Taxol Biosynthesis: Molecular Cloning of a Benzoyl- Coa:Taxane 2␣-O-Benzoyltransferase Cdna from Taxus and Functional Expression in Escherichia Coli

Total Page:16

File Type:pdf, Size:1020Kb

Taxol Biosynthesis: Molecular Cloning of a Benzoyl- Coa:Taxane 2␣-O-Benzoyltransferase Cdna from Taxus and Functional Expression in Escherichia Coli Taxol biosynthesis: Molecular cloning of a benzoyl- CoA:taxane 2␣-O-benzoyltransferase cDNA from Taxus and functional expression in Escherichia coli Kevin Walker and Rodney Croteau* Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340 Contributed by Rodney Croteau, October 16, 2000 A cDNA clone encoding a taxane 2␣-O-benzoyltransferase has metabolites are available to permit assay of 2-O-benzoyltrans- been isolated from Taxus cuspidata. The recombinant enzyme ferase activity with benzoyl-CoA as cosubstrate, the semisyn- catalyzes the conversion of 2-debenzoyl-7,13-diacetylbaccatin III, a thesis of 2-debenzoyl-7,13-diacetylbaccatin III did provide a semisynthetic substrate, to 7,13-diacetylbaccatin III, and thus ap- suitable taxoid substrate for screening the expressed set of T. pears to function in a late-stage acylation step of the Taxol cuspidata transacylase clones for 2␣-O-benzoyltransferase func- biosynthetic pathway. By employing a homology-based PCR clon- tion. Here, we describe the isolation and analysis of a cDNA ing strategy for generating acyltransferase oligodeoxynucleotide encoding the target taxane 2␣-O-benzoyltransferase (TBT), and probes, several gene fragments were amplified and used to screen we report on the properties of this recombinant enzyme of Taxol a cDNA library constructed from mRNA isolated from methyl biosynthesis. jasmonate-induced Taxus cells, from which several full-length acyltransferases were obtained and individually expressed in Esch- Materials and Methods erichia coli. The functionally expressed benzoyltransferase was Substrates. Authentic 10-deacetylbaccatin III was obtained from confirmed by radio-HPLC, 1H-NMR, and combined HPLC-MS verifi- Hauser Chemical Research (Boulder, CO). (2␣,5␣)-Dihydroxy- cation of the product, 7,13-diacetylbaccatin III, derived from 2-de- taxa-4(20),11(12)-diene was a gift from Robert Williams (Col- benzoyl-7,13-diacetylbaccatin III and benzoyl-CoA as cosubstrates orado State University, Boulder, CO). Benzoyl-CoA as the in the corresponding cell-free extract. The full-length cDNA has an sodium salt was purchased from Sigma and [7-14C]benzoic acid open reading frame of 1,320 base pairs and encodes a protein of was from NEN Life Sciences Products. All other reagents were 440 residues with a molecular weight of 50,089. The recombinant purchased from Aldrich, unless noted otherwise. benzoyltransferase has a pH optimum of 8.0, Km values of 0.64 mM and 0.30 mM for the taxoid substrate and benzoyl-CoA, respec- Synthesis of 7,13-Diacetylbaccatin III. To a stirred solution of ␣ ␮ tively, and is apparently regiospecific for acylation of the 2 - 10-deacetylbaccatin III (160 mg, 294 mol) in dry CH2Cl2 (5 ml) hydroxyl group of the functionalized taxane nucleus. This enzyme at 25°C under N2 were added acetic anhydride (20 eq), dimeth- may be used to improve the production yields of Taxol and for the ylaminopyridine (20 eq), and triethylamine (50 ␮l, 361 ␮mol). semisynthesis of drug analogs bearing modified aroyl groups at After 16 h, the reaction was diluted with EtOAc (50 ml) and the C2 position. quenched with water (10 ml). The mixture was stirred for 15 min, and the aqueous fraction was separated and extracted with paclitaxel ͉ 2-debenzoyl-7,13-diacetylbaccatin III EtOAc (twice with 25 ml). The combined organic fractions were washed with brine, 0.1 M HCl, and water, and dried over BIOCHEMISTRY he anticancer drug Taxol (generic name paclitaxel), pro- anhydrous MgSO4. The organic solvent was evaporated, and