Ebola Hemorrhagic Fever: Properties of the Pathogen and Development of Vaccines and Chemotherapeutic Agents O

Total Page:16

File Type:pdf, Size:1020Kb

Ebola Hemorrhagic Fever: Properties of the Pathogen and Development of Vaccines and Chemotherapeutic Agents O ISSN 00268933, Molecular Biology, 2015, Vol. 49, No. 4, pp. 480–493. © Pleiades Publishing, Inc., 2015. Original Russian Text © O.I. Kiselev, A.V. Vasin, M.P. Shevyryova, E.G. Deeva, K.V. Sivak, V.V. Egorov, V.B. Tsvetkov, A.Yu. Egorov, E.A. RomanovskayaRomanko, L.A. Stepanova, A.B. Komissarov, L.M. Tsybalova, G.M. Ignatjev, 2015, published in Molekulyarnaya Biologiya, 2015, Vol. 49, No. 4, pp. 541–554. REVIEWS UDC 578.2,578.76 Ebola Hemorrhagic Fever: Properties of the Pathogen and Development of Vaccines and Chemotherapeutic Agents O. I. Kiseleva, A. V. Vasina, b, M. P. Shevyryovac, E. G. Deevaa, K. V. Sivaka, V. V. Egorova, V. B. Tsvetkova, d, A. Yu. Egorova, E. A. RomanovskayaRomankoa, L. A. Stepanovaa, A. B. Komissarova, L. M. Tsybalovaa, and G. M. Ignatjeva a Institute of Influenza, Ministry of Health of the Russian Federation, St. Petersburg, 197376 Russia; email: [email protected] b St. Petersburg State Polytechnic University, St. Petersburg, 195251 Russia c Ministry of Health of the Russian Federation, Moscow, 127994 Russia d Topchiev Institute of Petrochemical Synthesis, Moscow, 119991 Russia Received December 29, 2014; in final form, January 16, 2015 Abstract—Ebola hemorrhagic fever (EHF) epidemic currently ongoing in West Africa is not the first among numerous epidemics in the continent. Yet it seems to be the worst EHF epidemic outbreak caused by Ebola virus Zaire since 1976 as regards its extremely large scale and rapid spread in the population. Experiments to study the agent have continued for more than 20 years. The EHF virus has a relatively simple genome with seven genes and additional reading frame resulting from RNA editing. While being of a relatively low genetic capacity, the virus can be ranked as a standard for pathogenicity with the ability to evade the host immune response in uttermost perfection. The EHF virus has similarities with retroviruses, but belongs to (–)RNA viruses of a nonretroviral origin. Genetic elements of the virus, NIRV, were detected in animal and human genomes. EHF virus glycoprotein (GP) is a class I fusion protein and shows more similarities than distinc tions in tertiary structure with SIV and HIV gp41 proteins and even influenza virus hemagglutinin. EHF is an unusual infectious disease, and studying the molecular basis of its pathogenesis may contribute to new find ings in therapy of severe conditions leading to a fatal outcome. DOI: 10.1134/S002689331504007X Keywords: Ebola virus, hemorrhagic fever, genome, interferon antagonists, vaccines, antiviral drugs It’s a pity that so much research requiring military units to bring the affected territories has the biological weapon aspect under control. Yet the most important lessons learned in mind rather than helping from the current situation with EHF are that health the affected population. care systems are not prepared for such outbreaks in Esther Sterk, Médecins Sans Frontières virtually all countries, vaccines are difficult to develop, and highly effective broadspectrum antiviral chemo therapy agents are unavailable. INTRODUCTION The first recorded outbreak of Ebola hemorrhagic EBOLA HEMORRHAGIC FEVER VIRUS fever (EHF) occurred in October 1976 in the Demo AND OUTBREAK OF 2013–2014 cratic Republic of Congo [1]. The outbreak of 2013– The virus Zaire ebolavirus is a causal agent of the 2014 is thought to share many features with the out EHF outbreak in West Africa. The Ebola virus was first break of 1976 [2], both being caused by the Zaire identified in 1976 and caused sporadic EHF outbreaks Ebola virus and starting in rural forested areas where with a high mortality in Africa, being assigned conse hunting for bush meat is common [1]. Patients were quently to group A