Diagnostics for Filovirus Detection: Impact of Recent Outbreaks on the Diagnostic Landscape

Total Page:16

File Type:pdf, Size:1020Kb

Diagnostics for Filovirus Detection: Impact of Recent Outbreaks on the Diagnostic Landscape Analysis BMJ Glob Health: first published as 10.1136/bmjgh-2018-001112 on 7 February 2019. Downloaded from Diagnostics for filovirus detection: impact of recent outbreaks on the diagnostic landscape Devy M Emperador,1 Laura T Mazzola,1 Betsy Wonderly Trainor,2 Arlene Chua,3 Cassandra Kelly-Cirino1 To cite: Emperador DM, ABSTRACT Summary box Mazzola LT, Wonderly Trainor B, Ebolaviruses and Marburg virus (MARV) both belong to et al. Diagnostics for filovirus the family Filoviridae and cause severe haemorrhagic ► Ebolaviruses and Marburg virus (MARV), both of the detection: impact of recent fever in humans. Due to high mortality rates and potential outbreaks on the diagnostic family Filoviridae, cause severe haemorrhagic fever for spread from rural to urban regions, they are listed landscape. BMJ Glob Health in humans and are considered high-priority patho- 2019;4:e001112. doi:10.1136/ on the WHO R&D blueprint of high-priority pathogens. gens by WHO; recent ebolavirus outbreaks in Western bmjgh-2018-001112 Recent ebolavirus outbreaks in Western and Central Africa and Central Africa have led to rapid development of a have highlighted the importance of diagnostic testing in number of diagnostic tests for ebolaviruses. epidemic preparedness for these pathogens and led to the Handling editor Dr Seye ► Despite these advancements, gaps in diagnostic Abimbola rapid development of a number of commercially available preparedness for ebolaviruses remain, including dif- benchtop and point-of-care nucleic acid amplification tests ficulties obtaining full regulatory approval for tests ► Additional material is as well as serological assays and rapid diagnostic tests. published online only. To view approved under emergency licenses, lack of incen- Despite these advancements, challenges still remain. While please visit the journal online tive to continue development after an outbreak is products approved under emergency use licenses during (http:// dx. doi. org/ 10. 1136/ over, poor specificity and sensitivity of some existing bmjgh- 2018- 001112). outbreak periods may continue to be used post-outbreak, tests, and a need for tests able to use different sam- a lack of clarity and incentive surrounding the regulatory ple types. approval pathway during non-outbreak periods has ► For MARV, availability of diagnostic tests is still lim- Received 14 August 2018 deterred many manufacturers from seeking full approvals. ited; target product profiles for ebolavirus diagnos- Revised 17 September 2018 Waning of funding and poor access to samples after the Accepted 22 September 2018 tics should be extended to include MARV and should 2014–2016 outbreak also contributed to cessation of consider persisting challenges to diagnostic pre- development once the outbreak was declared over. There paredness for ebolaviruses. is a need for tests with improved sensitivity and specificity, http://gh.bmj.com/ and assays that can use alternative sample types could reduce the need for invasive procedures and expensive equipment, making testing in field conditions more The virus family Filoviridae is divided into feasible. For MARV, availability of diagnostic tests is still three genera, Ebolavirus, Marburgvirus and limited, restricted to a single ELISA test and assay panels Cuevavirus. Within the ebolavirus genus are designed to differentiate between multiple pathogens. five species: Zaire ebolavirus (EBOV), Sudan It may be helpful to extend the target product profile for on September 28, 2021 by guest. Protected copyright. ebolavirus (SUDV), Bundibugyo ebolavirus, ebolavirus diagnostics to include MARV, as the viruses have many overlapping