Salt Deposits in the UK
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Archaeology of Mining, and Quarrying, for Salt and the Evaporites (Gypsum, Anhydrite, Potash and Celestine)
The archaeology of mining, and quarrying, for Salt and the Evaporites (Gypsum, Anhydrite, Potash and Celestine) Test drafted by Peter Claughton Rock salt, or halite (NaCl- sodium chloride), has been mined since the late 17th century, having been discovered during exploratory shaft sinking for coal at Marbury near Northwich, Cheshire, in November 1670. Prior to that the brine springs of Cheshire and those at Droitwich in Worcestershire were the source of salt produced by evaporation, along with production from a large number of coastal sites using seawater. Alabaster, fine grained gypsum (CaSO4. 2H2O - hydrated calcium sulphate), has however been quarried in the East Midlands for use in sculpture since at least the 14th century (Cheetham 1984, 11-13) and the use of gypsum for making plaster dates from about the same period. Consumption The expansion of mining and quarrying for salt and the other evaporites came in the 19th century with the development of the chemical industry. Salt (sodium chloride) was a feedstock for the production of the chlorine used in many chemical processes and in the production of caustic soda (sodium hydroxide) and soda ash (sodium carbonate). Anhydrite (anhydrous calcium sulphate) was used in the production of sulphuric acid. Salt or halite (rock salt) was first mined at Winsford in Cheshire (the site of the only remaining active rock salt mine in England) in 1844. Production expanded in the late 19th century to feed the chemical industry in north Cheshire (together with increasing brine production from the Northwich salt fields). The Lancashire salt deposits, on the Wyre estuary at Fleetwood and Preesall, not discovered until 1872 whilst boring in search of haematite (Landless 1979, 38), were a key to the development of the chemical industry in that area. -
Halite Nacl C 2001-2005 Mineral Data Publishing, Version 1
Halite NaCl c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Cubic. Point Group: 4/m32/m. Crystals cubic, to 1 m, or octahedral; elongated along [100] or [111], skeletal with hopper-shaped faces. Rarely capillary or stalactitic; granular, compact, massive. Physical Properties: Cleavage: {001}, perfect. Fracture: Conchoidal. Tenacity: Brittle. Hardness = 2–2.5 D(meas.) = 2.168 D(calc.) = 2.165 Soluble in H2O, saline taste; rarely fluoresces red under SW UV. Optical Properties: Transparent. Color: Colorless or white when pure; gray, yellow, orange, pink, red, blue, purple; colorless to faintly tinted in thin section. Streak: White. Luster: Vitreous. Optical Class: Isotropic; weakly anisotropic due to stress. Dispersion: Moderately strong. n = 1.5443 Cell Data: Space Group: Fm3m. a = 5.6404(1) Z = 4 X-ray Powder Pattern: Synthetic. 2.821 (100), 1.994 (55), 1.628 (15), 3.258 (13), 1.261 (11), 1.1515 (7), 1.410 (6) Chemistry: (1) (2) Na 39.00 39.34 K 0.12 Mg 0.03 Ca 0.08 Cl 60.27 60.66 SO4 0.27 Total 99.77 100.00 (1) Cardona, Barcelona, Spain. (2) NaCl. Occurrence: Typically in sedimentary rocks of evaporite association, may form immense beds; also as volcanic sublimates, efflorescences, cave deposits. Crystals are common in multiphase fluid inclusions; may be included in other minerals as a product of intermediate-grade metamorphism. Association: Sylvite, polyhalite, kieserite, carnallite, gypsum, anhydrite, dolomite. Distribution: Of worldwide occurrence. Well-studied deposits include: in Austria, around Hallstadt, Salzburg, and Hall, near Innsbruck, Tirol. From Bex, Vaud, Switzerland. In Germany, from Stassfurt-Leopoldshall, 34 km south of Magdeburg, Saxony-Anhalt. -
William Furmval, H. E. Falk and the Salt Chamber of Commerce, 1815-1889: "Ome Chapters in the Economic History of Cheshire
