Unendliche Universen

Total Page:16

File Type:pdf, Size:1020Kb

Unendliche Universen Unendliche Universen Stefan Müller–Stach, Mainz i Vorwort Unsere Erde ist Teil eines gigantischen Universums, dessen Grund- prinzipien durch die Physik erklärt werden. Trotz aller Geheimnisse, die es noch birgt, wissen wir sehr viel darüber. In der Mathematik gibt es Universen ganz anderer Ausprägung. Sie bilden unendliche Reser- voire von Objekten, die sich in der materiellen Welt nicht wiederfin- den. Zusammen mit dem präzisen mathematischen Kalkül entfaltet sich aus diesen Universen eine Welt von faszinierender Schönheit und Vielfalt. Der Zusammenhang zwischen Mathematik und Physik ist nicht zu- fällig. Viele Wissenschaften können ihre Theorien nicht ohne Zuhil- fenahme mathematischer Strukturen ausdrücken und das mathema- tische Kalkül mit seiner Beweisstärke bildet die Grundlage der Di- gitalisierung und vieler anderer Technologien. Galileo Galilei hat die Mathematik einmal die „Sprache der Natur” genannt. Eugene Wigner hat ganz ähnlich von der Unreasonable effectiveness of mathematics in the natural sciences1 gesprochen. Es war ein weit darüber hinausgehendes Ziel von Gott- fried Wilhelm Leibniz, eine übergreifende Wissenschaftssprache – die Lingua Universalis – zu konstruieren, welche die Mathematik verall- gemeinert. Wie Umberto Eco und andere angemerkt haben, ist dieses große Ziel nie erreicht worden.2 Im Mai 2018 hielt ich im Studium Generale der Johannes Gutenberg Universität Mainz einen Vortrag mit dem Titel „Wahrheit, Beweis, Gedanke, Identität”. Darin erklärte ich aktuelle Neuentwicklungen innerhalb der Grundlagen der Mathematik, die innermathematische iii Anforderungen an den Gleichheitsbegriff und die computergestützte Überprüfbarkeit von Beweisen besser bewältigen können als tradi- tionelle Zugänge. Darüber hinaus stehen solche Ideen in engem Zu- sammenhang mit fundamentalen Fragestellungen in der Philosophie3 und der Physik4 und haben zahlreiche nützliche Anwendungen in der Informatik und vielen weiteren Bereichen. Dieses Buch stellt eine Ausarbeitung des Vortrags und der dahin- terliegenden Forschung dar, wobei kein Anspruch auf Vollständigkeit gelegt wurde. Die ausgewählten Aspekte spannen einen historischen Bogen von der Antike bis zur heutigen Zeit. Dies illustriert einmal mehr, dass sich der Erkenntnisgewinn in der Wissenschaft in der Re- gel auf langen Zeitskalen abspielt. Folgenden Menschen danke ich für Anmerkungen zum Vortrag und zum Text: R. Busse, A. Denkert, M. Dreyer, N. Haverkamp, J. Jost, S. Müller–Stach, A. Rödder, P. Stoll, C. Tapp und R. Wieland. Neustadt–Haardt, im Oktober 2021, Stefan Müller–Stach iv Roter Faden Wir wollen einige der Themen vorstellen, denen wir auf dem Weg durch das Buch begegnen werden. Die ersten beiden Fragen sind: Was ist ein Gedanke? und Wo sind die abstrakten Begriffe unseres Denkens lo- kalisiert? Auf diese beiden Fragen nach der Natur der Gedanken und der Ver- ortung unseres Denkens und unseres Bewusstseins gibt es trotz zahl- reicher jüngerer Erkenntnisse in den Lebenswissenschaften bis heute keine befriedigenden Antworten. Bereits Leibniz hat in seinem „Müh- lenbeispiel”5 darauf hingewiesen, dass jede Reise durch unser Gehirn nur eine Maschine – eben eine Mühle von innen – zeigen würde, oh- ne dass Wahrnehmungen, das Bewusstsein oder andere Qualia und emergente Phänomene des Lebens erkennbar wären. In der Tradition der Philosophie Platons wurde abstrakten Objekten und Begriffen eine Realität an einem ominösen Ort außerhalb der physikalischen Wirklichkeit zugewiesen. Eine gute Einstiegsfrage in die platonische Ideenlehre ist die Frage: Was ist eine Zahl? Zahlen sind allseits bekannte Objekte, die in der Wirklichkeit nicht selbst, sondern nur in Form von Anzahlen vorkommen. Mit kleinen Zahlen gehen wir souverän um, aber sehr große Zahlen entziehen sich vollständig