Effect of Temperature and Humidity on Salt Mine Environment
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Halite Nacl C 2001-2005 Mineral Data Publishing, Version 1
Halite NaCl c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Cubic. Point Group: 4/m32/m. Crystals cubic, to 1 m, or octahedral; elongated along [100] or [111], skeletal with hopper-shaped faces. Rarely capillary or stalactitic; granular, compact, massive. Physical Properties: Cleavage: {001}, perfect. Fracture: Conchoidal. Tenacity: Brittle. Hardness = 2–2.5 D(meas.) = 2.168 D(calc.) = 2.165 Soluble in H2O, saline taste; rarely fluoresces red under SW UV. Optical Properties: Transparent. Color: Colorless or white when pure; gray, yellow, orange, pink, red, blue, purple; colorless to faintly tinted in thin section. Streak: White. Luster: Vitreous. Optical Class: Isotropic; weakly anisotropic due to stress. Dispersion: Moderately strong. n = 1.5443 Cell Data: Space Group: Fm3m. a = 5.6404(1) Z = 4 X-ray Powder Pattern: Synthetic. 2.821 (100), 1.994 (55), 1.628 (15), 3.258 (13), 1.261 (11), 1.1515 (7), 1.410 (6) Chemistry: (1) (2) Na 39.00 39.34 K 0.12 Mg 0.03 Ca 0.08 Cl 60.27 60.66 SO4 0.27 Total 99.77 100.00 (1) Cardona, Barcelona, Spain. (2) NaCl. Occurrence: Typically in sedimentary rocks of evaporite association, may form immense beds; also as volcanic sublimates, efflorescences, cave deposits. Crystals are common in multiphase fluid inclusions; may be included in other minerals as a product of intermediate-grade metamorphism. Association: Sylvite, polyhalite, kieserite, carnallite, gypsum, anhydrite, dolomite. Distribution: Of worldwide occurrence. Well-studied deposits include: in Austria, around Hallstadt, Salzburg, and Hall, near Innsbruck, Tirol. From Bex, Vaud, Switzerland. In Germany, from Stassfurt-Leopoldshall, 34 km south of Magdeburg, Saxony-Anhalt. -
Sodium Chloride (Halite, Common Salt Or Table Salt, Rock Salt)
71376, 71386 Sodium chloride (Halite, Common Salt or Table Salt, Rock Salt) CAS number: 7647-14-5 Product Description: Molecular formula: NaCl Appearance: white powder (crystalline) Molecular weight: 58.44 g/mol Density of large crystals: 2.17 g/ml1 Melting Point: 804°C1 Density: 1.186 g/ml (5 M in water)2 2 Solubility: 1 M in H2O, 20°C, complete, clear, colorless 2 pH: 5.0-8.0 (1 M in H2O, 25°C) Store at room temperature Sodium chloride is geologically stable. If kept dry, it will remain a free-flowing solid for years. Traces of magnesium or calcium chloride in commercial sodium chloride adsorb moisture, making it cake. The trace moisture does not harm the material chemically in any way. 71378 BioUltra 71386 BioUltra for molecular biology, 5 M Solution The products are suitable for different applications like purification, precipitation, crystallisation and other applications which require tight control of elemental content. Trace elemental analyses have been performed for all qualities. The molecular biology quality is also tested for absence of nucleases. The Certificate of Analysis provides lot-specific results. Much of the sodium chloride is mined from salts deposited from evaporation of brine of ancient oceans, or recovered from sea water by solar evaporation. Due to the presence of trace hygroscopic minerals, food-grade salt has a small amount of silicate added to prevent caking; as a result, concentrated solutions of "table salt" are usually slightly cloudy in appearance. 71376 and 71386 do not contain any anti-caking agent. Applications: Sodium chloride is a commonly used chemical found in nature and in all body tissue, and is considered an essential nutrient. -
Water and Power Resources of West Pakistan