pathogens, which are potential bio admitted to regional hospitals in grave conditions with terrorism agents [1, 4]. In terms of general virology, symptoms resembling malaria, typhoid fever, Lassa the Ebola virus is currently a reference standard of fever, yellow fever, or influenza [2, 3] The epidemics pathogenicity, and its studies are of basic importance was a severe challenge for the health care systems of for solving the most complex problems in treating and West African countries, and the total illpreparedness preventing virus infections. of the community caused panic and social upheaval, The species Zaire ebolavirus is the most pathogenic Abbreviations: EHF, Ebola hemorrhagic fever; DIC, dissemi species of the genus Ebolavirus (family Filoviridae, nated intravascular coagulation. order Mononegavirales). The family Filoviridae 480 EBOLA HEMORRHAGIC FEVER 481 Order Mononegavirales Family Filoviridae Genus Ebolavirus Species Taï Forest ebolavirus Virus: Tai Forest virus (TAFV) Species Reston ebolavirus Virus: Reston virus (RESTV) Species Sudan ebolavirus Virus: Sudan virus (SUDV) Species Zaire ebolavirus Virus: Ebola virus (EBOV) Species Bundibugyo ebolavirus Virus: Bundibugyo virus (BDBV) Fig. 1. Classification of viruses of the genus Ebolavirus. The virus responsible for the EHF outbreak of 2014 in West Africa is in bold [1, 2, 6]. includes three genera: Ebolavirus, Marburgvirus, and EPIDEMIOLOGY OF EBOLA Cuevavirus. Ebolavirus species are morphologically HEMORRHAGIC FEVER similar to Marburgvirus species, but have different A team of WHO epidemiologists identified the antigens. The genus Ebolavirus includes five species: Ebola virus as a causal agent of the hemorrhagic fever Sudan ebolavirus, Zaire ebolavirus, Taï Forest ebolavi outbreak that occurred in the Ebola River valley rus, Reston ebolavirus, and Bundibugyo ebolavirus. (Zaire, Central Africa) in 1976 [1–3]. A total of Infection with Reston ebolavirus is asymptomatic, 23 EHF outbreaks were registered since that time. The while the other four species are highly pathogenic for outbreak of 2014 started in Guinea (West Africa) and humans [1–5]. The taxonomy of the genus Ebolavirus spread to Liberia, Sierra Leone, and Nigeria. A phylo has been considered in a special article published in genetic analysis of Ebola virus genomic sequences Viruses [6] by a team including Russian researchers gives grounds to think that the virus strain responsible who contributed substantially to studying the problem for the 2014 outbreak relatively recently found its way both in Russia and abroad. A current classification of from Central to West Africa [2, 3]. the genus Ebolavirus is shown in Fig. 1. A phylogenetic analysis confirmed genetic similar The Ebola virus is found in primates, field mice, ity between Ebola virus lineages involved in the three and bats. In bats, infection does not lead to a disease last EHF outbreaks. The finding suggests a common outbreak and is virtually asymptomatic. The fact sug ancestor for the viruses involved and supports the gests that bats, in particular, fruit bats of the family hypothesis that each EHF outbreak was caused by Pteropodidae, are a natural reservoir and intermediate independent transmission of the virus from one genet host of the Ebola virus [7]. A genetic analysis of Ebola ically diverse population [2]. The genetic similarity virus isolates showed that the current outbreak started and close phylogenetic relationship of the genomes of with virus transmission from the strawcolored fruit 2014 Ebola viruses indicate that a single act of trans bat Eidolon helvum to humans [2]. It should be noted mission from a natural reservoir was followed by stable that a greater range of intermediate hosts is possible for transmission of infection among humans, leading to the virus. an epidemic outbreak. This epidemiological situation basically differs, for instance, from epidemics of avian It is of interest that viruses of the family Filoviridae flu, which