unserer Vorstellung. Ähnliches gilt für ideale geometri- sche Gebilde, wie zum Beispiel Kreise, die in ihrer mathematischen Reinform höchstens näherungsweise in der Realität vorhanden sind. v Solche Figuren werden allgemein Räume genannt. Kollektionen wie die natürlichen Zahlen N bilden als Gesamtheiten diskrete Räume, so dass wir den Zahlbegriff als einen Teil des Raumbegriff auffassen können. Somit ist die Natur von Zahlen natürlicherweise verbunden mit der folgenden Frage: Was ist der allgemeinste Raumbegriff? Um ein besseres Gefühl dafür zu bekommen, setzen wir uns einge- hend mit topologischen Räumen und deren Verallgemeinerungen als Objekte in höheren Kategorien auseinander. Da wir mit solchen Erörterungen schon tief in der Mathematik ste- cken, beschäftigen wir uns mit ihrer Arbeitsweise und ihrem Einfluss: Wie ist die Arbeitsweise der Mathematik? und Welche Rolle hat sie in unserer Kultur? Dabei gehen wir insbesondere auf die Bedeutung und Nützlichkeit von Algorithmen und die damit verbundenen Berechenbarkeitsmo- delle in konkreten Anwendungsbeispielen ein. Es ist wichtig, in der Mathematik zwischen Syntax und Semantik zu unterscheiden. Die syntaktische Seite umfasst ein zugrunde liegendes formales deduktives System, in dem Beweise geführt werden. Dabei lässt sich folgende Frage stellen: Ist Beweisbarkeit gleich Berechenbarkeit? Dies ist in der Tat richtig. Jeder Beweis ist eine Berechnung in einem logischen Kalkül. In einem gewissen Sinne ist umgekehrt jede Berech- nung ein Beweis für die Aussage, die das Ergebnis der Berechnung behauptet. Die Frage ist in einem allgemeinen Sinne also zu bejahen. Eine schwierigere Frage ist das Entscheidungsproblem von Hilbert und Ackermann: Lässt sich entscheiden, welche Propositionen in ei- ner axiomatischen Theorie mit deduktiven Metho- den beweisbar sind? Eine solche Entscheidung wäre ein Algorithmus, der das Ergebnis 1 liefert, wenn die Proposition beweisbar ist und 0 andernfalls. Die vi Antwort auf diese Frage ist jedoch ein klares Nein, wie Alan Turing und Alonzo Church in ihren berühmten Arbeiten6 von 1936 gezeigt haben. Diese und weitere unentscheidbare Probleme, wie das Halte- problem für Turingmaschinen, beruhen auf der Existenz von unent- scheidbaren, aber rekursiv aufzählbaren, Teilmengen S der natürli- chen Zahlen. Diese entsprechen Algorithmen zur Berechnung einer partiell definierten Funktion f mit Werten 0 und 1, die mit dem Er- gebnis f(n) = 1 anhalten, wenn die Zahl n Element der Menge S ist und andernfalls nicht terminieren müssen oder den Wert 0 erge- ben. Wir werden darauf eingehen, ob es einen Berechenbarkeitsbegriff jenseits von Turingberechenbarkeit gibt, manchmal Hypercomputing genannt. Alan Turing hatte über diese Frage nachgedacht und den Turingtest7 entwickelt. Eine verwandte Frage ist, ob das menschliche Gehirn leistungsfähiger als eine Turingmaschinen ist: Was unterscheidet die menschliche Intelligenz von einem Computer? Viele Aspekte der Mathematik werden in der Sprache der Mengen- lehre beschrieben. Dies ist jedoch nicht die einzige Möglichkeit. Dies führt zu einer wesentlich umfassenderen Frage, die das Ziel dieses Buches darstellt: Welche Form der Grundlagen der Mathematik ist dem heutigen konzeptuell strukturalistischen ma- thematischen Denken besser angepasst als die tra- ditionelle Mengenlehre? Dieses innermathematische Problem ist auf zweierlei Arten und Wei- sen angegangen worden. Einerseits in syntaktischer Weise in Form der Typentheorie durch die Arbeiten des Logikers Per Martin–Löf, auf- bauend auf Ideen von Bertrand Russell, und andererseits in einer se- mantischen Variante durch die Theorie der höheren Kategorien, auf- bauend auf Ideen von Alexander Grothendieck. Vladimir Voevodsky hat vor wenigen Jahren mit seinem Forschungsprogramm „Univalent Foundations” die Theorie von Martin–Löf noch wesentlich weiterent- wickelt und die