the Tduced by yew (Taxus) species, is one of the structurally more crude product was purified by silica gel flash column chroma- complex members of the taxoid family of diterpenoid natural tography (EtOAc͞hexane, 60:40, vol͞vol) to yield pure 7,13- products (1). Of the dozen enzymatic reactions involved in Taxol diacetylbaccatin III (see Fig. 2) (180 mg, 91% yield, 99% purity 1 1 ␦ biosynthesis (2, 3), there are five acyltransferase steps respon- by H NMR). H NMR (300-MHz, CDCl3) : 1.10 (s, CH3), 1.14 ϭ sible for the addition of five acyl groups present in the final highly (s, CH3), 1.74 (s, CH3), 1.77 (ddd, J 1.8, 10.8, and 14.7 Hz, ␤ ϭ functionalized product. The first and third acylation reactions of H-6 ), 1.90 (d, J 1.2 Hz, allylic-CH3) 1.97 (s, C(O)CH3), 2.12 ϭ the Taxol pathway appear to be catalyzed, respectively, by (s, C(O)CH3), 2.14 (s, C(O)CH3), 2.17 (d, J 8.7 Hz, H-14), 2.29 ϭ ␣ taxadien-5␣-ol O-acetyltransferase (TAT) (4), which converts (s, C(O)CH3), 2.53 (ddd, J 7.2, 9.6, and 14.4 Hz, H-6 ), the second specific pathway intermediate, taxa-4(20),11(12)- 3.89 (d, J ϭ 6.9 Hz, H-3), 4.09 (d, J ϭ 8.4 Hz, H-20␣), 4.24 dien-5␣-ol, to the acetate ester (5), and by 10-deacetylbaccatin (d, J ϭ 8.4 Hz, H-20␤), 4.91 (dd, J ϭ 1.8 and 9.6 Hz, H-5), 5.53 III 10-O-acetyltransferase (DAT), which converts 10-deacetyl- (dd, J ϭ 7.2 and 10.5 Hz, H-7), 5.60 (d, J ϭ 6.9 Hz, H-2), 6.10 baccatin III to baccatin III (6) as the last diterpenoid interme- (dt, J ϭ 1.2 and 8.7 Hz, H-13), 6.19 (s, H-10), 7.39–8.01 (aromatic diate before Taxol (3) (Fig. 1). cDNAs encoding both of these acetyltransferases have been isolated from an induced Taxus cuspidata cell library by a homology-based cloning strategy that Abbreviations: TBT, taxane 2␣-O-benzoyltransferase; APCI, atmospheric pressure chemical ionization; Mopso, 3-(N-morpholino)-2-hydroxypropanesulfonic acid. yielded a family of related acyltransferase sequences that Data deposition: The sequence reported in this paper has been deposited in the GenBank may contain all of the remaining transferases of Taxol biosyn- database (accession no. AF297618). thesis (6, 7). *To whom reprint requests should be addressed. E-mail: [email protected]. A survey of the 350 naturally occurring taxoid metabolites The publication costs of this article were defrayed in part by page charge payment. This characterized to date (1) suggests that the second acylation article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. reaction in the Taxol pathway is the benzoylation of the C2␣- §1734 solely to indicate this fact. hydroxyl group of an advanced taxane intermediate (2, 3) (Fig. Article published online before print: Proc. Natl. Acad. Sci. USA, 10.1073͞pnas.250491997. 1). Although no advanced, naturally occurring 2-deacyltaxoid Article and publication date are at www.pnas.org͞cgi͞doi͞10.1073͞pnas.250491997 PNAS ͉ December 5, 2000 ͉ vol. 97 ͉ no. 25 ͉ 13591–13596 Downloaded by guest on September 28, 2021 Fig. 1. Outline of the Taxol biosynthetic pathway. The cyclization of geranylgeranyl diphosphate to taxadiene by taxadiene synthase and the hydroxylation to taxadien-5␣-ol by taxadiene 5␣-hydroxylase (a), the acetylation of taxadien-5␣-ol by taxa-4(20),11(12)-dien-5␣-ol O-acetyltransferase (TAT) (b), the conversion of a 2-debenzoyl ‘‘taxoid-type’’ intermediate to 10-deacetylbaccatin III by a taxane 2␣-O-benzoyltransferase (TBT) (c), the conversion of 10-deacetylbaccatin III to baccatin III by 10-deacetylbaccatin III 10-O-acetyltransferase (DBAT) (d), and the side-chain attachment to baccatin III to form Taxol (e) are illustrated. The broken arrow indicates several as-yet-undefined steps. protons). Atmospheric pressure chemical ionization (APCI) Synthesis of [7-14C]Benzoyl-CoA. The method was adapted from a MS: m͞z 671 (PHϩ). procedure for the synthesis of valproyl-CoA esters (8). To a solution of [7-14C]benzoic acid (3.3 mg, 27 ␮mol, specific activity ͞ ϭ ͞ Synthesis of 2-Debenzoyl-7,13-diacetylbaccatin III. To a stirred so- 18.5 Ci mol; 1 Ci 37 GBq) in CH2Cl2 tetrahydrofuran (5:2, ͞ lution of 7,13-diacetylbaccatin III (170 mg, 253 ␮mol) in dry vol vol, 1.4 ml) under N2 was added 1 M triethylamine in CH2Cl2 tetrahydrofuran (2 ml) at 0°C was added bis(2-methoxyeth- (3.0 ␮l, 30 ␮mol) in one portion, and the mixture was stirred for ␮ oxy)aluminum hydride (Ͼ65 wt % in toluene, 3 eq) dropwise. 