Genetic Architecture of the Shell Characteristics in the Marine Snail Littorina Saxatilis

Total Page:16

File Type:pdf, Size:1020Kb

Genetic Architecture of the Shell Characteristics in the Marine Snail Littorina Saxatilis Genetic architecture of the shell characteristics in the marine snail Littorina saxatilis By: Pragya Chaube A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy The University of Sheffield Faculty of Science Department of Animals & Plant Sciences October 2018 2 Abstract Speciation is a key process underlying biodiversity. This process is facilitated by local adaptation, when divergent selection overcomes gene flow, resulting in the accumulation of reproductive barriers. Theory suggests that this accumulation is strongly dependent on the genetic architecture of the traits underlying local adaptation. The aim of this project was to investigate the genetic architecture of locally adaptive traits in the marine snail Littorina saxatilis. This marine snail (Littorina saxatilis) is an excellent model to study speciation and local adaptation. Two diverging ecotypes live a few metres apart in distinct habitats and face divergent selection pressures dominated by crab predation and wave action. The ecotypes have evolved traits to adapt locally that make them behaviourally and structurally distinct. The most observable differences are seen in the shell size, shape, colours and patterns. Despite the differences, the two ecotypes meet in narrow contact zones and hybridize. Intermediates between the two parental ecotypes are observed in a crab-wave environmental gradient across the hybrid zones. This situation provides an excellent opportunity to exploit the power of association mapping in the hybrid zone to elucidate the genetic architectures of the locally adaptive traits. However, a prerequisite for the application of evolutionary genetic approaches is a genomic toolbox. In Chapters 2 and 3, I describe the construction of a transcriptome assembly and high-density linkage map for this species. These genetic resources were utilized in the subsequent analyses and other studies in this system. In Chapter 4, I investigate the genetic architecture of the adaptive shell traits. Theory suggests that the ground colours or banding patterns possess Mendelian inheritance and may respond directly to selection or may be linked with genes that respond to the physical environment and may thus be affected by selection. Shell morphometric characters (size and shape) may have a more complex pattern of inheritance and tend to be responsive to the environmental conditions. Thus, shell characteristics are excellent to study divergent selection pressures and local adaptation while making it imperative to understand their underlying genetic architecture. In the current study, we applied association analysis to a single hybrid zone in Sweden to elucidate the genes underlying six shell phenotypic traits (size, shape, banding pattern, ground colours – beige, black and dark beige). We sampled individuals from the hybrid zone and implemented targeted capture-sequencing to obtain genotypic data. We identified loci associated with the black and beige ground colours and banding pattern of the shell. No significant associations with the shell shape and size were found which may suggest polygenic and complex architecture, consistent with the theoretical expectation. In addition, our analysis suggests a possible role for chromosomal inversion underlying locally adaptive traits. This thesis addressed longstanding questions regarding the genetic architecture of the adaptive shell traits in this organism and provides directions for the future follow-up studies. The genetic resources described in this thesis will assist the future studies that may address a wide-range of evolutionary questions in this species. 3 Acknowledgements This project and thesis are a product of collaboration and team-work of so many people. I would like to thank everybody who were a part of this and in some way or other contributed to the thesis. First and foremost, I would like to thank my supervisor Prof. Roger K. Butlin for taking me onboard and mentoring and supporting me throughout this project. This project would not have been what it is without his invaluable suggestions and supervision. I would also like to thank the other members of the team who were involved in the conceiving of this project and data collection and/or provided their expertise on different aspects of the analyses, especially Anja Westram, Rui Faria, Tomas Larsson, Marina Panova and Prof. Kerstin Johannesson. (Pardon me for I may be missing a few names here, but I am deeply grateful to everybody who in any way supported this project) I would like to thank the past and present members of the Butlin lab, who have supported or helped me in this journey. And I would like to extend my acknowledgement to the members of Littorina team based at the University of Gothenburg, for you all have been wonderful. I am deeply grateful to the University of Sheffield and the University of Sheffield Vice- Chancellor’s scholarship to provide me this excellent opportunity. And a big cheer goes to the University of Sheffield HPC team and Dr. Victor Soria-Carrasco, for maintaining excellent computational resources and repositories. Your excellent efforts made life a lot easier. I would extend my acknowledgement to Dr. Alison Wright and Dr. Angus Davison for agreeing to be my examiners and providing helpful comments to improve this thesis. Dr. Lucy Cox and Mr. John Glenn, I am very, very thankful to you both. You helped me through one of the most crucial and difficult periods of this journey. I am very thankful to all my friends here in Sheffield, UK, India and the rest of the world, for their immense support, love and patience with me. Especially, Shivani, Sneha, Amruta, Neerada and Liwen. You ladies are special; you inspire me and bring me immense joy. Thank you for being my friends! A name that deserves special mention is Mr. Romain Villoutreix. Thank you for being there when I needed you and all the discussions. Your optimism and faith gave me strength. And lastly, I would like to thank my parents and my brother, for their constant encouragement, unconditional love, steadfast support and unwavering faith in me. I am what I am because of you guys. 4 Contents Abstract ..................................................................................................................................... 