Interpretationen solcher Typentheorien in höheren vii (1; 1)–Kategorien werden derzeit ausgiebig studiert.8 Gleichzeitig er- öffnete die Typentheorie neue Möglichkeiten, in Mathematik und In- formatik Software Tools zu schaffen, die die Verifikation von Beweisen und Programmen erlauben. Durch die Typentheorie und die höheren Kategorien lassen sich Syn- tax und Semantik getrennt voneinander betrachten und die Vermi- schung beider in der Mengenlehre wird aufgelöst. Zudem ergeben sich in beiden Grundlagentheorien großartige Möglichkeiten, mit dem Be- griff der Gleichheit und ihren Varianten Isomorphie, Symmetrie und Äquivalenz adäquat umgehen zu können. In der Mathematik hat sich der gängige Gleichheitsbegriff im Lauf der Zeit nämlich als zu starr herausgestellt. Die dahinter liegende Frage ist: Was bedeutet die Gleichung A = A? Diese Frage führt in der Typentheorie zur Definition eines Identitäts- typs, der alle denkbaren Formen der Gleichheit beherbergen kann. Im letzten Teil des Buches widmen wir uns dem Begriff der Wahrheit und der Semantik: Wie kann der Begriff der Wahrheit definiert werden? Diese Frage wurde bereits im Altertum von Aristoteles und ande- ren gestellt und hat über viele Jahrhunderte zu einer Fülle von Er- klärungsversuchen geführt. Eine mögliche Verifizierung des Wahr- heitsbegriffs ist die Leibnizsche Suche nach einer allgemeinen Wis- senschaftssprache in Form eines symbolischen Kalküls, der Lingua Universalis, damit die Wahrheit von Aussagen in dieser Sprache auf syntaktische Weise durch einen Beweis möglich wäre. Dieser Ansatz ist plausibel, da der Begriff der Beweisbarkeit wesentlich leichter zu verstehen ist als der Wahrheitsbegriff. Deshalb stellt sich die Frage: Ist Wahrheit gleich Beweisbarkeit? Natürlich ist jede beweisbare Aussage in einem konsistenten logischen Kalkül wahr. Die Umkehrung gilt innerhalb eines festen deduktiven Systems jedoch in der Regel nicht, wie Kurt Gödel in seinem
Recommended publications
  • 1 Psychological Operationisms at Harvard: Skinner, Boring, And
    [Forthcoming in Journal of the History of the Behavioral Sciences] Psychological operationisms at Harvard: Skinner, Boring, and Stevens Sander Verhaegh Tilburg University Abstract: Contemporary discussions about operational definition often hark back to Stanley Smith Stevens’ classic papers on psychological operationism (1935ab). Still, he was far from the only psychologist to call for conceptual hygiene. Some of Stevens’ direct colleagues at I would like to thank Julie Vargas, anonymous referees for the Journal of the History of the Behavioral Sciences, and the staff at the Harvard University Archives for their help with this project. Drafts of this paper were presented at the 2019 conference of the History of Science Society (Utrecht University) and the 2019 conference of the Canadian Society for the History and Philosophy of Science (University of British Columbia). I would like to thank the audiences at both events for their valuable suggestions. This research is funded by The Netherlands Organisation for Scientific Research (grant 275–20–064). My archival research was funded by a Kristeller-Popkin Travel Fellowship from the Journal of the History of Philosophy, by a Rodney G. Dennis Fellowship in the Study of Manuscripts from Houghton Library, and a travel grant from the Evert Willem Beth Foundation. Correspondence concerning this paper should be addressed to Tilburg University, Department of Philosophy, Warandelaan 2, 5037AB, Tilburg, The Netherlands or to [email protected]. 1 Harvard⎯ most notably B. F. Skinner and E. G. Boring⎯ were also actively applying Bridgman’s conceptual strictures to the study of mind and behavior. In this paper, I shed new light on the history of operationism by reconstructing the Harvard debates about operational definition in the years before Stevens published his seminal articles.