10 min at room temperature. Ethyl chloroformate (2.57 l, 2.9 ␮ After stirring for 30 min at 0°C, the reaction was quenched by mg, 27 mol) was added in one portion and the reaction was dropwise addition of saturated NH4Cl, and the mixture was stirred for1hatroom temperature. The solvents were evapo- rated, and the residue was dissolved in 0.5 ml of t-butyl alcohol. stirred for 10 min, then warmed to room temperature and diluted ␮ with EtOAc (50 ml), followed by addition of water (10 ml). The CoA as the sodium salt (23 mg, 30 mol dissolved in 0.5 ml of aqueous phase was separated and extracted again with EtOAc 0.4 M NaHCO3) was added to the solution and the mixture was (twice with 25 ml). The combined organic fractions were washed stirred for 0.5 h at room temperature, then quenched with 1 M HCl (200 ␮l) and adjusted to pH 5 with 15 mM NaH PO (pH with brine and water, then dried over anhydrous MgSO . The 2 4 4 4.8). The solvents were evaporated under reduced pressure (5 h) solvent was evaporated and the crude product was purified by at room temperature. The residue was resuspended in 15 mM silica gel flash column chromatography (40–60% EtOAc gra- NaH2PO4 (pH 6.9, 7 ml). The crude product was purified by dient in hexane) to yield 2-debenzoyl-7,13-diacetylbaccatin III using a C Sep-Pak cartridge (500 mg C silica gel, Millipore) (see Fig.
Recommended publications
  • Phospholipid:Diacylglycerol Acyltransferase: an Enzyme That Catalyzes the Acyl-Coa-Independent Formation of Triacylglycerol in Yeast and Plants
    Phospholipid:diacylglycerol acyltransferase: An enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants Anders Dahlqvist*†‡, Ulf Ståhl†§, Marit Lenman*, Antoni Banas*, Michael Lee*, Line Sandager¶, Hans Ronne§, and Sten Stymne¶ *Scandinavian Biotechnology Research (ScanBi) AB, Herman Ehles Va¨g 2 S-26831 Svaloˆv, Sweden; ¶Department of Plant Breeding Research, Swedish University of Agricultural Sciences, Herman Ehles va¨g 2–4, S-268 31 Svalo¨v, Sweden; and §Department of Plant Biology, Uppsala Genetic Center, Swedish University of Agricultural Sciences, Box 7080, S-750 07 Uppsala, Sweden Edited by Christopher R. Somerville, Carnegie Institution of Washington, Stanford, CA, and approved March 31, 2000 (received for review February 15, 2000) Triacylglycerol (TAG) is known to be synthesized in a reaction that acid) and epoxidated fatty acid (vernolic acid) in TAG in castor uses acyl-CoA as acyl donor and diacylglycerol (DAG) as acceptor, bean (Ricinus communis) and the hawk’s-beard Crepis palaestina, and which is catalyzed by the enzyme acyl-CoA:diacylglycerol respectively. Furthermore, a similar enzyme is shown to be acyltransferase. We have found that some plants and yeast also present in the yeast Saccharomyces cerevisiae, and the gene have an acyl-CoA-independent mechanism for TAG synthesis, encoding this enzyme, YNR008w, is identified. which uses phospholipids as acyl donors and DAG as acceptor. This reaction is catalyzed by an enzyme that we call phospholipid:dia- Materials and Methods cylglycerol acyltransferase, or PDAT. PDAT was characterized in Yeast Strains and Plasmids. The wild-type yeast strains used were microsomal preparations from three different oil seeds: sunflower, either FY1679 (MAT␣ his3-⌬200 leu2-⌬1 trp1-⌬6 ura3-52) (9) or castor bean, and Crepis palaestina.