WILLIAM FURMVAL, H. E. FALK AND THE SALT CHAMBER OF COMMERCE, 1815-1889: "OME CHAPTERS IN THE ECONOMIC HISTORY OF CHESHIRE BY W. H. CHALONER, M.A., PH.D. Read 17 November 1960 N the second volume of his Economic History of Modern I Britain (p. 145), Sir John Clapham, writing of the chambers of commerce and trade associations which multiplied rapidly after 1860, suggested that between 1850 and 1875 "there was rather less co-operation among 'capitalist' producers than there had been in the more difficult first and second quarters" of the nineteenth century. He mentioned that in the British salt industry there had been price-fixing associations "based on a local monopoly" in the early nineteenth century, and added that after 1825 the industry "witnessed alternations of gentle men's agreements and 'fighting trade' " until the formation of the Salt Union in 1888. This combine has been called "the first British trust", but to the salt proprietors of the time it was merely "a new device, made easier by limited liability, for handling an old problem". (1) The purpose of this study is to examine in greater detail the business organisation of the natural local monopoly enjoyed by the Cheshire saltmakers in the nineteenth century and to trace the part played by "The Coalition" and the Salt Chamber of Commerce in fostering price regulation and output restriction between the end of the Napoleonic Wars and 1889.< 2 > 111 Op. cit., pp. 147-8; see also Accounts and Papers, 1817, III, 123, p. 22, and E. Hughes, Studies in Administration and Finance, 1558-1825 (1934), pp. -
Victorian Salt Pans and Rock Salt Mining
Victorian Salt Pans Cheshire became dominant in salt making because of its easy access to strong natural brine and rock salt and good communica- tions. But this came at a cost to the environ- ment until the change to controlled brine pumping and vacuum evaporation. Salt was skimmed into salt moulds - originally Salt blocks were sold complete, or crushed to Brine was pumped to a brine tank ready to be baskets, later cooper made cones, then make fine salt. gravity fed to the salt pans. wooden boxes. Images from AF Calvert – Salt in Cheshire, London, 1913 Lump Crushing Storage & Packing Trap doors Brine A fine pan described in the Illustrated London Drying Area News 1850. Fishery pans could be much Brine 200°F Flues and ditches larger and made coarser crystals in pans set Firing Area up outdoors to replicate ‘Bay Salt’. The surviving brine pump at Murgatroyd’s Pan House Stove House Salt Works, Middlewich. Open pan salt works made fine salt and block Flues carried heat and fumes from the salt in a Pan House with an attached Stove furnace underneath the Stove House to a Rock Salt Mining House. Coal was burnt under the iron pan. chimney. Rising heat dried the salt when it Refineries Rock salt itself was not found until 1670, Salt was skimmed into boxes and barrowed was ‘lofted’ to the warehouse floor above. ‘There was a growth in rock salt refineries when William Jackson discovered it into the Stove House. after 1670 but Acts of Parliament restricted whilst prospecting for coal. their construction. -
Sodium Chloride (Halite, Common Salt Or Table Salt, Rock Salt)
71376, 71386 Sodium chloride (Halite, Common Salt or Table Salt, Rock Salt) CAS number: 7647-14-5 Product Description: Molecular formula: NaCl Appearance: white powder (crystalline) Molecular weight: 58.44 g/mol Density of large crystals: 2.17 g/ml1 Melting Point: 804°C1 Density: 1.186 g/ml (5 M in water)2 2 Solubility: 1 M in H2O, 20°C, complete, clear, colorless 2 pH: 5.0-8.0 (1 M in H2O, 25°C) Store at room temperature Sodium chloride is geologically stable. If kept dry, it will remain a free-flowing solid for years. Traces of magnesium or calcium chloride in commercial sodium chloride adsorb moisture, making it cake. The trace moisture does not harm the material chemically in any way. 71378 BioUltra 71386 BioUltra for molecular biology, 5 M Solution The products are suitable for different applications like purification, precipitation, crystallisation