    [Show full text]
  • Prime Numbers and Implication Free Reducts of Mvn-Chains.Pdf
    SYSMICS2019 Syntax Meets Semantics Amsterdam, The Netherlands 21-25 January 2019 Institute for Logic, Language and Computation University of Amsterdam SYSMICS 2019 The international conference “Syntax meet Semantics 2019” (SYSMICS 2019) will take place from 21 to 25 January 2019 at the University of Amsterdam, The Nether- lands. This is the closing conference of the European Marie Sk lodowska-Curie Rise project Syntax meets Semantics – Methods, Interactions, and Connections in Sub- structural logics, which unites more than twenty universities from Europe, USA, Brazil, Argentina, South Africa, Australia, Japan, and Singapore. Substructural logics are formal reasoning systems that refine classical logic by weakening structural rules in a Gentzen-style sequent calculus. Traditionally, non- classical logics have been investigated using proof-theoretic and algebraic methods. In recent years, combined approaches have started to emerge, thus establishing new links with various branches of non-classical logic. The program of the SYSMICS conference focuses on interactions between syntactic and semantic methods in substructural and other non-classical logics. The scope of the conference includes but is not limited to algebraic, proof-theoretic and relational approaches towards the study of non-classical logics. This booklet consists of the abstracts of SYSMICS 2019 invited lectures and contributed talks. In addition, it also features the abstract of the SYSMICS 2019 Public Lecture, on the interaction of logic and artificial intelligence. We thank all authors, members of the Programme and Organising Committees and reviewers of SYSMICS 2019 for their contribution. Apart from the generous financial support by the SYSMICS project, we would like to acknowledge the sponsorship by the Evert Willem Beth Foundation and the Association for Symbolic Logic.
    [Show full text]
  • Arxiv:1803.01386V4 [Math.HO] 25 Jun 2021
    2009 SEKI http://wirth.bplaced.net/seki.html ISSN 1860-5931 arXiv:1803.01386v4 [math.HO] 25 Jun 2021 A Most Interesting Draft for Hilbert and Bernays’ “Grundlagen der Mathematik” that never found its way into any publi- Working-Paper cation, and 2 CVof Gisbert Hasenjaeger Claus-Peter Wirth Dept. of Computer Sci., Saarland Univ., 66123 Saarbrücken, Germany [email protected] SEKI Working-Paper SWP–2017–01 SEKI SEKI is published by the following institutions: German Research Center for Artificial Intelligence (DFKI GmbH), Germany • Robert Hooke Str.5, D–28359 Bremen • Trippstadter Str. 122, D–67663 Kaiserslautern • Campus D 3 2, D–66123 Saarbrücken Jacobs University Bremen, School of Engineering & Science, Campus Ring 1, D–28759 Bremen, Germany Universität des Saarlandes, FR 6.2 Informatik, Campus, D–66123 Saarbrücken, Germany SEKI Editor: Claus-Peter Wirth E-mail: [email protected] WWW: http://wirth.bplaced.net Please send surface mail exclusively to: DFKI Bremen GmbH Safe and Secure Cognitive Systems Cartesium Enrique Schmidt Str. 5 D–28359 Bremen Germany This SEKI Working-Paper was internally reviewed by: Wilfried Sieg, Carnegie Mellon Univ., Dept. of Philosophy Baker Hall 161, 5000 Forbes Avenue Pittsburgh, PA 15213 E-mail: [email protected] WWW: https://www.cmu.edu/dietrich/philosophy/people/faculty/sieg.html A Most Interesting Draft for Hilbert and Bernays’ “Grundlagen der Mathematik” that never found its way into any publication, and two CV of Gisbert Hasenjaeger Claus-Peter Wirth Dept. of Computer Sci., Saarland Univ., 66123 Saarbrücken, Germany [email protected] First Published: March 4, 2018 Thoroughly rev. & largely extd. (title, §§ 2, 3, and 4, CV, Bibliography, &c.): Jan.