3 Acknowledgements .................................................................................................................. 4 List of Papers ............................................................................................................................ 6 List of Figures ........................................................................................................................... 7 List of Tables ............................................................................................................................ 8 Chapter 1: General Introduction ......................................................................................... 10 Chapter 2: Transcriptomics .................................................................................................. 39 Chapter 3: Linkage maps ...................................................................................................... 61 Chapter 4: Association mapping .......................................................................................... 94 Chapter 5: General Discussion ........................................................................................... 119 Appendix I ............................................................................................................................ 123 Appendix II ........................................................................................................................... 124 Appendix III ......................................................................................................................... 125 Glossary ................................................................................................................................ 127 5 List of Papers Elements of the work done in this thesis have been published in the following papers, 1. Westram, A.M., Rafajlović, M., Chaube, P., Faria, R., Larsson, T., Panova, M., Ravinet, M., Blomberg, A., Mehlig, B., Johannesson, K., Butlin, R. (2018). Clines on the seashore: the genomic architecture underlying rapid divergence in the face of gene flow. Evolution Letters; 2(4): 297-309. The genetic maps constructed in Chapter 3 were used to place the loci under divergent selection on different linkage groups in the genome and identify genomic blocks of tightly linked divergent loci. The genotype-phenotype association analysis in Chapter 4 was also published. This analysis allowed to check if the genotype associated with adaptive phenotypes is also linked to the genomic regions under divergent selection. Genetic maps were further utilized to partition chromosomes to estimate the contribution of heritability of the detected genomic blocks to complex adaptive phenotypes. 2. Faria, R., Chaube, P., Morales, H., Larsson, T., Lemmon, A., Lemmon, E., Rafajlovic, M., Panova, M., Ravinet, M., Johannesson, K., Westram, A., Butlin, R. (2019). Multiple chromosomal rearrangements in a hybrid zone between Littorina saxatilis ecotypes. Molecular Ecology. Accepted author manuscript. The genetic maps (Chapter 3) were used to place the clusters of high linkage disequilibrium (genomic rearrangements) on different linkage groups in the genome. The maps found further utilization in placing
Recommended publications
  • Download Full Article 190.3KB .Pdf File
    Memoirs of" the Museum of Victoria 56(2):43 1-433 (1997) 28 February 1997 https://doi.org/10.24199/j.mmv.1997.56.34 A CONSERVATION PROGRAMME FOR THE PARTULID TREE SNAILS OF THE PACIFIC REGION Paul Pearce-Kelly. Dave Clarke, Craig Walker and Paul Atkin Invertebrate Conservation Centre, Zoological Society of London. Regent's Park. London NW1 4RY, UK Abstract Pearce-Kelly, P., Clarke, D., Walker, C. and Atkin, P., 1 997. A conservation programme for - the partulid tree snails of the Pacific region. Memoirs ofthe Museum of Victoria 56(2): 43 1 433. Throughout the Pacific numerous endemic mollusc species have either become extinct in the wild or are currently facing the threat of extinction as a result of introduction of the predatory snail Euglandina rosea and the New Guinea flatworm Platyclemus manokwari. Without determined conservation efforts, including the establishment of ex situ breeding programmes, much of the region's endemic snail fauna will be lost. Since 1986 a collabor- ative international conservation programme has been in place for partulid tree snails. The participating institutions currently maintain a total of 33 taxa in culture (comprising > 12 000 snails). The conservation status of all 1 17 partulid species has been assessed usingthe Conservation Action Management Plan (CAMP) process. Target ex situ population sizes required to maintain 90% of starting heterozygosity over 100 years have been calculated using the analytical model programme CAPACITY (Pearce-Kelly et al., 1994) The genetic management requirements of the breeding programme have necessitated the development of a colony management computer database enabling demographic management and analy- sis of the populations.