Water and Power Resources PAKISTAN "& of WEST I1158 Public Disclosure Authorized A Study in Sector Planning g' c - J) A N D e XJ ~~~~~~~ S >>)~~~~~TM RHELA AS H M I R Public Disclosure Authorized VISLAMABA > 2 t \ . Public Disclosure Authorized C ,,'_ o / z 'N ~~VOLUME g,_ -THE MAIN REPORT \ < ,pre~lppared by a World Bank Study Group Headed by X f .,/ ~~~PIETER LIEFTINCK t i '_z ~~~A. ROBERT SADOVE Public Disclosure Authorized tt I ~~~~~~~~~Deputy Hlead S n THOMAS-4 C.CREYKE ~~~~< < /r~~~~~~~~~~~trigation and Agr-icultut-e WATER AND POWER RESOURCES OF WEST PAKISTAN A Study in Sector Planning Volume I: The Main Report $10.00 Volume II: The Development of Irrigation and Agriculture $12.50 Volume III: Background and Methodology $ 12.50 $28.50 the set Prepared by a World Bank Study Group Headed by Pieter Lieftinck; A. Robert Sadove, Deputy Head; Thomas C. Creyke, Irrigation and Agriculture. Without doubt, the greatest single co- ordinated development operation in which the World Bank has been involved is the massive program for development of the Indus Basin. This pioneering study is an integral part of that project and is unique both in its conceptualization and its compre- hensiveness. It demonstrates the feasibility of a new and more rigorous approach to resource planning and development and will serve as an indispensible model for engi- neers, economists, and planners for years to come. Focal points of the Study are the Indus River, which runs the length of west Paki- stan, several of its tributaries, and a huge natural underground reservoir. -
F Is for Flavor.Pdf
!! ™ This is an introductory version of Chef Jacob’s Culinary Bootcamp Workbook and F-STEP™ curriculum. You can download the complete curriculum here. 2 !! Third Edition Copyright © 2015 Jacob Burton All rights reserved. 3 4 !! WHAT IS F-STEP?!.....................................................................................11 F IS FOR FLAVOR!.....................................................................................13 UNDERSTANDING FLAVOR STRUCTURE! 14 What is flavor?! 14 Salty! 15 Sweet! 20 Sour! 21 Bitter! 22 Umami! 22 Umami Ingredient Chart! 26 Piquancy! 28 Flavor And Aroma! 28 The Importance Of Fat And Flavor! 29 Texture! 30 Tannins! 30 Flavor’s X Factor! 31 Preventing Palate Fatigue! 32 Delivering A “Flavor Punch”! 33 Using “Flavor Interruptions”! 33 CHOOSING PRIMARY AND SECONDARY FLAVORS! 34 SELECTING NON SEASONAL INGREDIENTS! 35 Buying Spices! 35 Herbs! 36 Poultry! 37 5 Seafood! 37 Beef! 39 Pork! 41 GUIDE TO SEASONAL PRODUCE! 42 Winter! 42 December! 42 January! 44 February! 45 Spring! 46 March! 46 April! 47 May! 49 Summer! 49 June! 50 July! 50 August! 52 Fall! 54 September! 54 October! 55 November! 58 S IS FOR SAUCE!.......................................................................................60 CULINARY STOCKS! 62 Basic Recipe for Protein-Based Stocks! 63 SAUCE THICKENERS! 63 Roux! 64 6 !! Liaison! 65 Other Sauce Thickeners At A Glance! 66 The Three Modern Mother Sauces! 67 REDUCTION SAUCES! 67 Reduction Sauce Process! 69 Tips For Reinforcing Flavors! 70 Reduction Stage! 70 Tips For Reduction! 71 Pan Sauces! -
Salt Deposits in the UK
CORE Metadata, citation and similar papers at core.ac.uk Provided by NERC Open Research Archive Halite karst geohazards (natural and man-made) in the United Kingdom ANTHONY H. COOPER British Geological Survey, Keyworth, Nottingham, NG12 5GG, Great Britain COPYRIGHT © BGS/NERC e-mail [email protected] +44 (-0)115 936 3393 +44 (-0)115 936 3475 COOPER, A.H. 2002. Halite karst geohazards (natural and man-made) in the United Kingdom. Environmental Geology, Vol. 42, 505-512. This work is based on a paper presented to the 8th Multidisciplinary Conference on Sinkholes and the Engineering and Environmental impact of karst, Louisville, Kentucky, April 2001. In the United Kingdom Permian and Triassic halite (rock salt) deposits have been affected by natural and artificial dissolution producing karstic landforms and subsidence. Brine springs from the Triassic salt have been exploited since Roman times, or possibly earlier, indicating prolonged natural dissolution. Medieval salt extraction in England is indicated by the of place names ending in “wich” indicating brine spring exploitation at Northwich, Middlewich, Nantwich and Droitwich. Later, Victorian brine extraction in these areas accentuated salt karst development causing severe subsidence problems that remain a legacy. The salt was also mined, but the mines flooded and consequent brine extraction caused the workings to collapse, resulting in catastrophic surface subsidence. Legislation was enacted to pay for the damage and a levy is still charged for salt extraction. Some salt mines are still collapsing and the re-establishment of the post-brine extraction hydrogeological regimes means that salt springs may again flow causing further dissolution and potential collapse. -