was characterized by multiple focal out belong to a limited group of viruses, known as the non breaks in endemic regions and a low transmission rate retroviral integrated RNA viruses (NIRVs), whose among humans. Hence, Ebola virus infection seems to specific elements were identified in animal genomes be extremely contagious. There are estimates that a [8]. A high structural similarity was observed for the single event of crossing the species barrier would be receptor protein GP of the Ebola virus with the Env enough for the virus to spread rapidly in the popula proteins of endogenous retroviruses and placental syn tion [2]. cytins of humans [9]. Common elements of the Ebola The EHF outbreak starting in December 2013 virus and retrovirus are of principal importance for involved mostly Guinea, Liberia, Senegal, Sierra understanding the key factors of the Ebola virus Leone, and Nigeria among African countries [14–16]. pathogenicity [10, 11]. A high similarity was addition Cases observed in the United States and European ally detected between Ebola virus GP and wellknown countries occurred in healthcare workers and mission influenza virus hemagglutinin, facilitating a better aries. Estimates published in mass media for the risk of understanding of the GP tertiary structure and inhibi EHF being transferred to other countries, including tor design [12, 13]. Russia, are based on the passenger traffic statistics and MOLECULAR BIOLOGY Vol. 49 No. 4 2015 482 KISELEV et al. (a) EBOLA OUTBREAK RESPONSE: REGIONAL CONFIRMED AND PROBABLE CASES MAP DATE: 29 October 2014 Recent Cases (21 Days Prior) All cases 1–10 1–10 11–100 11–100 101–200 101–200 201–400 201–500 401–800 501–1000 NOT ACTIVENo cases in previous 21 days ACTIVENew cases in previous 21 days NEWLY INFECTEDNew cases in previous 7 days (in previously uninfected areas) (b) 1.2 Total cases, million people (Liberia and Sierra Leone 1.0 Without medical care With medical care (70% of cases are 0.8 localized in treatment centers 0.6 0.4 0.2 0 24 24 23 22 22 21 21 20 June July Aug Sep Oct Nov Dec Jan Source: Centers for Disease Control (CDC) Patterson Clark, The Washington Post Fig. 2. EHF geographic distribution and morbidity in West African regions. (a) Distribution of EHF in West Africa with the num ber of cases shown graphically (WHO data as of October 25, 2014).
Recommended publications
  • A Multicenter, Multi-Outbreak, Randomized, Controlled Safety And
    2018 Ebola MCM RCT Protocol Page 1 of 92 IND#: 125530 CONFIDENTIAL 4 October 2019, version 7.0 A Multicenter, Multi-Outbreak, Randomized, Controlled Safety and Efficacy Study of Investigational Therapeutics for the Treatment of Patients with Ebola Virus Disease Short Title: 2018 Ebola MCM RCT Protocol Sponsored by: Office of Clinical Research Policy and Regulatory Operations (OCRPRO) National Institute of Allergy and Infectious Diseases 5601 Fishers Lane Bethesda, MD 20892 NIH Protocol Number: 19-I-0003 Protocol IND #: 125530 ClinicalTrials.gov Number: NCT03719586 Date: 4 October 2019 Version: 7.0 CONFIDENTIAL This document is confidential. No part of it may be transmitted, reproduced, published, or used by other persons without prior written authorization from the study sponsor and principal investigator. 2018 Ebola MCM RCT Protocol Page 2 of 92 IND#: 125530 CONFIDENTIAL 4 October 2019, version 7.0 KEY ROLES DRC Principal Investigator: Jean-Jacques Muyembe-Tamfum, MD, PhD Director-General, DRC National Institute for Biomedical Research Professor of Microbiology, Kinshasa University Medical School Kinshasa Gombe Democratic Republic of the Congo Phone: +243 898949289 Email: [email protected] Other International Investigators: see Appendix E Statistical Lead: Lori Dodd, PhD Biostatistics Research Branch, DCR, NIAID 5601 Fishers Lane, Room 4C31 Rockville, MD 20852 Phone: 240-669-5247 Email: [email protected] U.S. Principal Investigator: Richard T. Davey, Jr., MD Clinical Research Section, LIR, NIAID, NIH Building 10, Room 4-1479, Bethesda,