    [Show full text]
  • EAZA Best Practice Guidelines for Polynesian Tree Snails (Partula Spp)
    EAZA Best Practice Guidelines for Polynesian tree snails (Partula spp) Edition 1.0 Publication date June 2019 Partula Snail EEP Species Committee Editor Dave Clarke, ZSL 2019_Partula sp_EAZA Best Practice Guidelines EAZA Best Practice Guidelines for Polynesian tree snails (Partula spp) Terrestrial Invertebrate Taxon Advisory Group TITAG Chair: Mark Bushell, Bristol Zoo Gardens, Clifton, Bristol, BS8 3HA [email protected] TITAG Vice-Chairs: Tamás Papp, Chester Zoo, Moston Rd, Upton, Chester CH2 1EU. [email protected] & Vítek Lukáš, Zoo Praha, U Trojského zámku 3/120, 171 00 Praha 7, Czechia. [email protected] EEP Co-ordinator: Paul Pearce-Kelly, ZSL [email protected] EEP Studbook keeper: Sam Aberdeen, ZSL [email protected] Edition 1.0 Publication date June 2019 (based on global Management Guidelines document Nov 2007 eds Pearce-Kelly, Blake, Goellner & Snider) Editor Dave Clarke, ZSL [email protected] Citation - Clarke, D., EAZA Best Practice Guidelines for Partula snails. EAZA 2019 We acknowledge the invaluable input of all Partula snail EEP Species Committee members, SSP colleagues and global participating Partula collections. EAZA Best Practice Guidelines disclaimer Copyright (June 2019) by EAZA Executive Office, Amsterdam. All rights reserved. No part of this publication may be reproduced in hard copy, machine-readable or other forms without advance written permission from the European Association of Zoos and Aquaria (EAZA). Members of the European Association of Zoos and Aquaria (EAZA) may copy this information for their own use as needed. The information contained in these EAZA Best Practice Guidelines has been obtained from numerous sources believed to be reliable.
    [Show full text]
  • Mild Osmotic Stress in Intertidal Gastropods Littorina Saxatilis and Littorina Obtusata (Mollusca: Caenogastropoda): a Proteomic Analysis
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Saint PetersburgFULL State University COMMUNICATION PHYSIOLOGY Mild osmotic stress in intertidal gastropods Littorina saxatilis and Littorina obtusata (Mollusca: Caenogastropoda): a proteomic analysis Olga Muraeva1, Arina Maltseva1, Marina Varfolomeeva1, Natalia Mikhailova1,2, and Andrey Granovitch1 1 Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab. 7–9, St. Petersburg, 199034, Russian Federation; 2 Center of Cell Technologies, Institute of Cytology RAS, Tikhoretsky prospect, 4, St. Petersburg, 194064, Russian Federation Address correspondence and requests for materials to Arina Maltseva, [email protected] Abstract Salinity is a crucial abiotic environmental factor for marine animals, affecting their physiology and geographic ranges. Deviation of environmental salin- ity from the organismal optimum range results in an osmotic stress in osmo- conformers, which keep their fluids isotonic to the environment. The ability to overcome such stress is critical for animals inhabiting areas with considerable salinity variation, such as intertidal areas. In this study, we compared the reac- tion to mild water freshening (from 24 to 14 ‰) in two related species of inter- tidal snails, Littorina saxatilis and L. obtusata, with respect to several aspects: survival, behavior and proteomic changes. Among these species, L. saxatilis is Citation: Muraeva, O., Maltseva, A., Varfolomeeva, M., Mikhailova, N., more tolerant to low salinity and survives in estuaries. We found out that the Granovitch, A. 2017. Mild osmotic response of these species was much milder (with no mortality or isolation re- stress in intertidal gastropods Littorina saxatilis and Littorina obtusata (Mollusca: action observed) and involved weaker proteomic changes than during acute Caenogastropoda): a proteomic analysis.