characteristics. Tai Forest ebolavirus (TAFV) and Reston ebolavirus. The marburgvirus genus consists of Marburg marburgvirus (MARV), including the MARV POPP, MARV Angola, MARV INTRODUCTION Durba, MARV Ozolin and MARV Musoke 2 3 © Author(s) (or their Ebolaviruses and Marburg virus (MARV) variants, and Ravn virus. employer(s)) 2019. Re-use belong to the viral family Filoviridae and can Since the first report in Sudan and Zaire permitted under CC BY. cause severe haemorrhagic fever in humans in 1976, ebolavirus disease (EVD) has caused Published by BMJ. and non-human primates. Filoviruses are more than 30 outbreaks in the subsequent 1FIND, Emerging Threats Programme, Geneva, filamentous, negative-sense RNA viruses, 40 years (figure 2). EVD is a lethal illness Switzerland with a genome that encodes seven structural with an average case fatality rate of 78%. 2FIND, Geneva, Switzerland proteins: nucleoprotein (NP), polymerase Marburg virus disease (MVD) was first iden- 3Médecins Sans Frontières cofactor (VP35), matrix protein (VP40), tified in 1967 during epidemics in Marburg (MSF), Geneva, Switzerland glycoprotein (GP), replication-transcription and Frankfurt in Germany and Belgrade in Correspondence to protein (VP30), minor matrix protein (VP24) the former Yugoslavia from the importation 4 Dr Cassandra Kelly-Cirino; and the non-structural protein RNA-de- of infected monkeys from Uganda. Similar cassandra. kelly@ finddx. org pendent RNA polymerase (L) (figure 1).1 to EVD, MVD has a very high case fatality Emperador DM, et al. BMJ Glob Health 2019;4:e001112. doi:10.1136/bmjgh-2018-001112 1 BMJ Global Health BMJ Glob Health: first published as 10.1136/bmjgh-2018-001112 on 7 February 2019. Downloaded from and 70% in Guinea, Liberia and Sierra Leone by 2016.5 The most recent outbreak is located in the Democratic Republic of Congo, with 137 total cases, 106 confirmed cases and 92 deaths (61 confirmed) reported as of 12 September 2018.6 The fruit bat is thought to be the native host for filo- viruses (although this has not been definitively demon- strated for ebolaviruses),7 with a large ecological reach ranging from West and Central Africa to Southeast Asia.8–13 Reports show a seasonality in filovirus transmis- sion to humans that may correspond with mating and birthing seasons of fruit bat species.14 15 Primates and other animals can also be infected and suffer disease, although their ability to serve as a reservoir for filoviruses is unknown.9 Filoviruses are primarily transmitted to humans Figure 1 Schematic illustration of filovirus particle and through close contact with blood, secretions, organs, or ebolavirus and MARV genomes. Reprinted from J Clin Virol, other bodily fluids of infected humans or animals.8 15–17 64, Rougeron V et al., Ebola and Marburg haemorrhagic They are commonly spread among family and friends of fever, 111–9. Copyright (2015), with permission from Elsevier. infected individuals, although nosocomial transmission, GP, glycoprotein; L, non-structural protein RNA-dependent 18 RNA polymerase; MARV, Marburg virus; NP, nucleoprotein, especially among healthcare workers, occurs. As seen in sGP, secreted glycoprotein; VP24, minor matrix protein; the 2014–2016 ebolavirus outbreak, an increase in popu- VP30, replication-transcription protein; VP35, polymerase lation size, the rise of urbanisation and the interconnect- cofactor; VP40, matrix protein. edness of travel can expand the spread of filovirus disease beyond endemic regions.19 Isolation of patients, proper use of personal protective equipment (PPE) and disinfec- rate, measuring just over 80% in some of the most recent tion procedures have been effective in reducing human- outbreaks. to-human transmission of EBOV and MARV.16 Sporadic outbreaks of EVD and MVD typically occur 4 The incubation period for EVD and MVD is between 2 and are limited to countries in sub-Saharan