    [Show full text]
  • Brincidofovir Is Highly Efficacious in Controlling Adenoviremia In
    Brincidofovir is highly efficacious in controlling adenoviremia in pediatric recipients of hematopoietic cell transplant Prashant Hiwarkar,1 Persis Amrolia,2 Ponni Sivaprakasam,3 Su Han Lum,4 Hemalatha Doss,5 Ciara O’Rafferty,1 Toni Petterson,6 Katharine Patrick,7 Juliana Silva,2 Mary Slatter,5 Sarah Lawson,1 Kanchan Rao,2 Colin Steward,3 Adam Gassas,3 Paul Veys,2 Robert Wynn4 On behalf of the UK Paediatric BMT Group 1Department of Haematology and Bone Marrow Transplantation, Birmingham Children’s Hospital, Birmingham, UK; 2Department of Bone Marrow Transplantation, Great Ormond Street Hospital for Children, London; 3Department of Bone Marrow Transplantation, Royal Hospital for Children, Bristol, UK; 4Department of Bone Marrow Transplantation, Royal Manchester Children's Hospital, Manchester, UK; 5Department of Bone Marrow Transplantation, Great North Children's Hospital, Newcastle upon Tyne, UK; 6Department of Bone Marrow Transplantation, Royal Marsden Hospital, Sutton, UK; 7Department of Bone Marrow Transplantation, Sheffield Children's Hospital, Sheffield, UK Address for Correspondence: [email protected] Department of Haematology and Bone Marrow transplantation Birmingham Children’s Hospital, Steelhouse Lane, Birmingham, UK B4 6NH Tel. +44 (0)121 333 9999 Key points Brincidofovir has superior anti-adenoviral activity and safety profile compared to Cidofovir. Brincidofovir is highly efficacious in controlling adenoviraemia during lymphopenic phase of HCT. Summary Cidofovir is pre-emptively used for controlling adenoviremia and preventing disseminated viral disease in hematopoietic cell transplant (HCT) recipients but does not lead to resolution of viremia without T-cell immune-reconstitution. The lipid conjugated prodrug of Cidofovir, Brincidofovir, has improved oral bioavailability and achieves higher intracellular concentrations of active drug.
    [Show full text]
  • Kinase Inhibitors and Nucleoside Analogues As Novel Therapies to Inhibit HIV-1 Or ZEBOV Replication
    Kinase Inhibitors and Nucleoside Analogues as Novel Therapies to Inhibit HIV-1 or ZEBOV Replication by Stephen D. S. McCarthy A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Laboratory Medicine and Pathobiology University of Toronto © Copyright by Stephen D. S. McCarthy (2017) Kinase Inhibitors and Nucleoside Analogues as Novel Therapies to Inhibit HIV-1 or ZEBOV Replication Stephen D.S. McCarthy Doctor of Philosophy Graduate Department of Laboratory Medicine and Pathobiology University of Toronto 2017 Abstract Without a vaccine for Human Immunodeficiency Virus type 1 (HIV-1), or approved therapy for treating Zaire Ebolavirus (ZEBOV) infection, new means to treat either virus during acute infection are under intense investigation. Repurposing tyrosine kinase inhibitors of known specificity may not only inhibit HIV-1 replication, but also treat associated inflammation or neurocognitive disorders caused by chronic HIV-1 infection. Moreover, tyrosine kinase inhibitors may effectively treat other infections, including ZEBOV. In addition, established nucleoside/nucleotide analogues that effectively inhibit HIV-1 infection, could also be repurposed to inhibit ZEBOV replication. In this work the role of two host cell kinases, cellular protoncogene SRC (c-SRC) and Protein Tyrosine Kinase 2 Beta (PTK2B), were found to have key roles during early HIV-1 replication in primary activated CD4+ T-cells ex vivo. siRNA knockdown of either kinase increased intracellular reverse transcripts and decreased nuclear proviral integration, suggesting they act at the level of pre-integration complex (PIC) formation or PIC nuclear translocation. c-SRC siRNA knockdown consistently reduced p24 levels of IIIB(X4) and Ba-L(R5) infection, or luciferase ii activity of HXB2(X4) or JR-FL(R5) recombinant viruses, prompting further drug inhibition studies of this kinase.