    [Show full text]
  • Status of Tree Snails (Gastropoda: Partulidae) on Guam, with a Resurvey of Sites Studied by H
    Pacific Science (1992), vol. 46, no. 1: 77-85 © 1992 by University of Hawaii Press. All rights reserved Status of Tree Snails (Gastropoda: Partulidae) on Guam, with a Resurvey of Sites Studied by H. E. Crampton in 19201 DAVID R. HOPPER 2 AND BARRY D. SMITH 2 ABSTRACT: Tree snails of the family Partulidae have declined on Guam since World War II. One species, indigenous to the western Pacific, Partu/a radio/ata, is still locally common along stream courses in southern areas of the island. The Mariana Island endemic Samoanajragilis is present but not found in abundance anywhere on Guam. Partu/a gibba, another Mariana endemic, is currently known only from one isolated coastal valley along the northwestern coast, and appears to be in a state ofdecline. The Guam endemic Partu/a sa/ifana was not found in areas where it had been previously collected by earlier researchers, and is thus believed to be extinct. The decline and extinction ofthese snails are related to human activities. The single most important factor is likely predation by snails that were introduced as biological control agents for the giant African snail, Achatina ju/ica. The current, most serious threat is probably the introduced flatworm P/atydemus manokwari. This flatworm is also the likely cause of extinctions ofother native and introduced gastropods on Guam and may be the most important threat to the Mariana Partulidae. TREE SNAILS OF TROPICAL PACIFIC islands have 1970). With the exception of the partulids of been of interest since early exploration of the Society Islands, all are lacking study.
    [Show full text]
  • Euglandina Rosea Global Invasive
    FULL ACCOUNT FOR: Euglandina rosea Euglandina rosea System: Terrestrial Kingdom Phylum Class Order Family Animalia Mollusca Gastropoda Stylommatophora Spiraxidae Common name Rosige Wolfsschnecke (German), rosy wolf snail (English), cannibal snail (English) Synonym Similar species Summary The carnivorous rosy wolfsnail Euglandina rosea was introduced to Indian and Pacific Ocean Islands from the 1950s onwards as a biological control agent for the giant African snail (Achatina fulica). E. rosea is not host specific meaning that native molluscs species are at risk of expatriatioin or even extinction if this mollusc-eating snail is introduced. Partulid tree snails of the French Polynesian Islands were particularly affected; having evolved separately from each other in isolated valleys, many Partulid tree snails have been lost and today almost all the survivors exist only in zoos. view this species on IUCN Red List Species Description The shell is large (up to 76 mm in height, 27.5 mm in diameter), thick and has prominent growth lines (University of Florida 2009). The shape of the shell is fusiform with a narrow ovate-lunate aperture and a truncated columella; typically, the shell color is brownish-pink (University of Florida 2009). Adult Euglandina grow from about seven to 10 cm long (Clifford et al. 2003). Habitat Description Euglandina rosea is usually found singly in hardwood forests, roadsides and urban gardens in its native range in Florida (Hubricht 1985, University of Florida 2009). Reproduction Euglandina rosea is a cross-fertilising egg-laying hermaphrodite. Chiu and Chou (1962, in Univeristy of Florida 2009) gave details of the biology of Euglandina in Taiwan. Individuals live up to 24 months.
    [Show full text]
  • Rough Periwinkles at Emersion Presence Or Absence of Response in Gene Expression of Aspartate Aminotransferase?
    Rough periwinkles at emersion Presence or absence of response in gene expression of aspartate aminotransferase? CH-14 Cecilia Helmerson Degree project for Master of Science (Two Years) in Marine Sciences and Biology Degree course in Marine ecology 45 hec Spring and Autumn 2014 Department of Biological and Environmental Sciences University of Gothenburg Examiner: Kerstin Johannesson Department of Biological and Environmental Sciences University of Gothenburg Supervisors: Marina Panova and Olga Ortega Martinez Department of Biological and Environmental Sciences University of Gothenburg Illustration: Cecilia Helmerson 2014 Index ABSTRACT ............................................................................................................................................................ 4 1. INTRODUCTION ............................................................................................................................................. 5 2. MATERIALS AND METHODS ................................................................................................................... 7 2.1 SAMPLING AND ACCLIMATION ....................................................................................................................................... 7 2.2 EMERSION EXPERIMENT .................................................................................................................................................. 8 2.3 DISSECTION AND EXTRACTION ..................................................................................................................................