Africa. and 21 days, with an average of 3–10 days.8 Both ebolavi- However, in 2014, an outbreak of EBOV was detected ruses and MARV can be clinically detected in blood after in rural Guinea, near the border of Liberia and Sierra onset of fever, which accompanies the rise in circulating Leone, resulting in 28 616 total cases of EVD and 11 310 virus within the patient’s body and remains elevated in deaths in 10 countries, with a mortality rate between 30% individuals who progress to death, especially among http://gh.bmj.com/ those with EVD.20 Treatment options for EVD and MVD are limited and rely on supportive therapy.8 21 While there are no proven effective drug treatments for EVD or MVD, experimental therapies (ZMapp, brincidofovir, TKM-Ebola and favi- piravir) were used during the 2014–2016 ebolavirus on September 28, 2021 by guest. Protected copyright. outbreak to treat infected patients.21 22 A number of EVD pharmacotherapies and immunological-based agents have been or are currently undergoing accelerated human trials in EVD endemic countries, including favip- iravir and ZMapp; some may also be effective for MARV (although ZMapp is specific to ebolavirus).21–23 Two of the most promising EBOV vaccine candidates, rVSV-EBOV and ChAd3-EBO-Z, underwent phase II/III efficacy trials in Liberia, Sierra Leone and Guinea during the peak of the 2014–2016 epidemic, showing high effi- cacy and long-term antibody responses.24–26 Vaccines for MARV have not seen a similar accelerated development to EBOV, although animal and early clinical studies show Figure 2 Reported outbreaks or isolated cases of MARV potential for MARV vaccine immunogenicity and protec- and ebolaviruses. Reprinted from J Clin Virol, 64, Rougeron 2 27 28 V et al., Ebola and Marburg haemorrhagic fever, 111–9. tion. Copyright (2015), with permission from Elsevier. EBOV, Zaire Due to the sporadic nature of outbreaks, high mortality ebolavirus; MARV, Marburg virus; SUDV, Sudan ebolavirus; rates and potential spread from rural to urban regions, TAFV,
Recommended publications
  • A Multicenter, Multi-Outbreak, Randomized, Controlled Safety And
    2018 Ebola MCM RCT Protocol Page 1 of 92 IND#: 125530 CONFIDENTIAL 4 October 2019, version 7.0 A Multicenter, Multi-Outbreak, Randomized, Controlled Safety and Efficacy Study of Investigational Therapeutics for the Treatment of Patients with Ebola Virus Disease Short Title: 2018 Ebola MCM RCT Protocol Sponsored by: Office of Clinical Research Policy and Regulatory Operations (OCRPRO) National Institute of Allergy and Infectious Diseases 5601 Fishers Lane Bethesda, MD 20892 NIH Protocol Number: 19-I-0003 Protocol IND #: 125530 ClinicalTrials.gov Number: NCT03719586 Date: 4 October 2019 Version: 7.0 CONFIDENTIAL This document is confidential. No part of it may be transmitted, reproduced, published, or used by other persons without prior written authorization from the study sponsor and principal investigator. 2018 Ebola MCM RCT Protocol Page 2 of 92 IND#: 125530 CONFIDENTIAL 4 October 2019, version 7.0 KEY ROLES DRC Principal Investigator: Jean-Jacques Muyembe-Tamfum, MD, PhD Director-General, DRC National Institute for Biomedical Research Professor of Microbiology, Kinshasa University Medical School Kinshasa Gombe Democratic Republic of the Congo Phone: +243 898949289 Email: [email protected] Other International Investigators: see Appendix E Statistical Lead: Lori Dodd, PhD Biostatistics Research Branch, DCR, NIAID 5601 Fishers Lane, Room 4C31 Rockville, MD 20852 Phone: 240-669-5247 Email: [email protected] U.S. Principal Investigator: Richard T. Davey, Jr., MD Clinical Research Section, LIR, NIAID, NIH Building 10, Room 4-1479, Bethesda,
    [Show full text]
  • Signature Redacted Signature of Author