Pdf 325,34 Kb
(Final Report) An analysis of lessons learnt and best practices, a review of selected biodiversity conservation and NRM projects from the mountain valleys of northern Pakistan. Faiz Ali Khan February, 2013 Contents About the report i Executive Summary ii Acronyms vi SECTION 1. INTRODUCTION 1 1.1. The province 1 1.2 Overview of Natural Resources in KP Province 1 1.3. Threats to biodiversity 4 SECTION 2. SITUATIONAL ANALYSIS (review of related projects) 5 2.1 Mountain Areas Conservancy Project 5 2.2 Pakistan Wetland Program 6 2.3 Improving Governance and Livelihoods through Natural Resource Management: Community-Based Management in Gilgit-Baltistan 7 2.4. Conservation of Habitats and Species of Global Significance in Arid and Semiarid Ecosystem of Baluchistan 7 2.5. Program for Mountain Areas Conservation 8 2.6 Value chain development of medicinal and aromatic plants, (HDOD), Malakand 9 2.7 Value Chain Development of Medicinal and Aromatic plants (NARSP), Swat 9 2.8 Kalam Integrated Development Project (KIDP), Swat 9 2.9 Siran Forest Development Project (SFDP), KP Province 10 2.10 Agha Khan Rural Support Programme (AKRSP) 10 2.11 Malakand Social Forestry Project (MSFP), Khyber Pakhtunkhwa 11 2.12 Sarhad Rural Support Program (SRSP) 11 2.13 PATA Project (An Integrated Approach to Agriculture Development) 12 SECTION 3. MAJOR LESSONS LEARNT 13 3.1 Social mobilization and awareness 13 3.2 Use of traditional practises in Awareness programs 13 3.3 Spill-over effects 13 3.4 Conflicts Resolution 14 3.5 Flexibility and organizational approach 14 3.6 Empowerment 14 3.7 Consistency 14 3.8 Gender 14 3.9. -
The Geographic, Geological and Oceanographic Setting of the Indus River
16 The Geographic, Geological and Oceanographic Setting of the Indus River Asif Inam1, Peter D. Clift2, Liviu Giosan3, Ali Rashid Tabrez1, Muhammad Tahir4, Muhammad Moazam Rabbani1 and Muhammad Danish1 1National Institute of Oceanography, ST. 47 Clifton Block 1, Karachi, Pakistan 2School of Geosciences, University of Aberdeen, Aberdeen AB24 3UE, UK 3Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA 4Fugro Geodetic Limited, 28-B, KDA Scheme #1, Karachi 75350, Pakistan 16.1 INTRODUCTION glaciers (Tarar, 1982). The Indus, Jhelum and Chenab Rivers are the major sources of water for the Indus Basin The 3000 km long Indus is one of the world’s larger rivers Irrigation System (IBIS). that has exerted a long lasting fascination on scholars Seasonal and annual river fl ows both are highly variable since Alexander the Great’s expedition in the region in (Ahmad, 1993; Asianics, 2000). Annual peak fl ow occurs 325 BC. The discovery of an early advanced civilization between June and late September, during the southwest in the Indus Valley (Meadows and Meadows, 1999 and monsoon. The high fl ows of the summer monsoon are references therein) further increased this interest in the augmented by snowmelt in the north that also conveys a history of the river. Its source lies in Tibet, close to sacred large volume of sediment from the mountains. Mount Kailas and part of its upper course runs through The 970 000 km2 drainage basin of the Indus ranks the India, but its channel and drainage basin are mostly in twelfth largest in the world. Its 30 000 km2 delta ranks Pakiistan. -
Geology of the Lower Jurassic Datta Formation, Kala Chitta Range, Pakistan
Geol. Bull. Punjab Univ. Vol. 40-41, 2005-6, pp 27-44 27 GEOLOGY OF THE LOWER JURASSIC DATTA FORMATION, KALA CHITTA RANGE, PAKISTAN BY MUHAMMAD KALEEM AKHTER QURESHI Geological Survey of Pakistan, Trade Centre Lohar Town Phase II, Lahore, Pakistan. Email: [email protected] AND SHAHID GHAZI, AFTAB AHMAD BUTT Institute of Geology, Quaid-e-Azam Campus, University of the Punjab, Lahore-54590, Pakistan. Abstract: Detailed geological mapping contributed towards the tectonic framework of the Kala Chitta Range for the purpose of a compressive knowledge of the mode of occurrence of the Fire Clay horizons in the Datta Formation .Furthermore, detailed analytical work was carried out to elucidate the mineralogy of the Fire Clays. Lithological details and the depositional style have been highlighted comparative data of the Datta