Phytophthora Species and Riparian Alder Tree Damage in Western Oregon

Total Page:16

File Type:pdf, Size:1020Kb

Phytophthora Species and Riparian Alder Tree Damage in Western Oregon AN ABSTRACT OF THE DISSERTATION OF Laura L. Sims for the degree of Doctor of Philosophy in Botany and Plant Pathology presented on February 13, 2014. Title: Phytophthora Species and Riparian Alder Tree Damage in Western Oregon Abstract approved: Everett M. Hansen The genus Phytophthora contains some of the most destructive pathogens of forest trees, including the most destructive pathogen of alder in recent times, Phytophthora alni. Alder trees were reported to be suffering from canopy dieback in riparian ecosystems in western Oregon, which prompted a survey of alder health and monitoring for P. alni. In 2010 surveys in western Oregon riparian ecosystems were initiated to gather baseline data on damage and on the Phytophthora species associated with alder. Damage was recorded and analyzed from transects containing alder trees with canopy dieback symptoms according to damage type: (1) pathogen, (2) insect, or (3) wound. Phytophthora species from western Oregon riparian ecosystems were systematically sampled, isolated, identified, stored and compared. Koch’s Postulates were evaluated for three key Phytophthora species recovered: P. alni, P. siskiyouensis and P. taxon Oaksoil, and alder disease in the western United States was described. Then, the ecological role of the most abundant Phytophthora species from streams was evaluated. The data indicated that many of the same agents reported causing damage to alder trees in the western United States were also damaging alder trees in western Oregon including the alder flea beetle, sawflies, flood debris, Septoria alnifolia, and Mycopappus alni. The most important damage correlated with canopy dieback was incidence of Phytophthora cankers, and isolation of Phytophthora siskiyouensis. In the initial systematic survey of Phytophthora species, 1190 individual Phytophthora isolates were recovered but were of many different species. In the survey of alder roots, P. alni subsp. uniformis was one of the species recovered from necrotic red alder roots, but overall incidence was low; it was isolated four times. From the evaluation of Koch’s postulates, Phytophthora canker of alder in the western United States was described, and is a bole canker caused by Phytophthora. Phytophthora canker of alder was only found caused by P. siskiyouensis in nature, and it was isolated 74 times. Isolation was mainly from bole cankers and diseased roots on red and white alder, and from water and alder leaf debris floating in the stream. The most abundant Phytophthora species associated with red alder is an informally described species P. taxon Oaksoil, which appears to be a relatively benign aquatic saprotroph of alder leaf debris. Canopy dieback was more prevalent in riparian alder trees from transects with P. siskiyouensis than from transects with P. taxon Oaksoil but without P. siskiyouensis (70% and 35%, respectively). The informally described P. taxon Oaksoil from western Oregon is formally described here as P. obrutafolium sp. nov., closely related to P. bilorbang from western Australia, and P. taxon Oaksoil ss from an oak forest in France. In summary, other agents besides Phytophthora can damage alder trees in western Oregon. Many Phytophthora species associate with alder in western Oregon but not all of them are important damaging agents of alder. However, Phytophthora canker of alder is widespread in western Oregon. In the United States, Phytophthora canker of alder has only been found to be caused by P. siskiyouensis. ©Copyright by Laura L. Sims February 13, 2014 All Rights Reserved Phytophthora Species and Riparian Alder Tree Damage in Western Oregon by Laura L. Sims A DISSERTATION submitted to Oregon State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy Presented February 13, 2014 Commencement June 2014 Doctor of Philosophy dissertation of Laura L. Sims presented on February 13, 2014. APPROVED: Major Professor, representing Botany and Plant Pathology Head of the Department of Botany and Plant Pathology Dean of the Graduate School I understand that my dissertation will become part of the permanent collection of Oregon State University libraries. My signature below authorizes release of my dissertation to any reader upon request. Laura L. Sims, Author ACKNOWLEDGEMENTS I sincerely thank my advisor Everett Hansen. I truly appreciate his facilitation of my creative drive and tolerance of my unerring biological curiosity in regards to pathology. I appreciate the time I was allowed to spend on Mary’s Peak with Toby Child’s Poria weirii my first and last summer while obtaining my degree. I would also like to thank both him and Barb for inviting my family to stay in their home, twice. I sincerely thank Ellen Goheen and her U. S. Forest Service crew, which contended with the most difficult terrain of the alder project. I truly appreciate the guidance, cooperation, and direction she gave to the project from the beginning. I truly thank Alan Kanaskie, Michael Thompson, and Jon Laine from the Oregon Department of Forestry for their excellence in fieldwork and for their time. I could not have completed my dissertation project without their assistance. I would also like to thank Mike McWilliams for his enthusiasm and advice about forest pathology. I truly thank Wendy Sutton for her help in processing the seemingly endless stream of samples I brought into the lab for a while. The lab is a very comfortable place to work because of Wendy’s laugh and her great organization. I would also like to thank Paul Reeser for his time, for