and other applications which require tight control of elemental content. Trace elemental analyses have been performed for all qualities. The molecular biology quality is also tested for absence of nucleases. The Certificate of Analysis provides lot-specific results. Much of the sodium chloride is mined from salts deposited from evaporation of brine of ancient oceans, or recovered from sea water by solar evaporation. Due to the presence of trace hygroscopic minerals, food-grade salt has a small amount of silicate added to prevent caking; as a result, concentrated solutions of "table salt" are usually slightly cloudy in appearance. 71376 and 71386 do not contain any anti-caking agent. Applications: Sodium chloride is a commonly used chemical found in nature and in all body tissue, and is considered an essential nutrient. -
F Is for Flavor.Pdf
!! ™ This is an introductory version of Chef Jacob’s Culinary Bootcamp Workbook and F-STEP™ curriculum. You can download the complete curriculum here. 2 !! Third Edition Copyright © 2015 Jacob Burton All rights reserved. 3 4 !! WHAT IS F-STEP?!.....................................................................................11 F IS FOR FLAVOR!.....................................................................................13 UNDERSTANDING FLAVOR STRUCTURE! 14 What is flavor?! 14 Salty! 15 Sweet! 20 Sour! 21 Bitter! 22 Umami! 22 Umami Ingredient Chart! 26 Piquancy! 28 Flavor And Aroma! 28 The Importance Of Fat And Flavor! 29 Texture! 30 Tannins! 30 Flavor’s X Factor! 31 Preventing Palate Fatigue! 32 Delivering A “Flavor Punch”! 33 Using “Flavor Interruptions”! 33 CHOOSING PRIMARY AND SECONDARY FLAVORS! 34 SELECTING NON SEASONAL INGREDIENTS! 35 Buying Spices! 35 Herbs! 36 Poultry! 37 5 Seafood! 37 Beef! 39 Pork! 41 GUIDE TO SEASONAL PRODUCE! 42 Winter! 42 December! 42 January! 44 February! 45 Spring! 46 March! 46 April! 47 May! 49 Summer! 49 June! 50 July! 50 August! 52 Fall! 54 September! 54 October! 55 November! 58 S IS FOR SAUCE!.......................................................................................60 CULINARY STOCKS! 62 Basic Recipe for Protein-Based Stocks! 63 SAUCE THICKENERS! 63 Roux! 64 6 !! Liaison! 65 Other Sauce Thickeners At A Glance! 66 The Three Modern Mother Sauces! 67 REDUCTION SAUCES! 67 Reduction Sauce Process! 69 Tips For Reinforcing Flavors! 70 Reduction Stage! 70 Tips For Reduction! 71 Pan Sauces! -
An Overview of the Sodium Chloride (Salt) Market in Western Canada (V.02)
Sodium Chloride Market: An Overview of the Sodium Chloride (Salt) Market in Western Canada (v.02) Author: WaterSMART Solutions Ltd. Date: December 21, 2012 Table of Contents Executive Summary 1 Introduction 1 Sources / Types of Salt 2 Salt Deposits 3 Extraction / Production Methods 5 Primary Uses for Salt 6 Price 6 Distribution 7 Canadian Salt Market 9 Western Canada Salt Market 9 Salt in Oil Sands Mining 12 Road Salts 14 Sodium Carbonate and Sodium Bicarbonate 17 Caustic Soda and Sodium Chloride Consumption in SAGD 18 Summary 20 Tables Table 1 - Extraction and Production Technology ______________________________________________________ 6 Table 2 - Canadian Salt Market by Form ____________________________________________________________ 7 Table 3 - Final Packaging and Price of Salt to Public Consumer __________________________________________ 7 Table 4: Western Canada Salt Market Overview _____________________________________________________ 11 Table 5 - Primary Uses for Salt in Western Canada ___________________________________________________ 12 Table 6: Chloride Based Road Salts ________________________________________________________________ 14 Table 7: Radius of Competitiveness _______________________________________________________________ 16 Figures Figure 1: Table 2.3 Survey of High-Reduction and ZLD Technologies for Municipal Utilities ____________________ 2 Figure 2: Major North American Salt Deposits ________________________________________________________ 3 Figure 3: Western Canada Salt Deposits ____________________________________________________________ -