    [Show full text]
  • Peroxisomal Fatty Acid Beta-Oxidation in Relation to the Accumulation Of
    Peroxisomal fatty acid beta-oxidation in relation to the accumulation of very long chain fatty acids in cultured skin fibroblasts from patients with Zellweger syndrome and other peroxisomal disorders. R J Wanders, … , A W Schram, J M Tager J Clin Invest. 1987;80(6):1778-1783. https://doi.org/10.1172/JCI113271. Research Article The peroxisomal oxidation of the long chain fatty acid palmitate (C16:0) and the very long chain fatty acids lignocerate (C24:0) and cerotate (C26:0) was studied in freshly prepared homogenates of cultured skin fibroblasts from control individuals and patients with peroxisomal disorders. The peroxisomal oxidation of the fatty acids is almost completely dependent on the addition of ATP, coenzyme A (CoA), Mg2+ and NAD+. However, the dependency of the oxidation of palmitate on the concentration of the cofactors differs markedly from that of the oxidation of lignocerate and cerotate. The peroxisomal oxidation of all three fatty acid substrates is markedly deficient in fibroblasts from patients with the Zellweger syndrome, the neonatal form of adrenoleukodystrophy and the infantile form of Refsum disease, in accordance with the deficiency of peroxisomes in these patients. In fibroblasts from patients with X-linked adrenoleukodystrophy the peroxisomal oxidation of lignocerate and cerotate is impaired, but not that of palmitate. Competition experiments indicate that in fibroblasts, as in rat liver, distinct enzyme systems are responsible for the oxidation of palmitate on the one hand and lignocerate and cerotate on the other hand. Fractionation studies indicate that in rat liver activation of cerotate and lignocerate to cerotoyl-CoA and lignoceroyl-CoA, respectively, occurs in two subcellular fractions, the endoplasmic reticulum and the peroxisomes but not in the mitochondria.
    [Show full text]
  • Recent Research Progress in Taxol Biosynthetic Pathway and Acylation Reactions Mediated by Taxus Acyltransferases
    molecules Review Recent Research Progress in Taxol Biosynthetic Pathway and Acylation Reactions Mediated by Taxus Acyltransferases Tao Wang 1, Lingyu Li 1,2, Weibing Zhuang 1, Fengjiao Zhang 1, Xiaochun Shu 1, Ning Wang 1 and Zhong Wang 1,* 1 Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; [email protected] (T.W.); [email protected] (L.L.); [email protected] (W.Z.); [email protected] (F.Z.); [email protected] (X.S.); [email protected] (N.W.) 2 Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China * Correspondence: [email protected]; Tel.: +86-025-84347055 Abstract: AbstractsTaxol is one of the most effective anticancer drugs in the world that is widely used in the treatments of breast, lung and ovarian cancer. The elucidation of the taxol biosynthetic pathway is the key to solve the problem of taxol supply. So far, the taxol biosynthetic pathway has been reported to require an estimated 20 steps of enzymatic reactions, and sixteen enzymes in- volved in the taxol pathway have been well characterized, including a novel taxane-10β-hydroxylase (T10βOH) and a newly putative β-phenylalanyl-CoA ligase (PCL). Moreover, the source and for- mation of the taxane core and the details of the downstream synthetic pathway have been basically depicted, while the modification of the core taxane skeleton has not been fully reported, mainly concerning the developments from diol intermediates to 2-debenzoyltaxane.