his patience, and for showing me the art of seeing Phytophthora amongst the myriad of life that I dragged back from the forest. I am grateful to the Oregon State University Botany Department for being a welcoming place while I completed my degree. I truly appreciate the committee that granted me the Anita Summers Fund, which provided a large part of the funding for a work trip conference to Spain. I thank my family for engraining in me the importance of hard work and perseverance. To my sister and brother, Amy and Joe that both accomplished so much while I was completing my degree. To my “Gunny” Sergeant Grandfather, Joe Whealdon, who passed on while I was working on my dissertation, I miss you. Thank you, to the hard working women in my family especially my mother Elisa and my aunt Dawn, who inspired me to stay strong and focused. I would like to thank the Forest Health Monitoring Program of the USDA Forest Service, Pacific Northwest Region, which generously supported survey efforts. I truly appreciate all the financial support for the project, and the opportunities to attend and communicate about my progress at conferences. Particularly I appreciate the opportunity to attend the Western International Forest Disease Work Conference Meetings and the International Union of Forest Research Organization Meeting. I was able to meet and communicate with the forest pathology family. I pray they will keep me. TABLE OF CONTENTS Page CHAPTER 1: Dissertation Introduction …………………………………...........................................1 The Genus Phytophthora …………………...........……………………….……………………....2 Alder…………......................................................................................……………...7 Alder dieback in Oregon ...................................................................................9 Dissertation Objectives ..………........................................................................10 References…..…………………………………………………..…………………………………..…….12 CHAPTER 2: Phytophthora siskiyouensis and other damaging agents of alder trees in western Oregon riparian ecosystems ...…...........................................................……………19 Introduction………………………….……………………………..……...…...…………....…………19 Pathogens……………………………………………………………....…..……………………….24 Insects……………………………………………………………………….………………………….26 Wounds………………………………………………………………………….…………………….28 Materials and Methods…………...……...………….……………...................................29 Transects……………………………….…………………………..………………......……………29 Data Collection…….……..………………………………………………………..................31 Data Analysis……….….……………………..……………………………………..................33 Results………………………………………………..…………..………………………….................36 Canopy Dieback…..…………………………..…………………………………...................36 Pathogens……………..…………………..………………………………………….................38 TABLE OF CONTENTS (Continued) Page Insects…………………………..………………………………………………………...............46 Wounds…………….……………………..………………………………………….................47 Discussion.......................................................................................................49 Canopy Dieback.......................................................................................50 Pathogens................................................................................................50 Insects......................................................................................................52 Wounds...................................................................................................53 Other.......................................................................................................54 Conclusions……..…………….……………………..…………………………………………………...56 References…………………………….…………………………..……………………………………....57 Chapter 3: Phytophthora species from riparian alder ecosystems in western Oregon, USA…..………………………………..………………………………………………………………………………………..63 Introduction……………..…………………..……………………..…………………………………….63 Materials and methods…………………………..………………………………………….……….72 The assemblage
Recommended publications
  • Botanical Memo
    Appendix C Botanical Memo 10 May 2015 To Willow Creek Community Service District Copy to Patrick Kaspari, Senior Project Manager, GHD Inc. From Cara Scott, Botanist, GHD Inc. Tel 707.443.8326 Subject Special-Status Plant Species Survey and Mapping for Job no. 8410746.05 the Downtown Wastewater Development Project, Willow Creek, CA 1 Introduction On April 10 and May 8, 2015, special-status plant surveys and mapping were conducted for the proposed Downtown Wastewater Development Project in Willow Creek, Humboldt County, California . This survey attempted to identify all vascular plants within the project boundary and to document the presence of special-status plants. The purpose of these surveys was to map presence of special-status plant species and to document the approximate number of individuals and percent cover for each occurrence observed. The results will be used to reduce impacts associated with project construction and to avoid special-status plant populations 1.1 Location The unincorporated community of Willow Creek is located in Humboldt County approximately 45 miles northeast of Eureka, California as shown in Figure 1, Attachment 1. Willow Creek is situated along the Trinity River, which is part of the Klamath River Basin. The Willow Creek Community Services District (WCCSD or District) service area or district boundary is shown on Figure 2 and primarily consists of properties along State Highways 299 and 96. The Pacific Ocean is located approximately 26 miles to the west. The site corresponds to portions of Sections 32 and 33, Township 7 North, Range 5 East on the USGS 7.5 Minute Willow Creek and Salyer quadrangles.