Formation with the adjoining areas has also been presented. INTRODUCTION METHODOLOGY The name Datta Formation was introduced by Danilchik Considering the economic importance of the fireclays in and Shah (1967) after the Datta Nala section in the Trans the Lower Jurassic Datta Formation, a detailed study was Indus Salt Range, to replace the Variegated Series of planned to be carried out in Surg- Chak Jabbi- Sakhi Gee (1945). This name has also been extended to the Zindapir, in the central Kala Chitta Range due to their Kala Chitta Range and adjoining areas by the excellent exposures and easy access. Stratigraphic Committee of Pakistan (Fatmi 1973). In the Kala Chitta Range, the Datta Formation represents Precisely, well located samples were taken from different low-stand deposits formed during a complete sea level well developed fireclay horizons of the Datta Formation. -
S40645-019-0306-X.Pdf
Isaji et al. Progress in Earth and Planetary Science (2019) 6:60 Progress in Earth and https://doi.org/10.1186/s40645-019-0306-x Planetary Science RESEARCH ARTICLE Open Access Biomarker records and mineral compositions of the Messinian halite and K–Mg salts from Sicily Yuta Isaji1* , Toshihiro Yoshimura1, Junichiro Kuroda2, Yusuke Tamenori3, Francisco J. Jiménez-Espejo1,4, Stefano Lugli5, Vinicio Manzi6, Marco Roveri6, Hodaka Kawahata2 and Naohiko Ohkouchi1 Abstract The evaporites of the Realmonte salt mine (Sicily, Italy) are important archives recording the most extreme conditions of the Messinian Salinity Crisis (MSC). However, geochemical approach on these evaporitic sequences is scarce and little is known on the response of the biological community to drastically elevating salinity. In the present work, we investigated the depositional environments and the biological community of the shale–anhydrite–halite triplets and the K–Mg salt layer deposited during the peak of the MSC. Both hopanes and steranes are detected in the shale–anhydrite–halite triplets, suggesting the presence of eukaryotes and bacteria throughout their deposition. The K–Mg salt layer is composed of primary halites, diagenetic leonite, and primary and/or secondary kainite, which are interpreted to have precipitated from density-stratified water column with the halite-precipitating brine at the surface and the brine- precipitating K–Mg salts at the bottom. The presence of hopanes and a trace amount of steranes implicates that eukaryotes and bacteria were able to survive in the surface halite-precipitating brine even during the most extreme condition of the MSC. Keywords: Messinian Salinity Crisis, Evaporites, Kainite, μ-XRF, Biomarker Introduction hypersaline condition between 5.60 and 5.55 Ma (Manzi The Messinian Salinity Crisis (MSC) is one of the most et al. -
Using Sedimentology to Address the Marine Or Continental Origin of the Permian Hutchinson Salt Member of Kansas
Sedimentology (2019) doi: 10.1111/sed.12665 Using sedimentology to address the marine or continental origin of the Permian Hutchinson Salt Member of Kansas ANNA SOFIA ANDESKIE and KATHLEEN C. BENISON Department of Geology and Geography, West Virginia University, Morgantown, West Virginia, 26506-6300, USA (E-mail: [email protected]) Associate Editor – Hairuo Qing ABSTRACT The Permian Hutchinson Salt Member of the Wellington Formation of the Sumner Group of Kansas (USA) has multiple scientific and industrial uses. Although this member is highly utilized, there has not been a sedimentologi- cal study on these rocks in over 50 years, and no study has investigated the full thickness of this member. Past publications have inferred a marine ori- gin as the depositional environment. Here, this marine interpretation is chal- lenged. The goals of this study are to fully document sedimentological and stratigraphic characteristics of the Permian Hutchinson Salt Member in the Atomic Energy Commission Test Hole 2 core from Rice County, Kansas. This study documents colour, mineralogy, sedimentary textures, sedimentary structures, diagenetic features and stratigraphic contacts in core slab and thin sections. The Hutchinson Salt Member is composed of five lithologies: bedded halite, siliciclastic mudstone, displacive halite, bedded gypsum/ anhydrite and displacive gypsum/anhydrite. These lithologies formed in shallow surface brines and mudflats that underwent periods of flooding, evapoconcentration and desiccation. Of note are the paucity of carbonates, lack of marine-diagnostic fossils, absence of characteristic marine minerals and lithofacies, and the stratigraphic context of the Hutchinson with associ- ated continental deposits. The Hutchinson Salt Member was most likely deposited in an arid continental setting. -