    [Show full text]
  • (10) Patent No.: US 8119385 B2
    US008119385B2 (12) United States Patent (10) Patent No.: US 8,119,385 B2 Mathur et al. (45) Date of Patent: Feb. 21, 2012 (54) NUCLEICACIDS AND PROTEINS AND (52) U.S. Cl. ........................................ 435/212:530/350 METHODS FOR MAKING AND USING THEMI (58) Field of Classification Search ........................ None (75) Inventors: Eric J. Mathur, San Diego, CA (US); See application file for complete search history. Cathy Chang, San Diego, CA (US) (56) References Cited (73) Assignee: BP Corporation North America Inc., Houston, TX (US) OTHER PUBLICATIONS c Mount, Bioinformatics, Cold Spring Harbor Press, Cold Spring Har (*) Notice: Subject to any disclaimer, the term of this bor New York, 2001, pp. 382-393.* patent is extended or adjusted under 35 Spencer et al., “Whole-Genome Sequence Variation among Multiple U.S.C. 154(b) by 689 days. Isolates of Pseudomonas aeruginosa” J. Bacteriol. (2003) 185: 1316 1325. (21) Appl. No.: 11/817,403 Database Sequence GenBank Accession No. BZ569932 Dec. 17. 1-1. 2002. (22) PCT Fled: Mar. 3, 2006 Omiecinski et al., “Epoxide Hydrolase-Polymorphism and role in (86). PCT No.: PCT/US2OO6/OOT642 toxicology” Toxicol. Lett. (2000) 1.12: 365-370. S371 (c)(1), * cited by examiner (2), (4) Date: May 7, 2008 Primary Examiner — James Martinell (87) PCT Pub. No.: WO2006/096527 (74) Attorney, Agent, or Firm — Kalim S. Fuzail PCT Pub. Date: Sep. 14, 2006 (57) ABSTRACT (65) Prior Publication Data The invention provides polypeptides, including enzymes, structural proteins and binding proteins, polynucleotides US 201O/OO11456A1 Jan. 14, 2010 encoding these polypeptides, and methods of making and using these polynucleotides and polypeptides.
    [Show full text]
  • Structure and Functional Diversity of GCN5-Related N-Acetyltransferases (GNAT)
    International Journal of Molecular Sciences Review Structure and Functional Diversity of GCN5-Related N-Acetyltransferases (GNAT) Abu Iftiaf Md Salah Ud-Din 1, Alexandra Tikhomirova 1 and Anna Roujeinikova 1,2,* 1 Infection and Immunity Program, Monash Biomedicine Discovery Institute; Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia; [email protected] (A.I.M.S.U.-D.); [email protected] (A.T.) 2 Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia * Correspondence: [email protected]; Tel.: +61-3-9902-9194; Fax: +61-3-9902-9222 Academic Editor: Claudiu T. Supuran Received: 30 May 2016; Accepted: 20 June 2016; Published: 28 June 2016 Abstract: General control non-repressible 5 (GCN5)-related N-acetyltransferases (GNAT) catalyze the transfer of an acyl moiety from acyl coenzyme A (acyl-CoA) to a diverse group of substrates and are widely distributed in all domains of life. This review of the currently available data acquired on GNAT enzymes by a combination of structural, mutagenesis and kinetic methods summarizes the key similarities and differences between several distinctly different families within the GNAT superfamily, with an emphasis on the mechanistic insights obtained from the analysis of the complexes with substrates or inhibitors. It discusses the structural basis for the common acetyltransferase mechanism, outlines the factors important for the substrate recognition, and describes the mechanism of action of inhibitors of these enzymes. It is anticipated that understanding of the structural basis behind the reaction and substrate specificity of the enzymes from this superfamily can be exploited in the development of novel therapeutics to treat human diseases and combat emerging multidrug-resistant microbial infections.
    [Show full text]
  • A New Synthesis of Taxol from Baccatin III with Lower Cost Or Higher Yield Or Both of These, As Compared with Existing Routes
    A New Synthesis of Taxol® from Baccatin III by Erkan Baloglu Thesis submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Master of Science in Chemistry Dr. David G. I. Kingston, Chairman Dr. Michael A. Calter Dr. Paul A. Deck August 7, 1998 Blacksburg, Virginia Keywords: Paclitaxel, Cancer, Chemotherapy, Taxol, Anticancer Drugs, Baccatin Copyright 1998, Erkan Baloglu A New Synthesis of Taxol® from Baccatin III by Erkan Baloglu Dr. David G. I. Kingston, Chairman Department of Chemistry Virginia Polytechnic Institute and State University Abstract Taxol®, an important anticancer drug, was first isolated in extremely low yield from the bark of the western yew, Taxus brevifolia. The clinical utility of Taxol has prompted a tremendous effort to obtain this complex molecule synthetically. Due to the chemical complexity of Taxol, its commercial production by total synthesis is not likely to be economical. Another natural product, 10-deacetyl baccatin III, is readily available in higher yield. Several methods have been reported for the synthesis of Taxol by coupling baccatin III and the N-benzoyl-β-phenylisoserine side chain. A new method for the synthesis of Taxol from baccatin III is reported, and this method is compared with other methods. ,, Acknowledgments I wish to express my deepest thanks and sincere appreciation to Dr. David G. I. Kingston for his continuous support and limitless patience. Dr. Kingston provided a perfect environment for me to grow as a chemist and as an individual. I am grateful to Dr. Michael A. Calter and Dr.