    [Show full text]
  • Littorina Saxatilis Olivi and Littorina Neritoides L
    HELGOLANDER MEERESUNTERSUCHUNGEN I Helgol~nder Meeresunters. 44, 125-134 (1990) Heat production in Littorina saxatilis Olivi and Littorina neritoides L. (Gastropoda: Prosobranchia) during an experimental exposure to air Inge Kronberg Zoologisches Institut der Christian-Albrechts-Universit~t, Abt. Marine Okologie und Systematik; Olshausenstrai~e 40-60, D-2300 Kiel, Federal Republic of Germany ABSTRACT: The adaptation of littorinid molluscs to prolonged aerial exposure was investigated by the determination of heat production. I_ittorina saxatilis, inhabiting the upper euhttoral, reached a maximum metabolic activity during submersion (heat production: 3.26x 10-3J S-l(gadw)-1. On the first three days of desiccation, the heat production was continuously reduced to 40% of the submersed value. A prolonged aerial exposure was lethal for this species. In the supralittoral L. neritoides, three stages of energy metabohsm could be observed: an intermediate heat production during submersion {1.97 x I0-3j s-l{gaaw)-1), an increased metabohsm during the first hour of aerial exposure (heat production 204 % of submersed value), and a minimal metabolism (39% of the submersed value and 19 % of maximum value) during the following days and weeks of desiccation. Recovery depended on water salinity; L. saxatilis proved to be less euryhaline than L. neritoides. Thus, the metabolic adaptations correlate with the level of littoral habitat; inactivity combined with a drastically reduced energy consumption is a metabolically economic way to survive in periodically dry environments. INTRODUCTION Littorinid snails are characteristic molluscan inhabitants of rocky shores worldwide and mark the upper limit of marine influence. They live in a habitat of unpredictable change in moisture, salinity and temperature (Kronberg, 1988).
    [Show full text]
  • Number of Species of Vascular Plants, Which We Had Anticipated Would Be Higher
    PagelS4 CHAPTER 5. RESULTS A! TAXONOMIC GROUPS OF INTRODUCED SPECIES In all,we documented 212species ofintroduced organisms inthe Estuary. Thenumbers of speciesper taxonomic group are presented in Figures 2 and3 at lowerand higher levels of aggregation.Invertebrates arethe most common major groupof introducedspecies, accounting for nearly 70'/o of the total, followed by vertebratesand plants with respectivelyabout 15 and 12 percent of thetotaL The mostabundant invertebrates were the arthropods 6'to of invertebrates! followed by molluscs0'10!, annelids 4'/o! andcnidarians 2'fo!. Nearly all thevertebrates were fish,and most of theplants were vascular plants, which were about evenly split between monocots and dicots. Thesenumbers are generally in accordwith our expectations prior to this study,based upon our knowledge of theEstuary's biota and consideration of other regionalreviews of introduced marine and aquatic species, with the exception ofthe numberof species ofvascular plants, which we had anticipated would be higher. Thisresult is in partdue to ourapplication of relatively more restrictive criteria for theinclusion of marsh-edge plants, as discussed inChapter 2. Pagel55 Results For example,a studyof introduced speciesin theGreat Lakes using less restrictive criteriaproduced a listof 139introduced speciesof which59 species 2%!were vascular plants Mills et al., 1993!, and a similarstudy of the HudsonRiver produced a listof 154 introducedspecies with 97 3%! vascular plants Mills et al., 1995!. As suggested inthe "Methods"section, adding the plants in Appendix1 essentiaByterrestrial plants that havebeen reported in orat theedge of the tidaIwaters of theEstuary! to thelist of organismsin Table 1 producesa list of introducedspecies that can more reasonably be comparedto the Great Lakes and Hudson Riverlists, Thisexpanded list for the Estuary contains 240 introducedspecies of which49 0%!are vascular plants.
    [Show full text]
  • Partulid Snails, Their Collectors, and a Prodigious Dynasty of French Naturalists Harry G
    Page 10 Vol. 40, No. 1 Partulid snails, their collectors, and a prodigious dynasty of French naturalists Harry G. Lee The Acquisition Phase; the “Adanson Family Collection” The peripatetic Alain Allary, noted French shell-dealer and frequent participant in COA Convention bourses, and I go back quite some time. I recall getting some very interesting, both biologically and historically, shells from him as far back as the Panama City (1993) event, but our conversations and transactions have unfortunately been relatively few and far-between. Consequently I was pleasantly surprised at the recent Port Canaveral bourse when he showed me a sizable sample of curatorially time-worn tropical land snails. Alain informed me that they were from a collection belonging to the extended family of pioneer malacologist Michel Adanson. He went on to say the shells began to accumulate in the Eighteenth Century and increased in number through the efforts of certain members of later generations. Fascinated as much by the fame and antiquity of the material as my need to know more about Partula snails, obviously the dominant group in the assortment, I happily purchased the entirety of his offering. The state of conservation of this little collection certainly warrants more than passing Fig. 1 The original display with the shells glued to the top of the box and comment. Firstly, Alain found this material in the labels attached inside. The label under the shell provides the name and a somewhat less well-curated condition than I locality while the additional label(s) inside the box expand the information. did.
