......... ............ 15 ........ Dead fronds or leaves need to be 4 Should be thinned bi-annually to ............ ............. removed to maintain fire safety. remove dead or unwanted growth. .......... 16 ........ Tolerant of heavy pruning. 5 Good for erosion control. ............. ...........
    [Show full text]
  • Evolutionary History of Plant Hosts and Fungal Symbionts Predicts the Strength of Mycorrhizal Mutualism
    Wright State University CORE Scholar Biological Sciences Faculty Publications Biological Sciences 2018 Evolutionary History of Plant Hosts and Fungal Symbionts Predicts the Strength of Mycorrhizal Mutualism Jason D. Hoeksema James D. Beaver Sounak Chakraborty V. Bala Chaudhary Monique Gardes See next page for additional authors Follow this and additional works at: https://corescholar.libraries.wright.edu/biology Part of the Biology Commons, Medical Sciences Commons, and the Systems Biology Commons Repository Citation Hoeksema, J. D., Beaver, J. D., Chakraborty, S., Chaudhary, V. B., Gardes, M., Gehring, C. A., Hart, M. M., Housworth, E. A., Kaonongbua, W., Klironomos, J. N., Lajeunesse, M. J., Meadow, J., Milligan, B. G., Piculell, B. J., Pringle, A., Rúa, M. A., Umbanhowar, J., Viechtbauer, W., Wang, Y., Wilson, G. W., & Zee, P. C. (2018). Evolutionary History of Plant Hosts and Fungal Symbionts Predicts the Strength of Mycorrhizal Mutualism. Communications Biology, 1, 116. https://corescholar.libraries.wright.edu/biology/744 This Article is brought to you for free and open access by the Biological Sciences at CORE Scholar. It has been accepted for inclusion in Biological Sciences Faculty Publications by an authorized administrator of CORE Scholar. For more information, please contact [email protected]. Authors Jason D. Hoeksema, James D. Beaver, Sounak Chakraborty, V. Bala Chaudhary, Monique Gardes, Catherine A. Gehring, Miranda M. Hart, Elizabeth Ann Housworth, Wittaya Kaonongbua, John N. Klironomos, Marc J. Lajeunesse, James Meadow, Brook G. Milligan, Bridget J. Piculell, Anne Pringle, Megan A. Rúa, James Umbanhowar, Wolfgang Viechtbauer, Yen-Wen Wang, Gail W.T. Wilson, and Peter C. Zee This article is available at CORE Scholar: https://corescholar.libraries.wright.edu/biology/744 Corrected: Author correction ARTICLE DOI: 10.1038/s42003-018-0120-9 OPEN Evolutionary history of plant hosts and fungal symbionts predicts the strength of mycorrhizal mutualism Jason D.
    [Show full text]
  • Alnus Cordata Italian Alder
    Alnus cordata Italian Alder Alnus cordata is a handsome tree, native to Southern Italy. It is fast growing, conical in form and ideal for parks, gardens and urban environments where space allows. Early in the spring, before the leaves emerge, the pollination process begins when both male and female catkins are produced on the plant. The male catkins are pendulous and can be up to 10cm long, yellow-orange in colour. The female catkins are much smaller and stubby. When pollinated they develop into small dark woody cones which disperse the small winged seeds once matured in Autumn. The cones remain on the trees throughout most of the winter and are also larger than any other Alder species. The leaves of Alnus cordata are heart shaped (cordate) and an attractive glossy green. Although it is deciduous, it has a long season in leaf, holding on to its foliage later than many other trees. In urban areas where light and heat levels are higher this season is extended even further. Italian Alder is tolerant of pollution, dry soils and poor site conditions, making it a useful tree for landscaping a wide range of sites. It can be seen planted in poor soils, compacted areas and soils with a high pH value. Its resistance to wind make it an ideal plant for screening and windbreaks and it can also be planted in June 2014 coastal regions. Alnus cordata 25-30cm girth standards in air-pot As with other Alnus species, Alnus cordata has the ability to fix nitrogen from the air. Plant Profile Name: Alnus cordata Common Name: Italian Alder Family: Betulaceae Height: up to 25m Demands: Ideal on a moist, well drained soil but tolerant of dry and poor conditions Foliage: Glossy green, heart shaped leaves Flower: Male and female catkins borne in early spring Bark: Smooth when young developing vertical crack with age Fruit: Female catkins develop into small woody cones which remain on the tree through winter The juvenile cones in summer Deepdale Trees Ltd., Tithe Farm, Hatley Road, Potton, Sandy, Beds.