City of Bennington Ordinance Book
CITY OF BENNINGTON ORDINANCE BOOK Chapter I (1) ADMINISTRATION Article 1 City Elections Article 2 Governing Body Article 3 Officers and Employees Article 4 Oaths and Bonds Article 5 Municipal Court Article 6 Fire Department Organization Article 7 Recreation Commission Article 8 Capital Improvement Fund Article 9 Equipment Reserve Fund Article 10 Ambulance Service Organization Chapter II (2) ANIMALS AND FOWL Article 1 Animals Article 2 Dogs and Cats Chapter III (3) BEVERAGES Article 1 Alcoholic Liquor Article 2 Cereal Malt Beverage Chapter IV (4) BUILDINGS AND CONSTRUCTION Article 1 Building Code Article 2 Dangerous Structures Article 3 City Planning Commission Article 4 Miscellaneous Article 5 Solar Energy Systems Article 6 Cross – Connections Chapter V (5) LICENSES AND BUSINESS REGULATIONS Article 1 Solicitors, Canvassers, and Peddlers Article 2 Operation Licenses – Amusement Chapter VI (6) FIRE REGULATIONS Article 1 Fire Limits Article 2 Fire Regulations Article 3 Fireworks Chapter VII (7) HEALTH AND SANITATION Article 1 Health Nuisances Article 2 Refuse Regulations Article 3 Sewer Regulations Chapter VIII (8) PUBLIC OFFENSES Article 1 Uniform Public Offense Code Article 2 Supplementary Offenses Chapter IX (9) STREETS, SIDEWALKS, AND PUBLIC PROPERTY Article 1 Street Regulations Article 2 Sidewalks Article 3 Curb Cuts Article 4 Consolidation Street and Highway Fund Chapter X (10) TRAFFIC Article 1 Standard Traffic Ordinance Article 2 Additional Traffic Regulations Chapter XI (11) UTILITIES Article 1 Water Service Article 2 Sewer Service -
About the Urban Development of Hallstatt
About the Urban Development of Hallstatt CONTENTS 1. STARTING POINT 2 2. TOPOGRAPHY 3 2.1. Topographical survey 3 The Lake 3 The Mountains 3 The Communes of the Lake of Hallstatt 3 The Market Commune of Hallstatt 3 Names of Streets, Meadows and Marshes 4 2.3. The Morphology of the Villages 4 The Market 4 Lahn 4 3. URBAN DEVELOPMENT 6 3.1 The Development of the Traffic Network 6 The Waterway 6 The Paths 6 The Street 7 The Railway 7 The Pipeline, the so called "Sulzstrenn" 7 3.2. The Evolution of the Buildings 9 3.2.1. The Market 9 The Early History and the Age of Romans 9 The Founding in the Middle Ages 9 The Extension in the 16th Century 9 The Stagnation since the Beginning of the 17th Century until the catastrophic conflagration in 175010 The "Amthof" 10 The Court Chapel 11 The Hospital 11 The Hospital Chapel 11 The "Pfannhaus" and the "Pfieseln" 11 The Recession, Starting in 1750 until the Beginning of Tourism 11 The Flourishing of Tourism 12 3.2.2. Lahn 12 The Roman Ages 12 The Modern Times 12 3.3. The Analysis of the Sites and the Structures 15 3.3.1. The Market 15 The Market Place 16 The Landing Place 16 3.3.2. Lahn 17 The Agricultural Area 17 The Industrial Area 17 The Expansion 17 The Condensing 18 4. ANHANG 19 4.1. Commissions Relation dieses hochen Mittels Hoff Raths Herrn v. Quiex die zu Haalstatt abgebrunnenen Sallz Pfannen betreffend. 19 5. -
Growth, Viability, and Death of Planktonic and Biofilm
Edinburgh Research Explorer Growth, Viability, and Death of Planktonic and Biofilm Sphingomonas desiccabilis in Simulated Martian Brines Citation for published version: Stevens, AH, Childers, D, Fox-Powell, M, Nicholson, N, Jhoti, E & Cockell, CS 2018, 'Growth, Viability, and Death of Planktonic and Biofilm Sphingomonas desiccabilis in Simulated Martian Brines', Astrobiology. https://doi.org/10.1089/ast.2018.1840 Digital Object Identifier (DOI): 10.1089/ast.2018.1840 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Astrobiology General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 06. Oct. 2021 ASTROBIOLOGY Volume 19, Number 2, 2018 Research Article Mary Ann Liebert, Inc. DOI: 10.1089/ast.2018.1840 Growth, Viability, and Death of Planktonic and Biofilm Sphingomonas desiccabilis in Simulated Martian Brines Adam H. Stevens,1 Delma Childers,1,2 Mark Fox-Powell,1,3 Natasha Nicholson,1 Elisha Jhoti,1 and Charles S. Cockell1 Abstract Aqueous solutions on Mars are theorized to contain very different ion compositions than those on Earth. -