    Developing VHH-based tools to study Ebolavirus Infection By Jason V. M. H. Nguyen B.S., Biochemistry and Molecular Biology University of California, Santa Cruz, 2012 Submitted to the Microbiology Graduate Program in partial fulfillment of the requirements for the degree of Doctor of Philosophy At the Massachusetts Institute of Technology June 2019 2019 Massachusetts Institute of Technology. All rights reserved. Signature redacted Signature of Author...... .................................................................... V Y' Jason V. M. H. Nguyen Microbiology Graduate Program May 13, 2019 Signature redacted Certified by.............. ................................................................... Hidde L. Ploegh Senior Investigator Boston Children's Hospital It Signature redacted Accepted by....... ......................................................................... Jacquin C. Niles Associate Professor of Biological Engineering Chair of Microbiology Program MASSACHUSETTS INSTITUTE OF TECHNOLOGY JUN 2 12019 1 LIBRARIES ARCHIVES 2 Developing VHH-based tools to study Ebolavirus Infection By Jason V. M. H. Nguyen Submitted to the Microbiology Graduate Program on May 13th, 2019 in partial fulfillment of the requirements for the degree of Doctor of Philosophy ABSTRACT Variable domains of camelid-derived heavy chain-only antibodies, or VHHs, have emerged as a unique antigen binding moiety that holds promise in its versatility and utilization as a tool to study biological questions. This thesis focuses on two aspects on developing tools to study infectious disease, specifically Ebolavirus entry. In Chapter 1, I provide an overview about antibodies and how antibodies have transformed the biomedical field and how single domain antibody fragments, or VHHs, have entered this arena. I will also touch upon how VHHs have been used in various fields and certain aspects that remain underexplored. Chapter 2 focuses on the utilization of VHHs to study Ebolavirus entry using VHHs that were isolated from alpacas.
    [Show full text]
  • Brincidofovir Is Highly Efficacious in Controlling Adenoviremia In
    Brincidofovir is highly efficacious in controlling adenoviremia in pediatric recipients of hematopoietic cell transplant Prashant Hiwarkar,1 Persis Amrolia,2 Ponni Sivaprakasam,3 Su Han Lum,4 Hemalatha Doss,5 Ciara O’Rafferty,1 Toni Petterson,6 Katharine Patrick,7 Juliana Silva,2 Mary Slatter,5 Sarah Lawson,1 Kanchan Rao,2 Colin Steward,3 Adam Gassas,3 Paul Veys,2 Robert Wynn4 On behalf of the UK Paediatric BMT Group 1Department of Haematology and Bone Marrow Transplantation, Birmingham Children’s Hospital, Birmingham, UK; 2Department of Bone Marrow Transplantation, Great Ormond Street Hospital for Children, London; 3Department of Bone Marrow Transplantation, Royal Hospital for Children, Bristol, UK; 4Department of Bone Marrow Transplantation, Royal Manchester Children's Hospital, Manchester, UK; 5Department of Bone Marrow Transplantation, Great North Children's Hospital, Newcastle upon Tyne, UK; 6Department of Bone Marrow Transplantation, Royal Marsden Hospital, Sutton, UK; 7Department of Bone Marrow Transplantation, Sheffield Children's Hospital, Sheffield, UK Address for Correspondence: [email protected] Department of Haematology and Bone Marrow transplantation Birmingham Children’s Hospital, Steelhouse Lane, Birmingham, UK B4 6NH Tel. +44 (0)121 333 9999 Key points Brincidofovir has superior anti-adenoviral activity and safety profile compared to Cidofovir. Brincidofovir is highly efficacious in controlling adenoviraemia during lymphopenic phase of HCT. Summary Cidofovir is pre-emptively used for controlling adenoviremia and preventing disseminated viral disease in hematopoietic cell transplant (HCT) recipients but does not lead to resolution of viremia without T-cell immune-reconstitution. The lipid conjugated prodrug of Cidofovir, Brincidofovir, has improved oral bioavailability and achieves higher intracellular concentrations of active drug.