    [Show full text]
  • (0) 625307185 Home A
    Work address: University College Groningen, Hoendiepskade 23/24, NL-9718 BG Groningen, The Netherlands, +31 (0) 625307185 Home address: ‘t Olde Hof 43, NL-9951JX Winsum, The Netherlands Dr. Dr. Simon Friederich born 30/08/1981 in Heidelberg, Germany http://simonfriederich.eu Email: s.m.friederich @ rug.nl AREAS OF RESEARCH General philosophy of science, philosophy of physics Philosophy of mathematics Epistemology AREAS OF COMPETENCE Philosophy of mind; effective altruism EDUCATION 2019 Habilitation (German qualification for full professorship) in philosophy, Ludwig-Maximilians-Universität München, Germany 2014 PhD in philosophy, Institute for Philosophy, University of Bonn, Germany; grade: “summa cum laude” 2010 PhD in physics, Institute for Theoretical Physics, University of Heidelberg, Germany; grade: “magna cum laude” 2008 Magister in philosophy Philosophisches Seminar, University of Göttingen, Germany; grade: “with distinction” 2007 Diploma in physics Institute for Theoretical Physics, University of Göttingen, Germany; grade: “very good” CURRENT POSITION Since September 2019 Associate professor of philosophy of science, University of Groningen, University College Groningen (UCG) and Faculty of Philosophy, The Netherlands, Interim Academic Director of Humanities at UCG October 2014 – August 2018, Assistant professor of philosophy of science, University of Groningen, University College Groningen and Faculty of Philosophy, The Netherlands In addition, since August 2015, external member of the Munich Center for Mathematical Philosophy (MCMP) PREVIOUS POSITIONS 2012 – 2014 substituting for a full professorship in theoretical philosophy, University of Göttingen 2011 – 2012 PostDoc at University of Wuppertal University, research collaboration “Epistemology of the Large Hadron Collider”, funded by the German Academic Foundation (DFG) RESEARCH VISITS July 2019 visiting scholar at the Rotman Institute of Philosophy, University of Western Ontario (Canada) Host: Prof.
    [Show full text]
  • EVERT WILLEM BETH's SCIENTIFIC PHILOSOPHY 1. Introduction
    EVERT WILLEM BETH'S SCIENTIFIC PHILOSOPHY Miriam FRANCHELLA Universita degli Studi, Milano 1. Introduction The Dutch man Evert Willem Beth (1908-1964) is famous for his contributions to logic. It is also known that he was a philosopher and became interested in logic quite late in his life. Still, the aspects of his philosophical reflections and the details of its development are almost unknown. He himself gave some hints for ordering his pro­ duction. 1 He divided it into four periods: the neo-kantian, the antikantian, the antiirrationalist, the logical one. Within this frame­ work, it is possible to individuate a core around which Beth devel­ oped his reflections: it is the interplay betwe~n philosophy and the sciences. In effect, his philosophical reflections were always linked to the sciences in two ways: firstly, because he steadily checked his philosophical ideas against the current situation in foundational re­ search; second, because he occupied himself with the general ques­ tion of the relationships between philosophy and the sciences. We are going to analyse these aspects in detail. 2. The role of intuition: thinking ofKant At the very beginning of his work Beth was convinced that intuitionism was the only acceptable foundational school. He con­ sidered logicism as "out" at that period. The other two positions - formalism and intuitionism - appealed both to intuition: 1. "Een terugblik" ("A retrospective view"), De Gids 123 (1960), 320-330; also in E.W. Beth, Door wetenshap tot wijsheid (Assen, van Gorcum 1964), 112-113. 222 intuitionism directly, in the construction of mathematics, while for­ malism only in the metamathematical analysis.
