Distribution Patterns of Marine Bird Digenean Larvae in Periwinkles Along the Southern Coast of the Barents Sea

Total Page:16

File Type:pdf, Size:1020Kb

Distribution Patterns of Marine Bird Digenean Larvae in Periwinkles Along the Southern Coast of the Barents Sea DISEASES OF AQUATIC ORGANISMS Vol. 37: 221-230,1999 Published September 14 Dis Aquat Org Distribution patterns of marine bird digenean larvae in periwinkles along the southern coast of the Barents Sea Kirill V. Galaktionovl, Jan Ove ~ustnes~l* 'Zoological Institute of the Russian Academy of Sciences, White Sea Biological Station, Universitetskaja nab., 1, St Petersburg, 199034, Russia 'Norwegian Institute for Nature Research, Department of Arctic Ecology, The Polar Environmental Centre. 9296 Tromse, Norway ABSTRACT: An important component of the parasite fauna of seabirds in arctic regions are the flukes (Digena).Different species of digeneans have life cycles whch may consist of 1 intermediate host and no free-living larval stages, 2 intermediate hosts and 1 free-living stage, or 2 intermediate hosts and 2 free-living larval stages. This study examined the distribution of such parasites in the intertidal zones of the southern coast of the Barents Sea (northwestern Russia and northern Norway) by investigating 2 species of periwinkles (Littorina saxatilis and L. obtusata) which are intermediate hosts of many species of digeneans. A total of 26020 snails from 134 sampling stations were collected. The study area was divided into 5 regions, and the number of species, frequency of occurrence and prevalence of different digenean species and groups of species (depending on life cycle complexity) were compared among these regions, statistically controlling for environmental exposure. We found 14 species of digeneans, of which 13 have marine birds as final hosts. The number of species per sampling station increased westwards, and was hlgher on the Norwegian coast than on the Russian coast. The frequency of occur- rence of digeneans with more than 1 intermediate host increased westwards, making up a larger pro- portion of the digeneans among infected snails. This was significant in L. saxatilis. The prevalence of different species showed the same pattern, and significantly more snails of both species were infected with bgeneans with complicated Life cycles in the western regions. In L. saxatilis, environmental expo- sure had a statistically significant effect on the distribution of the most common digenean species This was less obvious in L. obtusata. The causes of changing species composition between regions are prob- ably (1) the harsh climate in the eastern part of the study area reducing the probability of successful transmission of digeneans with complicated life cycles, and (2) the distribution of different final hosts. KEY WORDS: Seabirds - Parasites - Trematoda . Digenea . Barents Sea. Distribution INTRODUCTION constitute an important part of the seabird parasite fauna in the area (Belpolskaya 1952, Galaktionov 1995, The distributions of seabird parasites are not well 1996). known in arctic regions. In the Barents Sea area Most seabird digeneans have complicated life cycles (northwestern Russia and northern Norway) there with 1 or more intermediate hosts. This should be have been no studies of the broad-scale geographical taken into account in analyses of the geographical dis- variation in the distribution of such organisms, but tribution of helminths (Hoberg 1996, 1997).A record of small-scale studies have shown that flukes (Digenea) adult digeneans in individual seabirds does not neces- sarily mean that completion of the life cycle of the spe- cies is possible at the location where the bird was cap- 'Addressee for correspondence. tured, since the bird may have become infected in a E-mail: [email protected] different area. More reliable information about the dis- O Inter-Research 1999 Resale of full article not permitted 222 Dis Aquat Org 37: 221-230, 1999 tribution of the digenean fauna may be gained from the different regions, controlling statistically for envi- examining the larval composition of the intermediate ronmental exposure. hosts, particularly the first host, which are intertidal and upper-subtidal gastropod molluscs such as peri- winkles Littorina spp. These molluscs are distributed MATERIALS AND METHODS widely along the intertidal zone of northern seas and play an important role as the first intermediate host for The coastline investigated stretched from Novaya many common seabird digeneans (Chubrick 1966, Zemlya to Tromsa, and included the White Sea (Fig. 1). James 1968, 1969, Werding 1969, Podlipajev 1979, This coast has a very harsh climate, especially in the Lauckner 1980, 1984a, 1987, Irwin 1983, Matthews et arctic eastern parts (e.g. Loeng 1991, Andalsvik & al. 1985, Galaktionov & Dobrovolskij 1986, Kristoffer- Loeng 1991). We divided the coastline into 5 different sen 1991, Galaktionov 1993). regions, which