    [Show full text]
  • Ebola Hemorrhagic Fever: Properties of the Pathogen and Development of Vaccines and Chemotherapeutic Agents O
    ISSN 00268933, Molecular Biology, 2015, Vol. 49, No. 4, pp. 480–493. © Pleiades Publishing, Inc., 2015. Original Russian Text © O.I. Kiselev, A.V. Vasin, M.P. Shevyryova, E.G. Deeva, K.V. Sivak, V.V. Egorov, V.B. Tsvetkov, A.Yu. Egorov, E.A. RomanovskayaRomanko, L.A. Stepanova, A.B. Komissarov, L.M. Tsybalova, G.M. Ignatjev, 2015, published in Molekulyarnaya Biologiya, 2015, Vol. 49, No. 4, pp. 541–554. REVIEWS UDC 578.2,578.76 Ebola Hemorrhagic Fever: Properties of the Pathogen and Development of Vaccines and Chemotherapeutic Agents O. I. Kiseleva, A. V. Vasina, b, M. P. Shevyryovac, E. G. Deevaa, K. V. Sivaka, V. V. Egorova, V. B. Tsvetkova, d, A. Yu. Egorova, E. A. RomanovskayaRomankoa, L. A. Stepanovaa, A. B. Komissarova, L. M. Tsybalovaa, and G. M. Ignatjeva a Institute of Influenza, Ministry of Health of the Russian Federation, St. Petersburg, 197376 Russia; email: [email protected] b St. Petersburg State Polytechnic University, St. Petersburg, 195251 Russia c Ministry of Health of the Russian Federation, Moscow, 127994 Russia d Topchiev Institute of Petrochemical Synthesis, Moscow, 119991 Russia Received December 29, 2014; in final form, January 16, 2015 Abstract—Ebola hemorrhagic fever (EHF) epidemic currently ongoing in West Africa is not the first among numerous epidemics in the continent. Yet it seems to be the worst EHF epidemic outbreak caused by Ebola virus Zaire since 1976 as regards its extremely large scale and rapid spread in the population. Experiments to study the agent have continued for more than 20 years. The EHF virus has a relatively simple genome with seven genes and additional reading frame resulting from RNA editing.
    [Show full text]
  • Kinase Inhibitors and Nucleoside Analogues As Novel Therapies to Inhibit HIV-1 Or ZEBOV Replication
    Kinase Inhibitors and Nucleoside Analogues as Novel Therapies to Inhibit HIV-1 or ZEBOV Replication by Stephen D. S. McCarthy A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Laboratory Medicine and Pathobiology University of Toronto © Copyright by Stephen D. S. McCarthy (2017) Kinase Inhibitors and Nucleoside Analogues as Novel Therapies to Inhibit HIV-1 or ZEBOV Replication Stephen D.S. McCarthy Doctor of Philosophy Graduate Department of Laboratory Medicine and Pathobiology University of Toronto 2017 Abstract Without a vaccine for Human Immunodeficiency Virus type 1 (HIV-1), or approved therapy for treating Zaire Ebolavirus (ZEBOV) infection, new means to treat either virus during acute infection are under intense investigation. Repurposing tyrosine kinase inhibitors of known specificity may not only inhibit HIV-1 replication, but also treat associated inflammation or neurocognitive disorders caused by chronic HIV-1 infection. Moreover, tyrosine kinase inhibitors may effectively treat other infections, including ZEBOV. In addition, established nucleoside/nucleotide analogues that effectively inhibit HIV-1 infection, could also be repurposed to inhibit ZEBOV replication. In this work the role of two host cell kinases, cellular protoncogene SRC (c-SRC) and Protein Tyrosine Kinase 2 Beta (PTK2B), were found to have key roles during early HIV-1 replication in primary activated CD4+ T-cells ex vivo. siRNA knockdown of either kinase increased intracellular reverse transcripts and decreased nuclear proviral integration, suggesting they act at the level of pre-integration complex (PIC) formation or PIC nuclear translocation. c-SRC siRNA knockdown consistently reduced p24 levels of IIIB(X4) and Ba-L(R5) infection, or luciferase ii activity of HXB2(X4) or JR-FL(R5) recombinant viruses, prompting further drug inhibition studies of this kinase.