    [Show full text]
  • Technical Note 37: Identification, Ecology, Use, and Culture of Sitka
    TECHNICAL NOTES _____________________________________________________________________________________________ US DEPT. OF AGRICULTURE NATURAL RESOURCES CONSERVATION SERVICE Portland, OR April 2005 PLANT MATERIALS No. 37 Identification, Ecology, Use and Culture of Sitka Alder Dale C. Darris, Conservation Agronomist, Corvallis Plant Materials Center Introduction Sitka alder [Alnus viridis (Vill.) Lam. & DC. subsp. sinuata (Regel) A.& D. Löve] is a native deciduous shrub or small tree that grows to height of 20 ft, occasionally taller. Although a non-crop species, it has several characteristics useful for reclamation, forestry, and erosion control. The species is known for abundant leaf litter production, the fixation of atmospheric nitrogen in association with Frankia bacteria, and a strong fibrous root system. Where locally abundant, it naturally colonizes landslide chutes, areas of stream scour and deposition, soil slumps, and other drastic disturbances resulting in exposed minerals soils. These characteristics make Sitka alder particularly useful for streambank stabilization and soil building on impoverished sites. In addition, its low height and early slowdown in growth rate makes it potentially more desirable than red alder (Alnus rubra) to interplant with conifers such as Douglas fir (Pseudotsuga menzieii) and lodgepole pine (Pinus contorta) where soil fertility is moderate to low. However, high densities can hinder forest regeneration efforts. The species may also be useful as a fast growing shrub row in field windbreaks. Sitka alder is most abundant at mid to subalpine elevations. Low elevation seed sources (below 100 m) are uncommon but probably provide the best material for reclamation and erosion control projects on valley floors and terraces. Distribution and Identification Sitka alder (Alnus viridis subsp. sinuata) is a native deciduous shrub or small tree that grows to a height of 1-6 m (3-19 ft) in the mountains and 6-12 m (19-37ft) at low elevations.
    [Show full text]
  • DEFOLIATORS Insect Sections
    Alaska. Reference is made to this map in selected DEFOLIATORS insect sections. (Precipitation information from Schwartz, F.K., and Miller, J.F. 1983. Probable maximum precipitation and snowmelt criteria for Fewer defoliator plots (27 plots) were visited during southeast Alaska: National Weather Service the 1999 aerial survey than in previous years (52 plots) Hydrometeorological Report No. 54. 115p. GIS layer throughout southeast Alaska. An effort was made to created by: Tim Brabets, 1997. distribute these plots evenly across the archipelago. URL:http://agdc.usgs.gov/data/usgs/water) The objectives during the 1999 season were to: ¨ Spend more time covering the landscape during Spruce Needle Aphid the aerial survey, Elatobium abietinum Walker ¨ Allow more time to land and identify unknown mortality and defoliation, and Spruce needle aphids feed on older needles of Sitka ¨ Avoid visit sites that were hard to get to and had spruce, often causing significant amounts of needle few western hemlocks. drop (defoliation). Defoliation by aphids cause reduced tree growth and can predispose the host to Hemlock sawfly and black-headed budworm larvae other mortality agents, such as the spruce beetle. counts were generally low in 1999 as they were in Severe cases of defoliation alone may result in tree 1998. The highest sawfly larvae counts were from the mortality. Spruce in urban settings and along marine plots in Thorne Bay and Kendrick Bay, Prince of shorelines are most seriously impacted. Spruce aphids Wales Island. Larval counts are used as a predictive feed primarily in the lower, innermost portions of tree tool for outbreaks of defoliators. For example, if the crowns, but may impact entire crowns during larval sample is substantially greater in 1999, then an outbreaks.