    [Show full text]
  • Catalytic Mechanism of Perosamine N-Acetyltransferase Revealed by High-Resolution X-Ray Crystallographic Studies and Kinetic Analyses James B
    Article pubs.acs.org/biochemistry Catalytic Mechanism of Perosamine N-Acetyltransferase Revealed by High-Resolution X-ray Crystallographic Studies and Kinetic Analyses James B. Thoden,† Laurie A. Reinhardt,† Paul D. Cook,‡ Patrick Menden,§ W. W. Cleland,*,† and Hazel M. Holden*,† † Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, United States ‡ Department of Chemistry and Biochemistry, University of Mount Union, Alliance, Ohio 44601, United States § McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, United States ABSTRACT: N-Acetylperosamine is an unusual dideoxysugar found in the O-antigens of some Gram-negative bacteria, including the pathogenic Escherichia coli strain O157:H7. The last step in its biosynthesis is catalyzed by PerB, an N-acetyltransferase belonging to the left-handed β-helix superfamily of proteins. Here we describe a combined structural and functional investigation of PerB from Caulobacter crescentus. For this study, three structures were determined to 1.0 Å resolution or better: the enzyme in complex with CoA and GDP-perosamine, the protein with bound CoA and GDP-N-acetylperosamine, and the enzyme containing a tetrahedral transition state mimic bound in the active site. Each subunit of the trimeric enzyme folds into two distinct regions. The N-terminal domain is globular and dominated by a six-stranded mainly parallel β-sheet. It provides most of the interactions between the protein and GDP-perosamine. The C-terminal domain consists of a left-handed β-helix, which has nearly seven turns. This region provides the scaffold for CoA binding. On the basis of these high-resolution structures, site-directed mutant proteins were constructed to test the roles of His 141 and Asp 142 in the catalytic mechanism.
    [Show full text]
  • Supplementary Informations SI2. Supplementary Table 1
    Supplementary Informations SI2. Supplementary Table 1. M9, soil, and rhizosphere media composition. LB in Compound Name Exchange Reaction LB in soil LBin M9 rhizosphere H2O EX_cpd00001_e0 -15 -15 -10 O2 EX_cpd00007_e0 -15 -15 -10 Phosphate EX_cpd00009_e0 -15 -15 -10 CO2 EX_cpd00011_e0 -15 -15 0 Ammonia EX_cpd00013_e0 -7.5 -7.5 -10 L-glutamate EX_cpd00023_e0 0 -0.0283302 0 D-glucose EX_cpd00027_e0 -0.61972444 -0.04098397 0 Mn2 EX_cpd00030_e0 -15 -15 -10 Glycine EX_cpd00033_e0 -0.0068175 -0.00693094 0 Zn2 EX_cpd00034_e0 -15 -15 -10 L-alanine EX_cpd00035_e0 -0.02780553 -0.00823049 0 Succinate EX_cpd00036_e0 -0.0056245 -0.12240603 0 L-lysine EX_cpd00039_e0 0 -10 0 L-aspartate EX_cpd00041_e0 0 -0.03205557 0 Sulfate EX_cpd00048_e0 -15 -15 -10 L-arginine EX_cpd00051_e0 -0.0068175 -0.00948672 0 L-serine EX_cpd00054_e0 0 -0.01004986 0 Cu2+ EX_cpd00058_e0 -15 -15 -10 Ca2+ EX_cpd00063_e0 -15 -100 -10 L-ornithine EX_cpd00064_e0 -0.0068175 -0.00831712 0 H+ EX_cpd00067_e0 -15 -15 -10 L-tyrosine EX_cpd00069_e0 -0.0068175 -0.00233919 0 Sucrose EX_cpd00076_e0 0 -0.02049199 0 L-cysteine EX_cpd00084_e0 -0.0068175 0 0 Cl- EX_cpd00099_e0 -15 -15 -10 Glycerol EX_cpd00100_e0 0 0 -10 Biotin EX_cpd00104_e0 -15 -15 0 D-ribose EX_cpd00105_e0 -0.01862144 0 0 L-leucine EX_cpd00107_e0 -0.03596182 -0.00303228 0 D-galactose EX_cpd00108_e0 -0.25290619 -0.18317325 0 L-histidine EX_cpd00119_e0 -0.0068175 -0.00506825 0 L-proline EX_cpd00129_e0 -0.01102953 0 0 L-malate EX_cpd00130_e0 -0.03649016 -0.79413596 0 D-mannose EX_cpd00138_e0 -0.2540567 -0.05436649 0 Co2 EX_cpd00149_e0
    [Show full text]