could be naturally distinguished. The most typical life cycles of digeneans involve 2 Region A was Novaya Zemlya and Vaygatch Island. intermediate hosts. There may be 1 (cercaria) or 2 Region B was the White Sea and the tip of the Kanin (miracidia and cercaria) free-living stages in such life peninsula. Region C was the eastern Kola coast to the cycles. A genus with 2 free-living stages commonly Kola fjord (eastern Murman). Region D was the found in the Barents Sea is Himasthla, while digeneans with 1 free-living larval stage are Microphallus similis, Cryptocotyle lingua, and the genus Renicola. The second intermediate host may be omitted from the life cycle; the cercaria then encysts in the environment (e.g. the genus Noto- 7 cotylus). In some cases the metacer- canae mature inside sporocysts in the molluscan host that combine, to some extent, the function of both the first and the second intermediate hosts. Some of these life cycles are devoid of free-swimming larval stages (mira- cidia and cercaria) (Galaktionov 1993, 1996).A common group of digeneans with such life cycles are the micro- phallids of the 'pygmaeus' group (MicrophaLlus pygmaeus, M. pirifor- mes, etc.), which are common in the Barents Sea region (Chubrick 1966, Podlipajev 1979, Galaktionov & Do- brovolskij 1986, Galaktionov 1993). Our aim was to examine the distrib- ution of seabird digeneans with dif- ferent life cycle complexity in 2 spe- cies of periwinkles (Littorina saxatills and L. obtusata),along a climatic gra- dient on the southern coast of the Bar- ents Sea. The area stretched from the arctic Novaya Zemlya in the east to the milder coastal area around Tromse in the west (Fig. 1). We divided the area into 5 naturally sepa- rated regions (Fig. l) and compared the frequency Of Occurrence and Fig. 1. (a) Division of the study area into different regions (A to E) (see 'Materials prevalence of digenean species with and methods'), and (b) the distribution of sampling stations along the southern varying life cycle complexity among Barents Sea Coast Galaktionov & Bustnes: Digeneans in the Barents Sea 223 western Murman and Finnmark County Table 1. Sample sizes of periwinkles collected in different regions on the east of the Porsanger fjord. Region E was southern coast of the Barents Sea western Finnmark and Troms Counties (Fig. l). Species Region No. of No. of Mean no. SE Min Max. The areas surrounding Novaya Zemlya - locations individuals per site and Vaygatch have an arctic climate with LI ttonna sasatilis very low temperatures during the whole A 4 4 7357 167.2 11.5 40 344 year. Sea ice dominates from October to B 29 5240 180.7 30.2 50 785 June, and intertidal zones are covered by C 14 2846 203.3 26.4 98 450 ice (Loeng & Vinje 1979, Vinje & Kvam- D 27 3461 128.2 9.5 60 292 E 20 1950 97.5 4.1 40 130 bekk 1991). The climate in the White Sea Sum 134 20854 is milder, but the sea is frozen in winter L. obtusata (December to May) since the water in this B 8 1406 175.5 67.4 28 502 region has a low salinity (Lsnne et al. C 3 530 176.7 76.7 100 330 1997). The eastern Kola coast is usually D 14 1475 105.4 12.5 75 264 not frozen in winter. There are no large E 18 1755 97.5 3.0 48 110 Sum 43 5166 fjords in this region, and the intertidal zones are thus more exposed to wave action (e.g.Andalsvik & Loeng 1991).The western Murman and eastern Finnmark have more upper-mid intertidal zone (Golikov 1995).In regions B, fjords and the climate is milder, influenced by the C, D and E, L. obtusata is common in the middle and North Atlantic and coastal currents. Nevertheless the lower levels of the seaweed fronds (Golikov 1995). prevalent wind directions are more easterly than they Molluscs were collected by hand at low tide. The are further west. Troms and western Finnmark are sampling was done in the same manner and at the dominated by westerly winds, and are relatively mild same time of year (August and September) at all sites. compared to the other regions (Loeng 1991, Loeng et In this season the infestation of intertidal snails by al. 1992, Lernne et al. 1997). digenean larvae in arctic areas is at its highest The collection of the material was carried out from (Chubrick 1966, Galaktionov & Dobrovolskij 1986, 1978 to 1990 in Russia, and in 1992 and 1994 in Galaktionov 1992). Snails were dissected under a Norway. We collected totally 26020 snails of 2 species stereomicroscope, and the digenean larvae were iden- (Littorina saxatilis and L. obtusata) from 134 locations tified in vivo. For the analyses we recorded the pres- (Table 1). The sampling stations were evenly distrib- ence or absence of different digenean species in each uted along the coast in Norway (Fig. 1).In Russia, the mollusc. Double infections made up a very small pro- stations chosen were more clustered (Fig. 1) because portion (usually less than 1 %) of the infected snails, they were remote and access was much more difficult. and were therefore excluded from the analyses.