    [Show full text]
  • Oaks (Quercus Spp.): a Brief History
    Publication WSFNR-20-25A April 2020 Oaks (Quercus spp.): A Brief History Dr. Kim D. Coder, Professor of Tree Biology & Health Care / University Hill Fellow University of Georgia Warnell School of Forestry & Natural Resources Quercus (oak) is the largest tree genus in temperate and sub-tropical areas of the Northern Hemisphere with an extensive distribution. (Denk et.al. 2010) Oaks are the most dominant trees of North America both in species number and biomass. (Hipp et.al. 2018) The three North America oak groups (white, red / black, and golden-cup) represent roughly 60% (~255) of the ~435 species within the Quercus genus worldwide. (Hipp et.al. 2018; McVay et.al. 2017a) Oak group development over time helped determine current species, and can suggest relationships which foster hybridization. The red / black and white oaks developed during a warm phase in global climate at high latitudes in what today is the boreal forest zone. From this northern location, both oak groups spread together southward across the continent splitting into a large eastern United States pathway, and much smaller western and far western paths. Both species groups spread into the eastern United States, then southward, and continued into Mexico and Central America as far as Columbia. (Hipp et.al. 2018) Today, Mexico is considered the world center of oak diversity. (Hipp et.al. 2018) Figure 1 shows genus, sub-genus and sections of Quercus (oak). History of Oak Species Groups Oaks developed under much different climates and environments than today. By examining how oaks developed and diversified into small, closely related groups, the native set of Georgia oak species can be better appreciated and understood in how they are related, share gene sets, or hybridize.
    [Show full text]
  • TREES HAVE HIGHER LONGITUDINAL GROWTH STRAINS in THEIR STEMS THAN in THEIR ROOTS in the Secondary Xylem of Trees, Each Wood Cell
    a3q14 Int. 1. Plant Sci. 158(4):418-423. 1997. © 1997 by The University of Chicago. All rights reserved. 1058-5893/97/5804-0003$03.00 TREES HAVE HIGHER LONGITUDINAL GROWTH STRAINS IN THEIR STEMS THAN IN THEIR ROOTS BARBARA L. GARTNER Department of Forest Products, Oregon State University, Corvallis, Oregon 97 33 1-7402 Longitudinal growth strains develop in woody tissues during cell-wall formation. This study compares stems, which have a mechanical role and experience longitudinal stresses, and nonstructural roots, which have little mechanical role and experience few or no longitudinal stresses, to test the hypothesis that growth strains are produced in stems of straight trees as an adaptive feature for mechanical loads. I measured growth strains in one stem (at breast height) and one nonstructural root (beyond the zone of rapid taper and/or beyond a major change in root direction) for 13-15 individuals of each of four tree species, Pseudotsuga menziesii, Thuja heterophylla, Acer macrophyllum, and Alnus rubra. Forty-seven of the 54 individuals had higher strains in their stems than in their roots (4.3 ± 0.3 x 10- 4 and 1.5 ± 0.3 x 10-4, respectively). Growth strain was two to five times higher for stems than roots. The modulus of elasticity (MOE) in bending was also higher in stem tissues (from literature values) than in root tissue (from this study). Calculated growth stresses, the product of growth strain and MOE, averaged 6-11 times higher in stems than roots for the four species. The higher strain and stress in stems than roots indicate that the strains and stresses are adaptive features that are produced in response to, or in "anticipation," of mechanical loads.