Effect of Chilled Temperature and Salt Concentration on Shelf Life of Herring (Clupea Harengus)
PO Box 1390, Skulagata 4 120 Reykjavik, Iceland FINAL REPORT 2008 EFFECT OF CHILLED TEMPERATURE AND SALT CONCENTRATION ON SHELF LIFE OF HERRING (CLUPEA HARENGUS) Won Sik An Fisheries Information Division, Ministry of Fisheries Democratic People´s Republic of Korea Botongmun-Dong, Central District, Pyongyang E-mail: [email protected] Supervisors: Kristin A. Thorarinsdottir ([email protected]), Icelandic Food Research Asbjorn Jonsson ([email protected]), Icelandic Food Research Irek Klonowski ([email protected]), Icelandic Food Research ABSTRACT Keeping the quality of fish and fish products at its best is the most important issue in fish processing. Based on the trend demanding that salted fish reduce salt content for dietary reasons as well as for further processing, this project focused on the extension of shelf life by investigating quality changes during brining in the cold storage of herring (Clupea harengus), the one of the popular foods in DPR Korea. Instead of the traditional salting method, an innovative method has been suggested called cold brining. Cold brining is a processing method expected either to provide a good salty flavour or to extend shelf life for further products by delaying microbiological growth and the chemical changes of the co- operation of ice and salt. In both experiments using fresh whole herring and fillets, five different brine concentrations of 8, 12, 14, 16 and 18%, and five different temperatures of 2, -1, -2, -4, -8 and -24 °C were used for 25 and 18 days, respectively, to select the optimum conditions for cold brining. The results were revealed that the 14% brine at -8 °C can be regarded as optimum condition for pre-cooling of herring. -
Life at Low Water Activity
Published online 12 July 2004 Life at low water activity W. D. Grant Department of Infection, Immunity and Inflammation, University of Leicester, Maurice Shock Building, University Road, Leicester LE1 9HN, UK ([email protected]) Two major types of environment provide habitats for the most xerophilic organisms known: foods pre- served by some form of dehydration or enhanced sugar levels, and hypersaline sites where water availability is limited by a high concentration of salts (usually NaCl). These environments are essentially microbial habitats, with high-sugar foods being dominated by xerophilic (sometimes called osmophilic) filamentous fungi and yeasts, some of which are capable of growth at a water activity (aw) of 0.61, the lowest aw value for growth recorded to date. By contrast, high-salt environments are almost exclusively populated by prokaryotes, notably the haloarchaea, capable of growing in saturated NaCl (aw 0.75). Different strategies are employed for combating the osmotic stress imposed by high levels of solutes in the environment. Eukaryotes and most prokaryotes synthesize or accumulate organic so-called ‘compatible solutes’ (osmolytes) that have counterbalancing osmotic potential. A restricted range of bacteria and the haloar- chaea counterbalance osmotic stress imposed by NaCl by accumulating equivalent amounts of KCl. Haloarchaea become entrapped and survive for long periods inside halite (NaCl) crystals. They are also found in ancient subterranean halite (NaCl) deposits, leading to speculation about survival over geological time periods. Keywords: xerophiles; halophiles; haloarchaea; hypersaline lakes; osmoadaptation; microbial longevity 1. INTRODUCTION aw = P/P0 = n1/n1 ϩ n2, There are two major types of environment in which water where n is moles of solvent (water); n is moles of solute; availability can become limiting for an organism.