Recommended publications
  • A Review on Parasitic Castration in Veterinary Parasitology
    Journal of Entomology and Zoology Studies 2018; 6(1): 635-639 E-ISSN: 2320-7078 P-ISSN: 2349-6800 A review on parasitic castration in veterinary JEZS 2018; 6(1): 635-639 © 2018 JEZS parasitology Received: 27-11-2017 Accepted: 28-12-2017 S Sivajothi S Sivajothi and B Sudhakara Reddy Assistant Professor, Department of Veterinary Abstract Parasitology, College of Veterinary Science, Proddatur, Internal and external parasites are the most common organisms present in the different animals including Sri Venkateswara Veterinary humans. Some of the parasites are specific to individual species while others may be transmissible to University, Andhra Pradesh humans as zoonotic in nature. Impairment of the health condition of the animals leads to huge economic India loss interns of productivity and reproduction. Parasitic diseases in livestock can be controlled by geographical location, type of host and their manage mental practices. Conventional methods of B Sudhakara Reddy controlling parasites use synthetic chemotherapeutic drugs. In a safe manner, control of the animal Assistant Professor, parasites can be done by the biological control which means maintenance of natural enemies which Faculty of Veterinary Medicine, maintain a parasitic population at the lower level. Recently, parasitic castration has a role in the control Department of Veterinary of the parasitic diseases. In this, with help of different parasites, reproduction of the other parasites which Clinical Complex, College of are harmful to the animals can be reduced. This would be a case of direct parasitic castration by feeding Veterinary Science, Proddatur, on gonads of the hosts or indirectly, diverting the host energy from gonad development.
    [Show full text]
  • Mild Osmotic Stress in Intertidal Gastropods Littorina Saxatilis and Littorina Obtusata (Mollusca: Caenogastropoda): a Proteomic Analysis
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Saint PetersburgFULL State University COMMUNICATION PHYSIOLOGY Mild osmotic stress in intertidal gastropods Littorina saxatilis and Littorina obtusata (Mollusca: Caenogastropoda): a proteomic analysis Olga Muraeva1, Arina Maltseva1, Marina Varfolomeeva1, Natalia Mikhailova1,2, and Andrey Granovitch1 1 Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab. 7–9, St. Petersburg, 199034, Russian Federation; 2 Center of Cell Technologies, Institute of Cytology RAS, Tikhoretsky prospect, 4, St. Petersburg, 194064, Russian Federation Address correspondence and requests for materials to Arina Maltseva, [email protected] Abstract Salinity is a crucial abiotic environmental factor for marine animals, affecting their physiology and geographic ranges. Deviation of environmental salin- ity from the organismal optimum range results in an osmotic stress in osmo- conformers, which keep their fluids isotonic to the environment. The ability to overcome such stress is critical for animals inhabiting areas with considerable salinity variation, such as intertidal areas. In this study, we compared the reac- tion to mild water freshening (from 24 to 14 ‰) in two related species of inter- tidal snails, Littorina saxatilis and L. obtusata, with respect to several aspects: survival, behavior and proteomic changes. Among these species, L. saxatilis is Citation: Muraeva, O., Maltseva, A., Varfolomeeva, M., Mikhailova, N., more tolerant to low salinity and survives in estuaries. We found out that the Granovitch, A. 2017. Mild osmotic response of these species was much milder (with no mortality or isolation re- stress in intertidal gastropods Littorina saxatilis and Littorina obtusata (Mollusca: action observed) and involved weaker proteomic changes than during acute Caenogastropoda): a proteomic analysis.