    [Show full text]
  • Alnus Glutinosa
    bioRxiv preprint doi: https://doi.org/10.1101/2019.12.13.875229; this version posted December 13, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Investigations into the declining health of alder (Alnus glutinosa) along the river Lagan in Belfast, including the first report of Phytophthora lacustris causing disease of Alnus in Northern Ireland Richard O Hanlon (1, 2)* Julia Wilson (2), Deborah Cox (1) (1) Agri-Food and Biosciences Institute, Belfast, BT9 5PX, Northern Ireland, UK. (2) Queen’s University Belfast, Northern Ireland, UK * [email protected] Additional key words: Plant health, Forest pathology, riparian, root and collar rot. Abstract Common alder (Alnus glutinosa) is an important tree species, especially in riparian and wet habitats. Alder is very common across Ireland and Northern Ireland, and provides a wide range of ecosystem services. Surveys along the river Lagan in Belfast, Northern Ireland led to the detection of several diseased Alnus trees. As it is known that Alnus suffers from a Phytophthora induced decline, this research set out to identify the presence and scale of the risk to Alnus health from Phytophthora and other closely related oomycetes. Sampling and a combination of morphological and molecular testing of symptomatic plant material and river baits identified the presence of several Phytophthora species, including Phytophthora lacustris. A survey of the tree vegetation along an 8.5 km stretch of the river revealed that of the 166 Alnus trees counted, 28 were severely defoliated/diseased and 9 were dead.
    [Show full text]
  • Presidio Phytophthora Management Recommendations
    2016 Presidio Phytophthora Management Recommendations Laura Sims Presidio Phytophthora Management Recommendations (modified) Author: Laura Sims Other Contributing Authors: Christa Conforti, Tom Gordon, Nina Larssen, and Meghan Steinharter Photograph Credits: Laura Sims, Janet Klein, Richard Cobb, Everett Hansen, Thomas Jung, Thomas Cech, and Amelie Rak Editors and Additional Contributors: Christa Conforti, Alison Forrestel, Alisa Shor, Lew Stringer, Sharon Farrell, Teri Thomas, John Doyle, and Kara Mirmelstein Acknowledgements: Thanks first to Matteo Garbelotto and the University of California, Berkeley Forest Pathology and Mycology Lab for providing a ‘forest pathology home’. Many thanks to the members of the Phytophthora huddle group for useful suggestions and feedback. Many thanks to the members of the Working Group for Phytophthoras in Native Habitats for insight into the issues of Phytophthora. Many thanks to Jennifer Parke, Ted Swiecki, Kathy Kosta, Cheryl Blomquist, Susan Frankel, and M. Garbelotto for guidance. I would like to acknowledge the BMP documents on Phytophthora that proceeded this one: the Nursery Industry Best Management Practices for Phytophthora ramorum to prevent the introduction or establishment in California nursery operations, and The Safe Procurement and Production Manual. 1 Title Page: Authors and Acknowledgements Table of Contents Page Title Page 1 Table of Contents 2 Executive Summary 5 Introduction to the Phytophthora Issue 7 Phytophthora Issues Around the World 7 Phytophthora Issues in California 11 Phytophthora
    [Show full text]
  • Evidence and Implications of Recent and Projected Climate Change in Alaska’S Forest Ecosystems 1, 2 1 3 4 JANE M
    Evidence and implications of recent and projected climate change in Alaska’s forest ecosystems 1, 2 1 3 4 JANE M. WOLKEN, TERESA N. HOLLINGSWORTH, T. SCOTT RUPP, F. STUART CHAPIN, III, SARAH F. TRAINOR, 5 6 7 3 8 TARA M. BARRETT, PATRICK F. SULLIVAN, A. DAVID MCGUIRE, EUGENIE S. EUSKIRCHEN, PAUL E. HENNON, 9 10 11 8 1 ERIK A. BEEVER, JEFF S. CONN, LISA K. CRONE, DAVID V. D ’AMORE, NANCY FRESCO, 8 3 12 11 13 THOMAS A. HANLEY, KNUT KIELLAND, JAMES J. KRUSE, TRISTA PATTERSON, EDWARD A. G. SCHUUR, 14 14 DAVID L. VERBYLA, AND JOHN YARIE 1Scenarios Network for Alaska and Arctic Planning, University of Alaska, 3352 College Road, Fairbanks, Alaska 99709 USA 2United States Department of Agriculture Forest Service, Pacific Northwest Research Station, Boreal Ecology Cooperative Research Unit, P.O. Box 756780, University of Alaska, Fairbanks, Alaska 99775 USA 3Institute of Arctic