    [Show full text]
  • Situación Actual Del Tratamiento Farmacológico Frente a La Enfermedad Causada Por El Virus Ébola
    Revisión Jordi Reina Situación actual del tratamiento farmacológico frente a la enfermedad causada por el virus Ébola Unidad de Virología. Servicio de Microbiología. Hospital Universitario Son Espases. Palma de Mallorca RESUMEN Current status of drug treatment against the disease caused by the Ebola virus La reciente epidemia de enfermedad causada por el virus Ébola ha puesto en evidencia la necesidad de desarrollar y dis- ABSTRACT poner de fármacos específicos para hacer frente a esta entidad. De acuerdo con los datos virológicos se han diseñado algunos The recent epidemic of disease caused by the Ebola virus fármacos nuevos y se ha comprobado que otros podrían tener has highlighted the need to develop specific drugs and have to eficacia frente a este virus. deal with this entity. According to virological analysis they have Las principales líneas terapéuticas se basan en la inmu- been designed to give you some new drugs and are proven to noterapia (suero de pacientes convalescientes y anticuerpos others might be effective against this virus. monoclonales específicos), en fármacos antivirales (favipiora- The main lines of therapy are based on immunotherapy vir, BCX4430, Brincidofovir), RNAs de interferencia (TKM-Ébola) (convalescent serum of patients and specific monoclonal an- y oligonucleótidos sin sentido (morfolino fosforodiamidato) y tibodies), antiviral drugs (favipiravir, BCX4430, brincidofovir), otros fármacos no antivirales (clomifeno, NSC62914, FGI-103, interfering RNAs (TKM-Ebola) and antisense oligonucleotides amilorida y la ouabaina). (morpholino phosphorodiamidate) and other drugs no antiviral Los estudios existentes son escasos y principalmente en (clomiphene NSC62914, FGI-103, amiloride and ouabain). modelos animales y los ensayos clínicos han quedado la ma- Existing studies are scarce and mainly in animal models yoría inconclusos por la disminución drástica del número de and clinical trials have been inconclusive most by the drastic nuevos casos.
    [Show full text]
  • The Role of Brincidofovir in Preparation for a Potential Smallpox Outbreak
    viruses Perspective The Role of Brincidofovir in Preparation for a Potential Smallpox Outbreak Scott A. Foster 1,*, Scott Parker 2 ID and Randall Lanier 1 1 Chimerix, Durham, NC 27713, USA; [email protected] 2 Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-919-597-7741 Received: 29 September 2017; Accepted: 26 October 2017; Published: 30 October 2017 Abstract: Smallpox (variola) virus is considered a Category A bioterrorism agent due to its ability to spread rapidly and the high morbidity and mortality rates associated with infection. Current recommendations recognize the importance of oral antivirals and call for having at least two smallpox antivirals with different mechanisms of action available in the event of a smallpox outbreak. Multiple antivirals are recommended due in large part to the propensity of viruses to become resistant to antiviral therapy, especially monotherapy. Advances in synthetic biology heighten concerns that a bioterror attack with variola would utilize engineered resistance to antivirals and potentially vaccines. Brincidofovir, an oral antiviral in late stage development, has proven effective against orthopoxviruses in vitro and in vivo, has a different mechanism of action from tecovirimat (the only oral smallpox antiviral currently in the US Strategic National Stockpile), and has a resistance profile that reduces concerns in the scenario of a bioterror attack using genetically engineered smallpox. Given the devastating potential of smallpox as a bioweapon, preparation of a multi-pronged defense that accounts for the most obvious bioengineering possibilities is strategically imperative. Keywords: smallpox; variola virus; bioterrorism; bioweapon; brincidofovir; CMX001; antiviral 1.