    [Show full text]
  • Situación Actual Del Tratamiento Farmacológico Frente a La Enfermedad Causada Por El Virus Ébola
    Revisión Jordi Reina Situación actual del tratamiento farmacológico frente a la enfermedad causada por el virus Ébola Unidad de Virología. Servicio de Microbiología. Hospital Universitario Son Espases. Palma de Mallorca RESUMEN Current status of drug treatment against the disease caused by the Ebola virus La reciente epidemia de enfermedad causada por el virus Ébola ha puesto en evidencia la necesidad de desarrollar y dis- ABSTRACT poner de fármacos específicos para hacer frente a esta entidad. De acuerdo con los datos virológicos se han diseñado algunos The recent epidemic of disease caused by the Ebola virus fármacos nuevos y se ha comprobado que otros podrían tener has highlighted the need to develop specific drugs and have to eficacia frente a este virus. deal with this entity. According to virological analysis they have Las principales líneas terapéuticas se basan en la inmu- been designed to give you some new drugs and are proven to noterapia (suero de pacientes convalescientes y anticuerpos others might be effective against this virus. monoclonales específicos), en fármacos antivirales (favipiora- The main lines of therapy are based on immunotherapy vir, BCX4430, Brincidofovir), RNAs de interferencia (TKM-Ébola) (convalescent serum of patients and specific monoclonal an- y oligonucleótidos sin sentido (morfolino fosforodiamidato) y tibodies), antiviral drugs (favipiravir, BCX4430, brincidofovir), otros fármacos no antivirales (clomifeno, NSC62914, FGI-103, interfering RNAs (TKM-Ebola) and antisense oligonucleotides amilorida y la ouabaina). (morpholino phosphorodiamidate) and other drugs no antiviral Los estudios existentes son escasos y principalmente en (clomiphene NSC62914, FGI-103, amiloride and ouabain). modelos animales y los ensayos clínicos han quedado la ma- Existing studies are scarce and mainly in animal models yoría inconclusos por la disminución drástica del número de and clinical trials have been inconclusive most by the drastic nuevos casos.
    [Show full text]
  • The Role of Brincidofovir in Preparation for a Potential Smallpox Outbreak
    viruses Perspective The Role of Brincidofovir in Preparation for a Potential Smallpox Outbreak Scott A. Foster 1,*, Scott Parker 2 ID and Randall Lanier 1 1 Chimerix, Durham, NC 27713, USA; [email protected] 2 Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-919-597-7741 Received: 29 September 2017; Accepted: 26 October 2017; Published: 30 October 2017 Abstract: Smallpox (variola) virus is considered a Category A bioterrorism agent due to its ability to spread rapidly and the high morbidity and mortality rates associated with infection. Current recommendations recognize the importance of oral antivirals and call for having at least two smallpox antivirals with different mechanisms of action available in the event of a smallpox outbreak. Multiple antivirals are recommended due in large part to the propensity of viruses to become resistant to antiviral therapy, especially monotherapy. Advances in synthetic biology heighten concerns that a bioterror attack with variola would utilize engineered resistance to antivirals and potentially vaccines. Brincidofovir, an oral antiviral in late stage development, has proven effective against orthopoxviruses in vitro and in vivo, has a different mechanism of action from tecovirimat (the only oral smallpox antiviral currently in the US Strategic National Stockpile), and has a resistance profile that reduces concerns in the scenario of a bioterror attack using genetically engineered smallpox. Given the devastating potential of smallpox as a bioweapon, preparation of a multi-pronged defense that accounts for the most obvious bioengineering possibilities is strategically imperative. Keywords: smallpox; variola virus; bioterrorism; bioweapon; brincidofovir; CMX001; antiviral 1.
    [Show full text]
  • Integrated Computational Approach for Virtual Hit Identification Against
    International Journal of Molecular Sciences Article Integrated Computational Approach for Virtual Hit Identification against Ebola Viral Proteins VP35 and VP40 Muhammad Usman Mirza 1,2,*,† and Nazia Ikram 2 1 Centre for Research in Molecular Medicine (CRiMM), The University of Lahore, Defense Road, Lahore 54000, Pakistan 2 Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan; [email protected] * Correspondence: [email protected] or [email protected]; Tel.: +92-333-839-6037 † Current address: Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, Medicinal Chemistry, University of Leuven, Leuven B-3000, Belgium. Academic Editors: Christo Z. Christov and Tatyana Karabencheva-Christova Received: 28 July 2016; Accepted: 22 September 2016; Published: 26 October 2016 Abstract: The Ebola virus (EBOV) has been recognised for nearly 40 years, with the most recent EBOV outbreak being in West Africa, where it created a humanitarian crisis. Mortalities reported up to 30 March 2016 totalled 11,307. However, up until now, EBOV drugs have been far from achieving regulatory (FDA) approval. It is therefore essential to identify parent compounds that have the potential to be developed into effective drugs. Studies on Ebola viral proteins have shown that some can elicit an immunological response in mice, and these are now considered essential components of a vaccine designed to protect against Ebola haemorrhagic fever. The current study focuses on chemoinformatic approaches to identify virtual hits against Ebola viral proteins (VP35 and VP40), including protein binding site prediction, drug-likeness, pharmacokinetic and pharmacodynamic properties, metabolic site prediction, and molecular docking. Retrospective validation was performed using a database of non-active compounds, and early enrichment of EBOV actives at different false positive rates was calculated.