    [Show full text]
  • Formal, Informal Or Anti-Logical? the Philosophy of the Logician Evert Willem Beth (1908-1964)
    INFORMAL LOGIC XII. 1, Winter 1990 In the Service of Human Society: Formal, Informal or Anti-Logical? The Philosophy of the Logician Evert Willem Beth (1908-1964) E. M. BARTH Groningen University Introduction 1. Where does European argumentation theory come from? Proof as a social act The topic on which I have been asked to speak is, as far as I understood it, the Where does the highly amorphous field formal-informal divide in logic. Having called argumentation theory derive from? pondered about that task for a long time I There is, I believe, a certain difference be­ decided that concerning a weighing of the tween the United States on the one hand and pro's and con's of the two approaches I Europe and Canada on the other in this want to cut it short and to simply say: respect. Whereas in the United States the There ought to be formal logic, attuned departments of speech communication seem to human affairs; to have been very influential indeed, in There ought to be informal logic, attuned Europe argumentation theory derives from to human affairs; philosophy, and to a very large extent from logic-as in Canada. and once upon a time the twain shall meet. This fact is of considerable importance I do not accept the formal-informal for an understanding of the possibilities of, divide as a divide. That distinction ought and in, the field, as I shall try to show. Five to be played down. It is merely a question European philosophers at least from the of method-an interesting question, but not generation before us must be mentioned, at all a threatening one.
    [Show full text]
  • E.W. Beth and the Logical Empiricists Philosophia Scientiæ, Tome 3, No 4 (1998-1999), P
    PHILOSOPHIA SCIENTIÆ HENK VISSER E.W. Beth and the logical empiricists Philosophia Scientiæ, tome 3, no 4 (1998-1999), p. 49-76 <http://www.numdam.org/item?id=PHSC_1998-1999__3_4_49_0> © Éditions Kimé, 1998-1999, tous droits réservés. L’accès aux archives de la revue « Philosophia Scientiæ » (http://poincare.univ-nancy2.fr/PhilosophiaScientiae/) implique l’accord avec les conditions générales d’utilisation (http://www. numdam.org/conditions). Toute utilisation commerciale ou im- pression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la pré- sente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ E.W. Beth and the Logical Empiricists Henk Visser The E. W. Beth Foundation Abstract. This paper is concerned with Beth's reactions to logical empiricist doctrines, mainly during the period that logical empiricism did not yet belong to the past, beginning with Beth's first publication, and ending at the time that Beth formulated his own conception of scientific philosophy. In Beth's development, three phases are distinguished ; in the fïrst period, which runs frorn 1933 to 1940, Beth's appeal to "évidences" is seen as a fondamental différence with the views of the logical empiricits, though Beth stood sympathetic toward their rejection of metaphysics. During a short second period, from 1940 to 1942, Beth tried to establish a form of "modem metaphysics", which he believed to account for the logical empiricist objections against traditional metaphysics, but after 1942, in his third period, Beth propagated a "scientific philosophy" in which ail results are open to revision.