    [Show full text]
  • Integrated Computational Approach for Virtual Hit Identification Against
    International Journal of Molecular Sciences Article Integrated Computational Approach for Virtual Hit Identification against Ebola Viral Proteins VP35 and VP40 Muhammad Usman Mirza 1,2,*,† and Nazia Ikram 2 1 Centre for Research in Molecular Medicine (CRiMM), The University of Lahore, Defense Road, Lahore 54000, Pakistan 2 Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan; [email protected] * Correspondence: [email protected] or [email protected]; Tel.: +92-333-839-6037 † Current address: Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, Medicinal Chemistry, University of Leuven, Leuven B-3000, Belgium. Academic Editors: Christo Z. Christov and Tatyana Karabencheva-Christova Received: 28 July 2016; Accepted: 22 September 2016; Published: 26 October 2016 Abstract: The Ebola virus (EBOV) has been recognised for nearly 40 years, with the most recent EBOV outbreak being in West Africa, where it created a humanitarian crisis. Mortalities reported up to 30 March 2016 totalled 11,307. However, up until now, EBOV drugs have been far from achieving regulatory (FDA) approval. It is therefore essential to identify parent compounds that have the potential to be developed into effective drugs. Studies on Ebola viral proteins have shown that some can elicit an immunological response in mice, and these are now considered essential components of a vaccine designed to protect against Ebola haemorrhagic fever. The current study focuses on chemoinformatic approaches to identify virtual hits against Ebola viral proteins (VP35 and VP40), including protein binding site prediction, drug-likeness, pharmacokinetic and pharmacodynamic properties, metabolic site prediction, and molecular docking. Retrospective validation was performed using a database of non-active compounds, and early enrichment of EBOV actives at different false positive rates was calculated.
    [Show full text]
  • A Library of Nucleotide Analogues Terminate RNA Synthesis Catalyzed by Polymerases of Coronaviruses Causing SARS and COVID-19
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.23.058776; this version posted April 25, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. A Library of Nucleotide Analogues Terminate RNA Synthesis Catalyzed by Polymerases of Coronaviruses Causing SARS and COVID-19 Steffen Jockusch1,2,#, Chuanjuan Tao1,3,#, Xiaoxu Li1,3,#, Thomas K. Anderson5,6, Minchen Chien1,3, Shiv Kumar1,3, James J. Russo1,3, Robert N. Kirchdoerfer5,6,*, Jingyue Ju1,3,4,* 1Center for Genome Technology and Biomolecular Engineering, Columbia University, New York, NY 10027; Departments of 2 Chemistry, 3Chemical Engineering, and 4Pharmacology, Columbia University, New York, NY 10027; 5Departments of Biochemistry and 6Institute of Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706 #SJ, CT and XL contributed equally to this work. *To whom correspondence should be addressed: [email protected] (JJ); [email protected] (RNK) Abstract SARS-CoV-2, a member of the coronavirus family, is responsible for the current COVID-19 worldwide pandemic. We previously demonstrated that five nucleotide analogues inhibit the SARS-CoV-2 RNA- dependent RNA polymerase (RdRp), including the active triphosphate forms of Sofosbuvir, Alovudine, Zidovudine, Tenofovir alafenamide and Emtricitabine. We report here the evaluation of a library of additional nucleoside triphosphate analogues with a variety of structural and chemical features as inhibitors of the RdRps of SARS-CoV and SARS-CoV-2. These features include modifications on the sugar (2’ or 3’ modifications, carbocyclic, acyclic, or dideoxynucleotides) or on the base.