    [Show full text]
  • A Library of Nucleotide Analogues Terminate RNA Synthesis Catalyzed by Polymerases of Coronaviruses Causing SARS and COVID-19
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.23.058776; this version posted April 25, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. A Library of Nucleotide Analogues Terminate RNA Synthesis Catalyzed by Polymerases of Coronaviruses Causing SARS and COVID-19 Steffen Jockusch1,2,#, Chuanjuan Tao1,3,#, Xiaoxu Li1,3,#, Thomas K. Anderson5,6, Minchen Chien1,3, Shiv Kumar1,3, James J. Russo1,3, Robert N. Kirchdoerfer5,6,*, Jingyue Ju1,3,4,* 1Center for Genome Technology and Biomolecular Engineering, Columbia University, New York, NY 10027; Departments of 2 Chemistry, 3Chemical Engineering, and 4Pharmacology, Columbia University, New York, NY 10027; 5Departments of Biochemistry and 6Institute of Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706 #SJ, CT and XL contributed equally to this work. *To whom correspondence should be addressed: [email protected] (JJ); [email protected] (RNK) Abstract SARS-CoV-2, a member of the coronavirus family, is responsible for the current COVID-19 worldwide pandemic. We previously demonstrated that five nucleotide analogues inhibit the SARS-CoV-2 RNA- dependent RNA polymerase (RdRp), including the active triphosphate forms of Sofosbuvir, Alovudine, Zidovudine, Tenofovir alafenamide and Emtricitabine. We report here the evaluation of a library of additional nucleoside triphosphate analogues with a variety of structural and chemical features as inhibitors of the RdRps of SARS-CoV and SARS-CoV-2. These features include modifications on the sugar (2’ or 3’ modifications, carbocyclic, acyclic, or dideoxynucleotides) or on the base.
    [Show full text]
  • Student Clinical Digest
    2014-2015 STUDENT CLINICAL DIGEST Presented by the Student College of Clinical Pharmacy— the official UGA chapter of American College of Clinical Pharmacy Volume 1, Issue 4 Clinical Pharmacist Focus ences and humble advice to our tered. I wanted to be a generalist students. and didn’t want to specialize out of fear of being too narrowly Why did you decide to pursue a focused and lacking variety. I residency? liked being able to dip my feet in other fields, and this has really I decided to pursue a residency helped me in the positions I’ve because of the opportunities held. available to me as a 4th year stu- dent on rotation at Emory Uni- What made you switch from versity Medical Center. During hospital to academia? this APPE, it was the 1st time I Michael Neville, Pharm. D., saw pharmacist working with the Someone told me many years ago BCPS, FASHP surgery team, internal medicine, they thought I would be a really intensive care unit, and transplant. great teacher and other people INSIDE THIS By Khushbu Tejani, Pharm D. Candi- What really impressed me was pointed it out a few more times ISSUE: date seeing the pharmacists being during my career. Both my par- proactive and contributing to ents come from an educational In this issue, we meet Dr. Michael patient care in a way that I never background and wanted me to Neville, a clinical pharmacist as saw before. While there, they got follow. I initially did not want to Clinical 1 well as former Clinical Associate to know me and asked me to pursue academia but it runs in my Pharmacist Focus Professor at the College of Phar- consider applying for their resi- blood.
    [Show full text]
  • To Ebola Reston
    WHO/HSE/EPR/2009.2 WHO experts consultation on Ebola Reston pathogenicity in humans Geneva, Switzerland 1 April 2009 EPIDEMIC AND PANDEMIC ALERT AND RESPONSE WHO experts consultation on Ebola Reston pathogenicity in humans Geneva, Switzerland 1 April 2009 © World Health Organization 2009 All rights reserved. The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distin- guished by initial capital letters. All reasonable precautions have been taken by the World Health Organization to verify the information contained in this publication. However, the published material is being distributed without warranty of any kind, either express or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall the World Health Organization be liable for damages arising from its use. This publication contains the collective views of an international group of experts and does not necessarily represent the decisions or the policies of the World Health Organization.