    [Show full text]
  • Alnus Cordata
    Alnus cordata Alnus cordata in Europe: distribution, habitat, usage and threats G. Caudullo, A Mauri The Italian alder (Alnus cordata (Loisel.) Duby) is a medium-sized pioneer tree, native of the hill and mountain areas in southern Italy. It is also present in Corsica and western Albania. This tree is a fast-growing species, able to colonise different kinds of soils in borders and open areas, so that it has been used widely for soil protection and wind breaks. In coppices this alder was traditionally used for firewood. Now it is more planted for biomass production or used as an ancillary species in high-quality timber plantation. This species is able to stimulate the growth of associated species thanks to its nitrogen-fixing root capacity, and to its nitrogen-rich and easily degradable leaves which improve the litter quality. As other alders, its wood is particularly appreciated for its durability when immersed in water. In natural ranges the Italian alder is threatened by the reduction of clear cuttings and by increasing temperatures, which can push this species into higher and more restricted areas. The Italian alder (Alnus cordata (Loisel.) Duby) is a medium- sized tree growing up to 25 m tall, rarely to 30 m in even-age 1 Frequency stands, and reaching 70-80 cm in diameter . The stem is straight; < 25% the crown is pyramidal, compact and dense. The leaves are dark 25% - 50% 50% - 75% bright green, lighter underneath. They are 5-12 cm long, heart- > 75% shaped, with long stalks and persist from April to December.
    [Show full text]
  • 60 Spring 2021 Latest
    Flora News Newsletter of the Hampshire & Isle of Wight Wildlife Trust’s Flora Group No. 60 Spring 2021 Published February 2021 In This Issue Member Survey .................................................................................................................................................3 Keeping in Touch Flora Group Open Chat Sessions ........................................................... Martin Rand ...............................3 Forthcoming Online Events .........................................................................................................................3 Forthcoming Field Events ...........................................................................................................................5 Reports of Recent Events Zoom Workshop on Flowering Plant Families ........................................ Martin Rand ...............................8 Notes & Features Possible first British record of Linaria vulgaris × L. purpurea .................. John Norton ...............................9 ‘Hello Old Friend’: the reappearance of Mudwort in the New Forest ...... Clive Chatters ..........................13 Small Fleabane: A Miscellany ................................................................. Clive Chatters ..........................14 Hunting for Local Orchids During the 2020 Lockdown ............................ Peter Vaughan .........................16 Reporting New Pests and Diseases of Trees ......................................... Sarah Ball ................................18 Hants
    [Show full text]
  • Red Alder at Cascade Head Experimental Forest Near Otis, Oregon
    About This File: This file was created by scanning the printed publication. Misscans identified by the software have been corrected; however, some mistakes may remain. Cover photo: A stand of red alder at Cascade Head Experimental Forest near Otis, Oregon. The trees are from 14 to 20 inches in diameter. (U.S. Forest Service photo 325534) USDA Forest Service General Technical Report PNW-161 Red Alder: A Bibliography With Abstracts Compiled by Charles F. Heebner, Natural Resources Research Technician Division of Forest Land Management, Department of Natural Resources Olympia, Washington and Mary Jane Bergener, Business Management Assistant Pacific Northwest Forest and Range Experiment Station Forest Service, U.S. Department of Agriculture Olympia, Washington Published in 1983 by U.S. Department of Agriculture, Forest Service Pacific Northwest Forest and Range Experiment Station Portland, Oregon Abstract Heebner, Charles F. ; Bergener, Mary Jane . Red alder : a bibliography with abstracts. Gen . Tech . Rep. PNW-161. Portland, OR : U.S. Department of Agriculture, Forest Service, Pacific Northwest Forest and Range Exper iment Station; 1983. 186 p. This bibliography lists 661 references to world literature through May 1978 containing information about red alder (Alnus rubra Bong. ). Included are publications about its taxonomy, biology and silvics, chemical and physical infor­ mat ion about its wood and fiber, studies on its nitrogen-fixing properties, and reports on industrial uses and economic considerations . Sources of cited publi­ cations are scientific journals, trade publications, special reports, and pop­ ular books . Abstracts or annotations are included for many references . Subject matter and author indexes are inc luded . Keywords: Red alder, Alnus rubra, bibl iograph ies (forestry) .