    [Show full text]
  • 2019 Icar Program & Abstracts Book
    Hosted by the International Society for Antiviral Research (ISAR) ND International Conference 32on Antiviral Research (ICAR) Baltimore MARYLAND PROGRAM and USA Hyatt Regency BALTIMORE ABSTRACTS May 12-15 2019 ND TABLE OF International Conference CONTENTS 32on Antiviral Research (ICAR) Daily Schedule . .3 Organization . 4 Contributors . 5 Keynotes & Networking . 6 Schedule at a Glance . 7 ISAR Awardees . 10 The 2019 Chu Family Foundation Scholarship Awardees . 15 Speaker Biographies . 17 Program Schedule . .25 Posters . 37 Abstracts . 53 Author Index . 130 PROGRAM and ABSTRACTS of the 32nd International Conference on Antiviral Research (ICAR) 2 ND DAILY International Conference SCHEDULE 32on Antiviral Research (ICAR) SUNDAY, MAY 12, 2019 › Women in Science Roundtable › Welcome and Keynote Lectures › Antonín Holý Memorial Award Lecture › Influenza Symposium › Opening Reception MONDAY, MAY 13, 2019 › Women in Science Award Lecture › Emerging Virus Symposium › Short Presentations 1 › Poster Session 1 › Retrovirus Symposium › ISAR Award of Excellence Presentation › PechaKucha Event with Introduction of First Time Attendees TUESDAY, MAY 14, 2019 › What’s New in Antiviral Research 1 › Short Presentations 2 & 3 › ISAR Award for Outstanding Contributions to the Society Presentation › Career Development Panel › William Prusoff Young Investigator Award Lecture › Medicinal Chemistry Symposium › Poster Session 2 › Networking Reception WEDNESDAY, MAY 15, 2019 › Gertrude Elion Memorial Award Lecture › What’s New in Antiviral Research 2 › Shotgun Oral
    [Show full text]
  • To Ebola Reston
    WHO/HSE/EPR/2009.2 WHO experts consultation on Ebola Reston pathogenicity in humans Geneva, Switzerland 1 April 2009 EPIDEMIC AND PANDEMIC ALERT AND RESPONSE WHO experts consultation on Ebola Reston pathogenicity in humans Geneva, Switzerland 1 April 2009 © World Health Organization 2009 All rights reserved. The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distin- guished by initial capital letters. All reasonable precautions have been taken by the World Health Organization to verify the information contained in this publication. However, the published material is being distributed without warranty of any kind, either express or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall the World Health Organization be liable for damages arising from its use. This publication contains the collective views of an international group of experts and does not necessarily represent the decisions or the policies of the World Health Organization.
    [Show full text]
  • How Severe and Prevalent Are Ebola and Marburg Viruses?
    Nyakarahuka et al. BMC Infectious Diseases (2016) 16:708 DOI 10.1186/s12879-016-2045-6 RESEARCHARTICLE Open Access How severe and prevalent are Ebola and Marburg viruses? A systematic review and meta-analysis of the case fatality rates and seroprevalence Luke Nyakarahuka1,2,5* , Clovice Kankya2, Randi Krontveit3, Benjamin Mayer4, Frank N. Mwiine2, Julius Lutwama5 and Eystein Skjerve1 Abstract Background: Ebola and Marburg virus diseases are said to occur at a low prevalence, but are very severe diseases with high lethalities. The fatality rates reported in different outbreaks ranged from 24–100%. In addition, sero-surveys conducted have shown different seropositivity for both Ebola and Marburg viruses. We aimed to use a meta-analysis approach to estimate the case fatality and seroprevalence rates of these filoviruses, providing vital information for epidemic response and preparedness in countries affected by these diseases. Methods: Published literature was retrieved through a search of databases. Articles were included if they reported number of deaths, cases, and seropositivity. We further cross-referenced with ministries of health, WHO and CDC databases. The effect size was proportion represented by case fatality rate (CFR) and seroprevalence. Analysis was done using the metaprop command in STATA. Results: The weighted average CFR of Ebola virus disease was estimated to be 65.0% [95% CI (54.0–76.0%), I2 = 97.98%] whereas that of Marburg virus disease was 53.8% (26.5–80.0%, I2 = 88.6%). The overall seroprevalence of Ebola virus was 8.0% (5.0%–11.0%, I2 = 98.7%), whereas that for Marburg virus was 1.2% (0.5–2.0%, I2 = 94.8%).
    [Show full text]