Biology, University of Alaska, Fairbanks, Alaska 99775 USA 4Alaska Center for Climate Assessment and Policy, University of Alaska, 3352 College Road, Fairbanks, Alaska 99709 USA 5United States Department of Agriculture Forest Service, Pacific Northwest Research Station, Anchorage Forestry Sciences Laboratory, 3301 C Street, Suite 200, Anchorage, Alaska 99503 USA 6Environment and Natural Resources Institute, Department of Biological Sciences, University of Alaska, Anchorage, Alaska 99508 USA 7United States Geological Survey, Alaska Cooperative Fish and Wildlife Research Unit, University of Alaska, Fairbanks, Alaska 99775 USA 8United States Department of Agriculture Forest
    [Show full text]
  • University of California Santa Cruz Responding to An
    UNIVERSITY OF CALIFORNIA SANTA CRUZ RESPONDING TO AN EMERGENT PLANT PEST-PATHOGEN COMPLEX ACROSS SOCIAL-ECOLOGICAL SCALES A dissertation submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in ENVIRONMENTAL STUDIES with an emphasis in ECOLOGY AND EVOLUTIONARY BIOLOGY by Shannon Colleen Lynch December 2020 The Dissertation of Shannon Colleen Lynch is approved: Professor Gregory S. Gilbert, chair Professor Stacy M. Philpott Professor Andrew Szasz Professor Ingrid M. Parker Quentin Williams Acting Vice Provost and Dean of Graduate Studies Copyright © by Shannon Colleen Lynch 2020 TABLE OF CONTENTS List of Tables iv List of Figures vii Abstract x Dedication xiii Acknowledgements xiv Chapter 1 – Introduction 1 References 10 Chapter 2 – Host Evolutionary Relationships Explain 12 Tree Mortality Caused by a Generalist Pest– Pathogen Complex References 38 Chapter 3 – Microbiome Variation Across a 66 Phylogeographic Range of Tree Hosts Affected by an Emergent Pest–Pathogen Complex References 110 Chapter 4 – On Collaborative Governance: Building Consensus on 180 Priorities to Manage Invasive Species Through Collective Action References 243 iii LIST OF TABLES Chapter 2 Table I Insect vectors and corresponding fungal pathogens causing 47 Fusarium dieback on tree hosts in California, Israel, and South Africa. Table II Phylogenetic signal for each host type measured by D statistic. 48 Table SI Native range and infested distribution of tree and shrub FD- 49 ISHB host species. Chapter 3 Table I Study site attributes. 124 Table II Mean and median richness of microbiota in wood samples 128 collected from FD-ISHB host trees. Table III Fungal endophyte-Fusarium in vitro interaction outcomes.
    [Show full text]
  • 48 European Invertebrate Survey Nederland
    issn 0169 - 2402 februari 2009 48 european invertebrate survey nieuwsbrief nederland 2 Nieuwsbrief European Invertebrate Survey – Nederland, 48 (2009) NIEUWSBRIEF van de EUROPEAN INVERTEBRATE SURVEY – NEDERLAND Nummer 48 - februari 2009 Contactorgaan voor de medewerkers van de Van de redactie werkgroepen van de European Invertebrate Survey – Nederland Deze extra nieuwsbrief, in kleur uitgegeven, is geheel gewijd aan het EIS-jubileum. De lezingen die Menno Schilthuizen en Informatie: Matthijs Schouten op de jubileumdag hebben gegeven kunt u Bureau EIS-Nederland, hier nog eens nalezen. Postbus 9517, 2300 RA Leiden tel. 071-5687670 / fax 071-5687666 Verder sluiten we de succesvolle inventarisatie van Naturalis- e-mail [email protected] terrein af. Het totaal aantal van 1569 soorten is al indrukwek- website www.naturalis.nl/eis kend, de grote hoeveelheid bijzonderheden is nog verbazing- wekkender. Het lijkt er op dat half-verwaarloosde terreinen in Wordt aan medewerkers gratis toegezonden. de stad een paradijs zijn voor schildwespen. Op deze plek wil ik alle personen bedanken die op een of andere manier hebben bijgedragen aan de soortenlijst. Tevens worden de fotografen Redactie: John T. Smit & Roy Kleukers bedankt voor het ter beschikking stellen van hun foto’s. Bij de soortenlijst worden zij met name genoemd, de beelden van de jubileumdag zijn voornamelijk van Berry van der Hoorn © copyright 2009 Stichting European Invertebrate Survey (Naturalis) en EIS-medewerkers. – Nederland, Leiden. Niets in deze uitgave mag worden vermenigvuldigd en/of openbaar Na zo’n mal jubileum van 33,3 jaar is het natuurlijk de vraag gemaakt door middel van fotokopie, microfilm of welke andere wijze wanneer het volgende feestje zal plaatsvinden.