    [Show full text]
  • Novel Asian Species, Worldwide Phylogeny and Evolutionary Relationships
    fungal biology 120 (2016) 1554e1581 journal homepage: www.elsevier.com/locate/funbio Lactarius subgenus Russularia (Basidiomycota, Russulales): novel Asian species, worldwide phylogeny and evolutionary relationships Komsit WISITRASSAMEEWONGa,b,c,*, Brian P. LOONEYd, Huyen T. LEe, Eske DE CROPc, Kanad DASf, Kobeke VAN DE PUTTEc, Ursula EBERHARDTg, Guo JIAYUh,i, Dirk STUBBEj, Kevin D. HYDEa,b, Annemieke VERBEKENc, Jorinde NUYTINCKk aInstitute of Excellence in Fungal Research, Mae Fah Luang University, 333 Moo 1, Thasud Sub-district, Muang District, Chiang Rai 57100, Thailand bSchool of Science, Mae Fah Luang University, 333 Moo 1, Thasud Sub-district, Muang District, Chiang Rai 57100, Thailand cResearch Group Mycology, Department of Biology, Gent University, K.L. Ledeganckstraat 35, 9000 Gent, Belgium dDepartment of Ecology and Evolutionary Biology, University of Tennessee, 332 Hesler Biology Building, Knoxville, TN, USA eFaculty of Environment, Hanoi University of Natural Resources and Environment, 41A Phu Dien Road, Phu Dien Ward, North - Tu Liem District, Hanoi, Viet Nam fBotanical Survey of India, Cryptogamic Unit, P.O. Botanic Garden, Howrah 711103, India gStaatliches Museum fur€ Naturkunde Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany hCentre for Mountain Ecosystem Studies, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei 132, Heilongtan, Kunming 650201, Yunnan, China iWorld Agroforestry Centre, China & East-Asia Office, 132 Lanhei Road, Kunming 650201, China jService of Mycology and Aerobiology, BCCM/IHEM Fungal Collection, Scientific Institute of Public Health, Rue J. Wytsmanstraat 14, Brussels 1050, Belgium kNaturalis Biodiversity Center, P.O. Box 9517, 2300RA Leiden, The Netherlands article info abstract Article history: Lactarius subg. Russularia is a large group of milkcaps occurring almost worldwide and dom- Received 19 April 2016 inant in many ecosystems.
    [Show full text]
  • The Genus Alnus, a Comprehensive Outline of Its Chemical Constituents and Biological Activities
    Review The Genus Alnus, A Comprehensive Outline of Its Chemical Constituents and Biological Activities Xueyang Ren, Ting He, Yanli Chang, Yicheng Zhao, Xiaoyi Chen, Shaojuan Bai, Le Wang, Meng Shen and Gaimei She * School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China; [email protected] (X.R.); [email protected] (T.H.); [email protected] (Y.C.); [email protected] (Y.Z.); [email protected] (X.C.); [email protected] (S.B.); [email protected] (L.W.); [email protected] (M.S.) * Correspondence: [email protected]; Tel.: +86-010-8473-8628 Received: 19 July 2017; Accepted: 16 August 2017; Published: 21 August 2017 Abstract: The genus Alnus (Betulaceae) is comprised of more than 40 species. Many species of this genus have a long history of use in folk medicines. Phytochemical investigations have revealed the presence of diarylheptanoids, polyphenols, flavonoids, terpenoids, steroids and other compounds. Diarylheptanoids, natural products with a 1,7-diphenylheptane structural skeleton, are the dominant constituents in the genus, whose anticancer effect has been brought into focus. Pure compounds and crude extracts from the genus exhibit a wide spectrum of pharmacological activities both in vitro and in vivo. This paper compiles 273 naturally occurring compounds from the genus Alnus along with their structures and pharmacological activities, as reported in 138 references. Keywords: chemical constituents; biological activities; Alnus; diarylheptanoids 1. Introduction Alnus is a genus in the family Betulaceae, which comprises more than 40 species mainly distributed in Asia, Africa, Europe and North America. A total of seven species and one variant are distributed in the south and north of China [1].