  • Development of a Four-Step Semi-Biosynthesis of the Anticancer Drug Paclitaxel and Its Analogues
    DEVELOPMENT OF A FOUR-STEP SEMI-BIOSYNTHESIS OF THE ANTICANCER DRUG PACLITAXEL AND ITS ANALOGUES By Chelsea Thornburg A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of Biochemistry and Molecular Biology ‒ Doctor of Philosophy 2015 ABSTRACT DEVELOPMENT OF A FOUR-STEP SEMI-BIOSYNTHESIS OF THE ANTICANCER DRUG PACLITAXEL AND ITS ANALOGUES By Chelsea Thornburg Paclitaxel (Taxol®) is a widely used chemotherapeutic drug with additional medical applications in drug-eluting stents as an anti-restenosis treatment. Paclitaxel is a structurally complex natural product with an excellent scaffold for designing analogs with pharmacological properties. To date, clinically approved analogs include docetaxel and cabazitaxel for the treatment of additional cancers. Currently, plant cell fermentation methods produce paclitaxel and large quantities of the precursors 10-deacetylbaccatin III (10-DAB) and baccatin III. The complexity of the semi-characterized ~19-step paclitaxel biosynthetic pathway limits bioengineering attempts. However, the availability of 10-DAB and baccatin III suggests a semi-biosynthetic pathway to paclitaxel starting with these precursors is feasible. We have designed a short, simple biosynthetic pathway, capable of making paclitaxel, analogs, and/or valuable precursors for the semi-synthesis of additional analogs of biological interest. The paclitaxel biosynthesis enzyme baccatin III: 3-amino-13-O-phenylpropanoyl CoA transferase (BAPT) and the bacterial (2R,3S)-phenylisoserinyl CoA ligase (PheAT) produce N-debenzoylpaclitaxel, N-debenzoyldocetaxel, or precursor analogs. The addition of the paclitaxel biosynthetic N-debenzoyltaxol-N-benzoyltransferase (NDTNBT) and the bacterial benzoate CoA ligase (BadA) produce paclitaxel or other N-acylated analogs. In this dissertation, BAPT and BadA are kinetically characterized.
    [Show full text]
  • Supplemental Information, Sos, Harris Et Al., Profound Fatty Liver in Mice
    Supplemental Information, Sos, Harris et al., Profound Fatty Liver in Mice with Hepatocyte-Specific Deletion of JAK2 is Completely Rescued by Abrogation of Growth Hormone Secretion Supplemental Figure S1 Representative Images of 20 Week Old JAK2L Mouse Livers. A – H+E. There is diffuse hepatocellular lipidosis affecting the entire lobule, i.e. from centrilobular (roughly corresponding to zone 3) to portal (roughly corresponding to zone 1). In contrast to typical lipid distribution in NASH (predominantly macrovesicular and zone 3), microvesicular and macrovesicular change coexist, with macrovesicular change most evident midlobular (roughly corresponding to zone 2). Small foci of inflammation occur at random within lobules (yellow square). P=portal vein. C=central vein. Miv=microvesicular change with vesicle Ø < hepatocellular nuclei. Mav=macrovesicular change. B – Trichrome. Same lobule as shown in A. Within the focus of inflammation there is deposition of sparse collagenous matrix (royal blue). Arrow: free lipid droplets are occasionally enclosed within the foci. C – H+E. Small intralobular focus of inflammation. D – Trichrome. Same focus as in C. Spindle cells and Supplementary Materials, Sos, Harris et al. Page 1 sparse collagenous matrix extend from the focus to enclose and isolate an adjacent hepatocyte (arrows). This type of “perisinuoidal” fibrosis is typical for NASH. Supplemental Table S1 Basic Metabolic Parameters in JAK2L and Con Mice Con (n = 4-6) JAK2L (n = 4-6) Total Protein g/dL 5.6 ± 0.12 5.33 ± 0.7 Albumin g/dL 3.63 ± 0.03
    [Show full text]