    [Show full text]
  • 19660029436.Pdf
    AERaNAUTICS Rotating mirror cameras--Configuration-- Applications--Fabrication--Effectiveness; Solar Documents eclipse--Optical measurements; Lwreclipse-- Optical measurements; Optical measurement; Martin 15168 (Z) -MPR-JuL 66 Optical images--Tracking; Mirrors--Application-- Martin Company Configuration; Sun--Optical measurement; Moon-- FLUERIC D. C. ATTWUDE COhZ'ROL SYSTEM Optical measurement; Photomultipliers--Applications; MONTHLY PROGRESS REPORT Prisms (Optics) --Applications; Optical scanning-- W. J. Westerman, 31 Jul 66, 21p Parameters; Optical instruments--Design; Optical DA-01-021-AMC-15168 (2) scanning--Applications Attitude control systems--Components--DevelopmenG Directional control guidance; Fluid control systems; Rand RM-5056 Bistable circuits--Effectiveness; Delay circuits-- Rand Corporation Effectiveness REDUCTION OF THE EQUATIONS OF RADIATIVE TRANSFERFORAPLANE-PARALLELPLANETARY NASA CR-521 ATMOSPHERE - Part II Wichita State University Zdenek Sekera, Jut 66, 57p AN EXPERIMENTAL INVESTIGATION OF THE FLOW AF 49 (638)- 1700 FIELDS ABOUT DELTA AND DOUBLE-RELTA WINGS Radiative transfer--Mathematical analysis--Theory; AT LOW SPEEDS Planetary atmospheres--Conductivity- -Reflective William H. Wentz, Aug 66, 14% effects; Rayleigh scattering; Electromagnetic waves-- NGR-17-003-003 Scattering--Reflection NASA TND-3602 SA0 SR 210 Lewis Research Center Smithsonian Astrophysical Observatory BLADE ELEMENT PERFORMANCE OF AXIAL-FLOW A STUDY OF FLARE STARS PUMP ROTOR WITH BLADE-TIP DIFFUSION FACTOR Leonard H. Solomon, 12 May 66, 57p OF 0.66
    [Show full text]
  • WORKING from WITHIN the Nature and Development of Quine's
    [Final manuscript. Published at Oxford University Press] WORKING FROM WITHIN The Nature and Development of Quine’s Naturalism Sander Verhaegh ii It is understandable […] that the philosopher should seek a transcendental vantage point, outside the world that imprisons [the] natural scientist and mathematician. He would make himself independent of the conceptual scheme which it is his task to study and revise. “Give me πoυ στω [a place to stand]”, Archimedes said, “and I will move the world.” However, there is no such cosmic exile. […] The philosopher is in the position rather, as Neurath says, “of a mariner who must rebuild his ship on the open sea”. W. V. Quine (notes for Sign and Object, November 5, 1944) iii Table of Contents Preface xi List of Abbreviations xv 1. Introduction 1 PART I: NATURE 2. Naturalizing Epistemology 25 3. Naturalizing Metaphysics 59 4. In Mediis Rebus 89 PART II: DEVELOPMENT 5. Sign and Object 127 6. Analytic and Synthetic 169 7. Science and Philosophy 231 8. Conclusion 265 Appendices 269 Bibliography 311 Index 353 iv Extended Table of Contents Preface xi List of Abbreviations xv 1. Introduction 1 1.0. Summary 1 1.1. Historical background 1 1.2. Naturalism and analytic philosophy 5 1.3. Working from within 7 1.4. Reading Quine in historical context 9 1.5. Plan 11 PART I: NATURE 2. Naturalizing Epistemology 25 2.0. Summary 25 2.1. Introduction 25 2.2. From certainty to straight psychology 29 2.3. Two strategies 35 2.4. Self-sufficient sensory languages 37 2.5. Quine’s response to the sceptic 41 2.6.
    [Show full text]
  • Infinitary First-Order Categorical Logic
    INFINITARY FIRST-ORDER CATEGORICAL LOGIC Christian Esp´ındola Abstract We present a unified categorical treatment of completeness theorems for sev- eral classical and intuitionistic infinitary logics with a proposed axiomatization. This provides new completeness theorems and subsumes previous ones by G¨odel, Kripke, Beth, Karp and Joyal. As an application we prove, using large cardinals assumptions, the disjunction and existence properties for infinitary intuitionistic first-order logics. Keywords : categorical logic, infinitary logics, completeness theorems, sheaf models, large cardinals. 1 Introduction Completeness theorems for infinitary logics were obtained by Karp in the monograph [Kar64], where systems for classical infinitary propositional and first-order logic have been described and studied extensively with Hilbert-type systems (see also [MT61] for a related development with Gentzen's sequents). Turning to the intuitionistic case, Nadel developed infinitary intuitionistic propositional logic for countable many con- junctions/disjunctions in [Nad78], proving completeness with respect to the infinitary version of Kripke semantics. On the other hand, Makkai considered infinitary regular theories in [Mak90] (those in intuitionistic logic using only conjunctions and existential quantification) together with a corresponding completeness theorem. In this work, we intend to provide the jump from Makkai's regular case in [Mak90] to the first-order case by means of a completeness theorem for infinitary coherent logic (that is, adding to the infinitary regular fragment also arbitrary disjunctions), which together with a general- ization of an unpublished theorem of A. Joyal will allow us to derive completeness for infinitary intuitionistic propositional and first-order logics, in terms of infinitary Kripke semantics, as well as for sheaf and categorical models.