    [Show full text]
  • Effect of Temperature on the Infectivity of Metacercariae of Zygocotyle Lunata (Digenea: Paramphistomidae)
    J. Parasitol., 87(1), 2001, p. 10±13 q American Society of Parasitologists 2001 EFFECT OF TEMPERATURE ON THE INFECTIVITY OF METACERCARIAE OF ZYGOCOTYLE LUNATA (DIGENEA: PARAMPHISTOMIDAE) David L. Ferrell*, Nicholas J. Negovetich, and Eric J. Wetzel² Department of Biology, Wabash College, P.O. Box 352, Crawfordsville, Indiana 47933 ABSTRACT: As a test of the energy limitation hypothesis (ELH), we predicted that temperature would have a signi®cant in¯uence on the infectivity of metacercariae of the digenetic trematode Zygocotyle lunata. Snails infected with Z. lunata were collected from ponds near Crawfordsville, Indiana, isolated at room temperature, and examined for the release of cercariae. Newly encysted metacercariae were collected and incubated 1±30 days at 1 of 5 temperatures (0, 3, 25, 31, 37 C). Twenty-®ve cysts were fed to each of 5 or 10 mice per treatment group (temperature). At 17 days postinfection, mice were killed and worms were recovered; data were collected on levels of infection in each group and the total body area of each worm. No worms were found in mice fed cysts that had been held at0Cor37C(after 30 days). There were no differences in prevalence, infectivity, or mean intensity among the 3, 25, and 31 C treatments. Infectivity of metacercariae incubated at 37 C for 1 day was signi®cantly greater than in all other treatments, while infectivity of metacercariae in the 37 C/15-day treatment was signi®cantly lower than in all others. Mean body area of worms at 37 C/15 days was signi®cantly greater than at other temperatures, suggesting density-dependent increases in growth.
    [Show full text]
  • Parasite Infection of the Non-Indigenous Round Goby (Neogobius Melanostomus) in the Baltic Sea
    Downloaded from orbit.dtu.dk on: Oct 04, 2021 Parasite infection of the non-indigenous round goby (Neogobius melanostomus) in the Baltic Sea Ojaveer, Henn; Turovski, Aleksei; Nõomaa, Kristiina Published in: Aquatic Invasions Publication date: 2020 Document Version Peer reviewed version Link back to DTU Orbit Citation (APA): Ojaveer, H., Turovski, A., & Nõomaa, K. (2020). Parasite infection of the non-indigenous round goby (Neogobius melanostomus) in the Baltic Sea. Aquatic Invasions, 15(1), 160-176. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Aquatic Invasions (2020) Volume 15 Article in press Special Issue: Proceedings of the 10th International Conference on Marine Bioinvasions Guest editors: Amy Fowler, April Blakeslee, Carolyn Tepolt, Alejandro Bortolus, Evangelina Schwindt and Joana Dias CORRECTED PROOF Research Article Parasite infection of the non-indigenous round goby (Neogobius melanostomus) in the Baltic Sea Henn Ojaveer1,2,*, Aleksei Turovski3 and Kristiina Nõomaa4 1University of Tartu, Ringi 35, 80012 Pärnu, Estonia 2National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet Building 201, 2800 Kgs.