    [Show full text]
  • Alder Canopy Dieback and Damage in Western Oregon Riparian Ecosystems
    Alder Canopy Dieback and Damage in Western Oregon Riparian Ecosystems Sims, L., Goheen, E., Kanaskie, A., & Hansen, E. (2015). Alder canopy dieback and damage in western Oregon riparian ecosystems. Northwest Science, 89(1), 34-46. doi:10.3955/046.089.0103 10.3955/046.089.0103 Northwest Scientific Association Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse Laura Sims,1, 2 Department of Botany and Plant Pathology, Oregon State University, 1085 Cordley Hall, Corvallis, Oregon 97331 Ellen Goheen, USDA Forest Service, J. Herbert Stone Nursery, Central Point, Oregon 97502 Alan Kanaskie, Oregon Department of Forestry, 2600 State Street, Salem, Oregon 97310 and Everett Hansen, Department of Botany and Plant Pathology, 1085 Cordley Hall, Oregon State University, Corvallis, Oregon 97331 Alder Canopy Dieback and Damage in Western Oregon Riparian Ecosystems Abstract We gathered baseline data to assess alder tree damage in western Oregon riparian ecosystems. We sought to determine if Phytophthora-type cankers found in Europe or the pathogen Phytophthora alni subsp. alni, which represent a major threat to alder forests in the Pacific Northwest, were present in the study area. Damage was evaluated in 88 transects; information was recorded on damage type (pathogen, insect or wound) and damage location. We evaluated 1445 red alder (Alnus rubra), 682 white alder (Alnus rhombifolia) and 181 thinleaf alder (Alnus incana spp. tenuifolia) trees. We tested the correlation between canopy dieback and canker symptoms because canopy dieback is an important symptom of Phytophthora disease of alder in Europe. We calculated the odds that alder canopy dieback was associated with Phytophthora-type cankers or other biotic cankers.
    [Show full text]
  • Global Survey of Ex Situ Betulaceae Collections Global Survey of Ex Situ Betulaceae Collections
    Global Survey of Ex situ Betulaceae Collections Global Survey of Ex situ Betulaceae Collections By Emily Beech, Kirsty Shaw and Meirion Jones June 2015 Recommended citation: Beech, E., Shaw, K., & Jones, M. 2015. Global Survey of Ex situ Betulaceae Collections. BGCI. Acknowledgements BGCI gratefully acknowledges the many botanic gardens around the world that have contributed data to this survey (a full list of contributing gardens is provided in Annex 2). BGCI would also like to acknowledge the assistance of the following organisations in the promotion of the survey and the collection of data, including the Royal Botanic Gardens Edinburgh, Yorkshire Arboretum, University of Liverpool Ness Botanic Gardens, and Stone Lane Gardens & Arboretum (U.K.), and the Morton Arboretum (U.S.A). We would also like to thank contributors to The Red List of Betulaceae, which was a precursor to this ex situ survey. BOTANIC GARDENS CONSERVATION INTERNATIONAL (BGCI) BGCI is a membership organization linking botanic gardens is over 100 countries in a shared commitment to biodiversity conservation, sustainable use and environmental education. BGCI aims to mobilize botanic gardens and work with partners to secure plant diversity for the well-being of people and the planet. BGCI provides the Secretariat for the IUCN/SSC Global Tree Specialist Group. www.bgci.org FAUNA & FLORA INTERNATIONAL (FFI) FFI, founded in 1903 and the world’s oldest international conservation organization, acts to conserve threatened species and ecosystems worldwide, choosing solutions that are sustainable, based on sound science and take account of human needs. www.fauna-flora.org GLOBAL TREES CAMPAIGN (GTC) GTC is undertaken through a partnership between BGCI and FFI, working with a wide range of other organisations around the world, to save the world’s most threated trees and the habitats which they grow through the provision of information, delivery of conservation action and support for sustainable use.
    [Show full text]