    [Show full text]
  • Phylogenetic Distribution and Evolution of Mycorrhizas in Land Plants
    Mycorrhiza (2006) 16: 299–363 DOI 10.1007/s00572-005-0033-6 REVIEW B. Wang . Y.-L. Qiu Phylogenetic distribution and evolution of mycorrhizas in land plants Received: 22 June 2005 / Accepted: 15 December 2005 / Published online: 6 May 2006 # Springer-Verlag 2006 Abstract A survey of 659 papers mostly published since plants (Pirozynski and Malloch 1975; Malloch et al. 1980; 1987 was conducted to compile a checklist of mycorrhizal Harley and Harley 1987; Trappe 1987; Selosse and Le Tacon occurrence among 3,617 species (263 families) of land 1998;Readetal.2000; Brundrett 2002). Since Nägeli first plants. A plant phylogeny was then used to map the my- described them in 1842 (see Koide and Mosse 2004), only a corrhizal information to examine evolutionary patterns. Sev- few major surveys have been conducted on their phyloge- eral findings from this survey enhance our understanding of netic distribution in various groups of land plants either by the roles of mycorrhizas in the origin and subsequent diver- retrieving information from literature or through direct ob- sification of land plants. First, 80 and 92% of surveyed land servation (Trappe 1987; Harley and Harley 1987;Newman plant species and families are mycorrhizal. Second, arbus- and Reddell 1987). Trappe (1987) gathered information on cular mycorrhiza (AM) is the predominant and ancestral type the presence and absence of mycorrhizas in 6,507 species of of mycorrhiza in land plants. Its occurrence in a vast majority angiosperms investigated in previous studies and mapped the of land plants and early-diverging lineages of liverworts phylogenetic distribution of mycorrhizas using the classifi- suggests that the origin of AM probably coincided with the cation system by Cronquist (1981).
    [Show full text]
  • Phytophthora Species and Riparian Alder Tree Damage in Western Oregon
    AN ABSTRACT OF THE DISSERTATION OF Laura L. Sims for the degree of Doctor of Philosophy in Botany and Plant Pathology presented on February 13, 2014. Title: Phytophthora Species and Riparian Alder Tree Damage in Western Oregon Abstract approved: Everett M. Hansen The genus Phytophthora contains some of the most destructive pathogens of forest trees, including the most destructive pathogen of alder in recent times, Phytophthora alni. Alder trees were reported to be suffering from canopy dieback in riparian ecosystems in western Oregon, which prompted a survey of alder health and monitoring for P. alni. In 2010 surveys in western Oregon riparian ecosystems were initiated to gather baseline data on damage and on the Phytophthora species associated with alder. Damage was recorded and analyzed from transects containing alder trees with canopy dieback symptoms according to damage type: (1) pathogen, (2) insect, or (3) wound. Phytophthora species from western Oregon riparian ecosystems were systematically sampled, isolated, identified, stored and compared. Koch’s Postulates were evaluated for three key Phytophthora species recovered: P. alni, P. siskiyouensis and P. taxon Oaksoil, and alder disease in the western United States was described. Then, the ecological role of the most abundant Phytophthora species from streams was evaluated. The data indicated that many of the same agents reported causing damage to alder trees in the western United States were also damaging alder trees in western Oregon including the alder flea beetle, sawflies, flood debris, Septoria alnifolia, and Mycopappus alni. The most important damage correlated with canopy dieback was incidence of Phytophthora cankers, and isolation of Phytophthora siskiyouensis.
    [Show full text]