    [Show full text]
  • Mathematical Logic. Introduction. by Vilnis Detlovs and Karlis Podnieks
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/349104699 Introduction to Mathematical Logic, Edition 2021 Book · February 2021 CITATIONS READ 0 1 2 authors, including: Karlis Podnieks University of Latvia 75 PUBLICATIONS 273 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Truth Demystified View project Philosophy of Modeling in 1870s: a Tribute to Hans Vaihinger View project All content following this page was uploaded by Karlis Podnieks on 07 February 2021. The user has requested enhancement of the downloaded file. 1 Version released: February 7, 2021 This edition is dedicated to the memory of Professor Elliott Mendelson, 1931-2020 Introduction to Mathematical Logic Textbook for students Edition 2021 by Vilnis Detlovs, Dr. math., and Karlis Podnieks, Dr. math. University of Latvia This work is licensed under a Creative Commons License and is copyrighted © 2000-2021 by us, Vilnis Detlovs and Karlis Podnieks. Sections 1, 2, 3 of this book represent an extended translation of the corresponding chapters of the book: V. Detlovs, Elements of Mathematical Logic, Riga, University of Latvia, 1964, 252 pp. (in Latvian). With kind permission of Dr. Detlovs. Vilnis Detlovs, 1923-2007. Memorial Page This textbook contains links to: Wikipedia, the free encyclopedia; MacTutor History of Mathematics archive of the University of St Andrews; MathWorld of Wolfram Research. 2 Table of Contents References..........................................................................................................3
    [Show full text]
  • Context As a Service
    Context as a Service Dissertation in partial fulfillment of the requirements for the degree Doktor der Naturwissenschaften (Dr. rer. nat.) for submission to the Faculty of Electrical Engineering and Computer Science University of Kassel, Germany Kassel 2012 Dipl.-Inf. Michael Wagner Advisors: Prof. Dr. Kurt Geihs, Universität Kassel Prof. Dr. Christian Becker, Universität Mannheim Additional Doctoral Committee Members: Prof. Dr. Klaus David, Universität Kassel Prof. Dr. Arno Wacker, Universität Kassel Date of Defense: 4 March 2013 To Anke and Jakob Contents List of Figures v List of Tables vii List of Listings ix List of Algorithms xi List of Abbreviations xiii Abstract xv Zusammenfassung xvii Acknowledgements xix I Foundations 1 1 Introduction 3 1.1 Motivation . 3 1.2 Problem Statement . 6 1.3 Solution Approach . 8 1.4 Contribution . 10 1.5 Structure of the Thesis . 10 2 Ubiquitous Computing Systems 13 2.1 Ubiquitous Computing . 13 2.2 Context . 16 2.2.1 Context Awareness . 16 2.2.2 Characteristics of Context Data . 17 2.2.3 Quality of Context . 18 2.2.4 Cost of Context . 23 2.3 Self-Adaptation . 24 2.3.1 Adaptation Mechanisms . 24 2.3.2 Adaptation Policies . 25 3 Logic and Ontologies 27 3.1 Proof Methods for Propositional Logic . 28 3.1.1 Analytic Tableaux for Propositional Logic . 28 3.1.2 Resolution for Propositional Logic . 32 i 3.2 Proof Methods for First-Order Logic . 33 3.2.1 Resolution for First-Order Logic . 33 3.2.2 Analytic Tableaux for First-Order Logic . 36 3.3 Ontologies . 37 3.3.1 General Discussions on Ontologies .
    [Show full text]