    [Show full text]
  • Survival of Partula Species on Moorea and Tahiti
    1 2 DR. AMANDA HAPONSKI (Orcid ID : 0000-0001-5521-7125) 3 4 5 Article type : Original Article 6 7 8 Article Type: Original Research 9 10 Deconstructing an infamous extinction crisis: survival of Partula species on 11 Moorea and Tahiti 12 13 Running head: Moorean and Tahitian Partula genomic patterns 14 15 Amanda E. Haponski*, Taehwan Lee, Diarmaid Ó Foighil 16 17 Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, Ann 18 Arbor, MI 48109 USA. 19 20 *Corresponding author 21 22 E-mail addresses: 23 [email protected] 24 [email protected] 25 [email protected] 26 27 28 Abstract 29 30 Eleven of eighteen Author Manuscript Society Island Partula species endemic to the Windward Island subgroup (Moorea and 31 Tahiti) have been extirpated by an ill-advised biological control program. The conservation status of this This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/EVA.12778 This article is protected by copyright. All rights reserved Haponski et al. 2 32 critically endangered tree snail radiation is of considerable import, but is clouded by taxonomic 33 uncertainty due to the extensive lack of congruence among species designations, diagnostic morphologies 34 and molecular markers. Using a combination of museum, captive, and remnant wild snails, we obtained 35 the first high-resolution nuclear genomic perspective of the evolutionary relationships and survival of 36 fourteen Windward Island Partula species, totaling 93 specimens.
    [Show full text]
  • Resolving the 150 Year Debate Over the Ecological History of the Common Periwinkle Snail, Littorina Littorea, in Northeast North America
    University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Spring 2007 Resolving the 150 year debate over the ecological history of the common periwinkle snail, Littorina littorea, in northeast North America April M H Blakeslee University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation Blakeslee, April M H, "Resolving the 150 year debate over the ecological history of the common periwinkle snail, Littorina littorea, in northeast North America" (2007). Doctoral Dissertations. 364. https://scholars.unh.edu/dissertation/364 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. RESOLVING THE 150 YEAR DEBATE OVER THE ECOLOGICAL HISTORY OF THE COMMON PERIWINKLE SNAIL, Littorina littorea, IN NORTHEAST NORTH AMERICA. BY APRIL M.H. BLAKESLEE B.A., Boston University, 1998 M.A., Boston University, 2001 DISSERTATION Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Zoology May, 2007 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: 3260587 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted.
    [Show full text]
  • Distribution Patterns of Marine Bird Digenean Larvae in Periwinkles Along the Southern Coast of the Barents Sea
    DISEASES OF AQUATIC ORGANISMS Vol. 37: 221-230,1999 Published September 14 Dis Aquat Org Distribution patterns of marine bird digenean larvae in periwinkles along the southern coast of the Barents Sea Kirill V. Galaktionovl, Jan Ove ~ustnes~l* 'Zoological Institute of the Russian Academy of Sciences, White Sea Biological Station, Universitetskaja nab., 1, St Petersburg, 199034, Russia 'Norwegian Institute for Nature Research, Department of Arctic Ecology, The Polar Environmental Centre. 9296 Tromse, Norway ABSTRACT: An important component of the parasite fauna of seabirds in arctic regions are the flukes (Digena).Different species of digeneans have life cycles whch may consist of 1 intermediate host and no free-living larval stages, 2 intermediate hosts and 1 free-living stage, or 2 intermediate hosts and 2 free-living larval stages. This study examined the distribution of such parasites in the intertidal zones of the southern coast of the Barents Sea (northwestern Russia and northern Norway) by investigating 2 species of periwinkles (Littorina saxatilis and L. obtusata) which are intermediate hosts of many species of digeneans. A total of 26020 snails from 134 sampling stations were collected. The study area was divided into 5 regions, and the number of species, frequency of occurrence and prevalence of different digenean species and groups of species (depending on life cycle complexity) were compared among these regions, statistically controlling for environmental exposure. We found 14 species of digeneans, of which 13 have marine birds as final hosts. The number of species per sampling station increased westwards, and was hlgher on the Norwegian coast than on the Russian coast.
    [Show full text]