Ancient Potash Ores
www.saltworkconsultants.com John Warren - Friday, Dec 31, 2018 BrineSalty evolution Matters & origins of pot- ash: primary or secondary? Ancient potash ores: Part 3 of 3 Introduction Crossow of In the previous two articles in this undersaturated water series on potash exploitation, we Congruent dissolution looked at the production of either Halite Mouldic MOP or SOP from anthropo- or Porosity genic brine pans in modern saline sylvite lake settings. Crystals of interest formed in solar evaporation pans Dissolved solute shows stoichiometric match to precursor, and dropped out of solution as: dissolving salt goes 1) Rafts at the air-brine interface, A. completely into solution 2) Bottom nucleates or, 3) Syn- depositional cements precipitated MgCl in solution B. 2 within a few centimetres of the Crossow of depositional surface. In most cases, undersaturated water periods of more intense precipita- Incongruent dissolution tion tended to occur during times of brine cooling, either diurnally Carnallite Sylvite or seasonally (sylvite, carnallite and halite are prograde salts). All Dissolved solute does not anthropogenic saline pan deposits stoichiometrically match its precursor, examples can be considered as pri- while the dissolving salt goes partially into solution and a mary precipitates with chemistries new daughter mineral remains tied to surface or very nearsurface Figure 1. Congruent (A) versus incongruent (B) dissolution. brine chemistry. In contrast, this article discusses the Dead Sea and the Qaidam sump most closely resemble ancient potash deposits where the post-deposition chem- those of ancient MgSO4-depleted oceans, while SOP fac- istries and ore textures are responding to ongoing alter- tories in Great Salt Lake and Lop Nur have chemistries ation processes in the diagenetic realm. -
Physical Geography of the Punjab
19 Gosal: Physical Geography of Punjab Physical Geography of the Punjab G. S. Gosal Formerly Professor of Geography, Punjab University, Chandigarh ________________________________________________________________ Located in the northwestern part of the Indian sub-continent, the Punjab served as a bridge between the east, the middle east, and central Asia assigning it considerable regional importance. The region is enclosed between the Himalayas in the north and the Rajputana desert in the south, and its rich alluvial plain is composed of silt deposited by the rivers - Satluj, Beas, Ravi, Chanab and Jhelam. The paper provides a detailed description of Punjab’s physical landscape and its general climatic conditions which created its history and culture and made it the bread basket of the subcontinent. ________________________________________________________________ Introduction Herodotus, an ancient Greek scholar, who lived from 484 BCE to 425 BCE, was often referred to as the ‘father of history’, the ‘father of ethnography’, and a great scholar of geography of his time. Some 2500 years ago he made a classic statement: ‘All history should be studied geographically, and all geography historically’. In this statement Herodotus was essentially emphasizing the inseparability of time and space, and a close relationship between history and geography. After all, historical events do not take place in the air, their base is always the earth. For a proper understanding of history, therefore, the base, that is the earth, must be known closely. The physical earth and the man living on it in their full, multi-dimensional relationships constitute the reality of the earth. There is no doubt that human ingenuity, innovations, technological capabilities, and aspirations are very potent factors in shaping and reshaping places and regions, as also in giving rise to new events, but the physical environmental base has its own role to play.