    [Show full text]
  • Management of Patients with Ebola Virus Disease: Clinical and Operational Lessons Learned
    Management of Patients with Ebola Virus Disease: Clinical and Operational Lessons Learned Colleen Kraft, MD, MSc Steven J. Lisco, MD, FCCM, FCCP Serious Communicable Diseases Unit Nebraska Biocontainment Unit Emory University Hospital University of Nebraska Medical Center Atlanta, GA Omaha, NE Disclosures • Lisco – None • Kraft – None Learning Objectives • Understand the history of Ebola Virus Disease • Review and recognize the clinical concerns in patients infected with Ebola virus • Describe the design, clinical workflow, and utilization of a biocontainment unit • Recognize the logistical challenges presented by the care of patients infected with Ebola virus and other highly pathogenic contagions and implications for healthcare workers in the biocontainment unit environment Recognize this Bill? How about now? Perhaps the only good news from the tragic Ebola epidemic in Guinea, Sierra Leone, and Liberia is that it may serve as a wake-up call: we must prepare for future epidemics of diseases that may spread more effectively than Ebola. DOI: 10.1056/NEJMp1502918 http://awesome.good.is/transparency/web/1108/deadliest-pandemics/transparency.jpg (accessed 2.11.15) Ebola: Virology • Filovirus (Latin for ‘thread’): elongated structure, -ssRNA • 6 subtypes • Zaire <<<< Currently active • Sudan • Bundibugyo • Cote d’Ivoire/Tai Forest • Reston (not pathogenic to humans) • Lloviu (no human infections identified) • Viral Hemorrhagic Fever • One of four viruses EBV Disease • Ebola virus was discovered in 1976 near the Ebola River in what is now the Democratic Republic of the Congo • Outbreaks have appeared sporadically in Africa • The 2014 outbreak is the first in West Africa, and the largest outbreak ever recorded www.cdc.gov 22 PREVIOUS EBV OUTBREAKS Mylne, A.
    [Show full text]
  • Experimental Medications and Vaccines for Ebola
    Experimental Medications and Vaccines for Ebola There are currently no FDA-approved medications or vaccines for the treatment of Ebola. The primary focus for physicians at this time is to provide general medical care and support in a safe setting where further spread of the infection can be contained. The general medical care would include things such as intravenous fluids, nutrition, and treating other infections if they occur. FDA Website with general information on Ebola: http://www.fda.gov/emergencypreparedness/counterterrorism/medicalcountermeasures/ ucm410308.htm CDC site with information for healthcare workers: http://www.cdc.gov/vhf/ebola/hcp/index.html World Health Organization Website on Ebola: http://www.who.int/csr/disease/ebola/en/ Although several medications and vaccines for Ebola are currently being developed and tested, this research is for the most part in early stages. Some have been tested only in laboratory setting, some in animals, and some in healthy individuals to see if they are safe. None of these investigational treatments have been adequately assessed to be able to say they are safe and effective in the treatment of patients with Ebola. CDC site with questions and answers on experimental treatments and vaccines for Ebola: http://www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/qa-experimental- treatments.html While no medications or vaccines are FDA-approved for Ebola, there is an emergency process in place to allow for use of these products while they are being evaluated. The FDA has a system for experimental products to be used for patients in certain circumstances, even when there is limited available information.
    [Show full text]
  • Understanding Ebola
    Understanding Ebola With the arrival of Ebola in the United States, it's very easy to develop fears that the outbreak that has occurred in Africa will suddenly take shape in your state and local community. It's important to remember that unless you come in direct contact with someone who is infected with the disease, you and your family will remain safe. State and government agencies have been making preparations to address isolated cases of infection and stop the spread of the disease as soon as it has been positively identified. Every day, the Centers of Disease Control and Prevention (CDC) is monitoring developments, testing for suspected cases and safeguarding our lives with updates on events and the distribution of educational resources. Learning more about Ebola and understanding how it's contracted and spread will help you put aside irrational concerns and control any fears you might have about Ebola severely impacting your life. Use the resources below to help keep yourself calm and focused during this unfortunate time. Ebola Hemorrhagic Fever Ebola hemorrhagic fever (Ebola HF) is one of numerous Viral Hemorrhagic Fevers. It is a severe, often fatal disease in humans and nonhuman primates (such as monkeys, gorillas, and chimpanzees). Ebola HF is caused by infection with a virus of the family Filoviridae, genus Ebolavirus. When infection occurs, symptoms usually begin abruptly. The first Ebolavirus species was discovered in 1976 in what is now the Democratic Republic of the Congo near the Ebola River. Since then, outbreaks have appeared sporadically. There are five identified subspecies of Ebolavirus.
    [Show full text]