  • European Patent Office U.S. Patent and Trademark Office
    EUROPEAN PATENT OFFICE U.S. PATENT AND TRADEMARK OFFICE CPC NOTICE OF CHANGES 89 DATE: JULY 1, 2015 PROJECT RP0098 The following classification changes will be effected by this Notice of Changes: Action Subclass Group(s) Symbols deleted: C12Y 101/01063 C12Y 101/01128 C12Y 101/01161 C12Y 102/0104 C12Y 102/03011 C12Y 103/01004 C12Y 103/0103 C12Y 103/01052 C12Y 103/99007 C12Y 103/9901 C12Y 103/99013 C12Y 103/99021 C12Y 105/99001 C12Y 105/99002 C12Y 113/11013 C12Y 113/12012 C12Y 114/15002 C12Y 114/99028 C12Y 204/01119 C12Y 402/01052 C12Y 402/01058 C12Y 402/0106 C12Y 402/01061 C12Y 601/01025 C12Y 603/02027 Symbols newly created: C12Y 101/01318 C12Y 101/01319 C12Y 101/0132 C12Y 101/01321 C12Y 101/01322 C12Y 101/01323 C12Y 101/01324 C12Y 101/01325 C12Y 101/01326 C12Y 101/01327 C12Y 101/01328 C12Y 101/01329 C12Y 101/0133 C12Y 101/01331 C12Y 101/01332 C12Y 101/01333 CPC Form – v.4 CPC NOTICE OF CHANGES 89 DATE: JULY 1, 2015 PROJECT RP0098 Action Subclass Group(s) C12Y 101/01334 C12Y 101/01335 C12Y 101/01336 C12Y 101/01337 C12Y 101/01338 C12Y 101/01339 C12Y 101/0134 C12Y 101/01341 C12Y 101/01342 C12Y 101/03043 C12Y 101/03044 C12Y 101/98003 C12Y 101/99038 C12Y 102/01083 C12Y 102/01084 C12Y 102/01085 C12Y 102/01086 C12Y 103/01092 C12Y 103/01093 C12Y 103/01094 C12Y 103/01095 C12Y 103/01096 C12Y 103/01097 C12Y 103/0701 C12Y 103/08003 C12Y 103/08004 C12Y 103/08005 C12Y 103/08006 C12Y 103/08007 C12Y 103/08008 C12Y 103/08009 C12Y 103/99032 C12Y 104/01023 C12Y 104/01024 C12Y 104/03024 C12Y 105/01043 C12Y 105/01044 C12Y 105/01045 C12Y 105/03019 C12Y 105/0302
    [Show full text]
  • Supplementary Materials
    Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017 Supplementary Materials Dihydro-2H-thiopyran-3(4H)-one-1,1-dioxide - a versatile building block for the synthesis of new thiopyran-based heterocyclic systems Vitalii A. Palchykov,*a Roman M. Chabanenko,a Valeriy V. Konshin,b Victor V. Dotsenko,b,c Sergey G. Krivokolysko,b Elena A. Chigorina,d Yuriy I. Horak,e Roman Z. Lytvyn,e Andriy A. Vakhula,e Mykola D. Obushake and Alexander V. Mazepaf aDepartment of Organic Chemistry, Oles Honchar Dnipro National University, 72 Gagarina Av, 49010 Dnipro, Ukraine bDepartment of Chemistry & High Technologies, Kuban State University, 149 Stavropolskaya St, 350040 Krasnodar, Russian Federation сDepartment of Chemistry, North Caucasus Federal University, 1a Pushkin St, 355009 Stavropol, Russian Federation dFederal State Unitary Enterprise «State Scientific Research Institute of Chemical Reagents and High Purity Chemical Substances» (FSUE «IREA»), 3 Bogorodsky val St, 107076 Moscow, Russian Federation eDepartment of Organic Chemistry, Ivan Franko National University of Lviv, 6 Kyryla i Mefodiya St, 79005 Lviv, Ukraine fA. V. Bogatsky Physico-Chemical Institute, National Academy of Sciences of Ukraine, 86 Lustdorfskaya Rd, 65080 Odessa, Ukraine *E-mail: [email protected] 1 CONTENTS: Page: 1 H and 13C NMR spectra of compound 2a (400/100 MHz, DMSO-d6)................................ 4 IR spectrum of compound 2a ............................................................................................. 4 Mass spectrum (EI) of compound 2a ................................................................................. 5 1 H-1H COSY spectrum of compound 2a (400 MHz, DMSO-d6) .......................................... 5 NOESY spectrum of compound 2a (400 MHz, DMSO-d6) ................................................. 6 1 H-13C HSQC spectrum of compound 2a (400/100 MHz, DMSO-d6) ................................
    [Show full text]