    [Show full text]
  • Digenea, Microphallidae) and Relative Merits of Two-Host Microphallid Life Cycles
    Parasitology Research (2018) 117:1051–1068 https://doi.org/10.1007/s00436-018-5782-1 ORIGINAL PAPER Microphallus ochotensis sp. nov. (Digenea, Microphallidae) and relative merits of two-host microphallid life cycles Kirill V. Galaktionov1,2 & Isabel Blasco-Costa3 Received: 21 July 2017 /Accepted: 23 January 2018 /Published online: 3 February 2018 # Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract A new digenean species, Microphallus ochotensis sp. nov., was described from the intestine of Pacific eiders (Somateria mollissima v-nigrum) from the north of the Sea of Okhotsk. It differs from other microphallids in the structure of the metraterm, which consists of two distinct parts: a sac with spicule-like structures and a short muscular duct opening into the genital atrium. Mi. ochotensis forms a monophyletic clade together with other congeneric species in phylograms derived from the 28S and ITS2 rRNA gene. Its dixenous life cycle was elucidated with the use of the same molecular markers. Encysted metacercariae infective for birds develop inside sporocysts in the first intermediate host, an intertidal mollusc Falsicingula kurilensis. The morphology of metacercariae and adults was described with an emphasis on the structure of terminal genitalia. Considering that Falsicingula occurs at the Pacific coast of North America and that the Pacific eider is capable of trans-continental flights, the distribution of Mi. ochotensis might span the Pacific coast of Alaska and Canada. The range of its final hosts may presumably include other benthos- feeding marine ducks as well as shorebirds. We suggest that a broad occurrence of two-host life cycles in microphallids is associated with parasitism in birds migrating along sea coasts.
    [Show full text]
  • Periwinkles Littorina Littorea Sampled Close to Charr Farms in Northern Norway
    DISEASES OF AQUATIC ORGANISMS Vol. 12: 59-65, 1991 Published December 5 Dis. aquat. Org. l Occurrence of the digenean Cryptocotyle lingua in farmed Arctic charr Salvelinus alpinus and periwinkles Littorina littorea sampled close to charr farms in northern Norway Roar Kristoffersen Department of Aquatic Biology, Norwegian College of Fishery Science, University of Trornso, Dramsveien 201B, N-9000 Tromso, Norway ABSTRACT: Occurrence of Cryptocotyle lingua rediae was recorded in periwinkle samples collected adjacent to 10 charr farms and at control sites 1 to 5 km from the farms. In 7 out of 10 localities the prevalence of infection was higher in the sample taken adjacent to the farm than in the control, and overall prevalence was 13.7 O/O in periwinkles near the farms and 6.1 % in snails from the control sites, a highly significant difference. Prevalences in periwinkles close to farms tended to increase with duration of farming at the site. The role of the final host, piscivorous birds, is considered Samples of charr from 11 farms were investigated for visible black spots caused by encysted C. llngua metacercariae. No infected charr were recorded in the 2 land-based farms where seawater exposed to UV-light (photozone) was pumped to the tanks, whilst 83.2 '10 of the fish exhibited black spots in the 9 farms where the charr were stocked in floating net cages in the sea. In most infected fish the C. ljngua cysts were located only on the fins in relatively small numbers. INTRODUCTION transmission from such focal points to wild host popula- tions and vice versa.
    [Show full text]
  • Behavioral Analysis of a Digenetic Trematode Cercaria (Microphallus Turgidus) in Relation to the Microhabitat of Grass Shrimp (Palaemonetes Spp.)
    Georgia Southern University Digital Commons@Georgia Southern Electronic Theses and Dissertations Graduate Studies, Jack N. Averitt College of Fall 2010 Behavioral Analysis of a Digenetic Trematode Cercaria (Microphallus Turgidus) in Relation to The Microhabitat of Grass Shrimp (Palaemonetes Spp.) Patricia O'Leary Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/etd Recommended Citation O'Leary, Patricia, "Behavioral Analysis of a Digenetic Trematode Cercaria (Microphallus Turgidus) in Relation to The Microhabitat of Grass Shrimp (Palaemonetes Spp.)" (2010). Electronic Theses and Dissertations. 743. https://digitalcommons.georgiasouthern.edu/etd/743 This thesis (open access) is brought to you for free and open access by the Graduate Studies, Jack N. Averitt College of at Digital Commons@Georgia Southern. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact [email protected]. Behavioral analysis of a digenetic trematode cercaria ( Microphallus turgidus ) in relation to the microhabitat of grass shrimp ( Palaemonetes spp.) by Patricia O’Leary (Under the Direction of Oscar J. Pung) Abstract The hydrobiid snail and grass shrimp hosts of the microphallid trematode Microphallus turgidus are found in specific microhabitats. The primary second intermediate host of this parasite is the grass shrimp Palaemonetes pugio. The behavior of trematode cercaria often reflects the habitat and behavior of the host species. The objective of my study was to examine the behavior of M. turgidus in relation to the microhabitat selection of the second intermediate host. To do so, I established a behavioral ethogram for the cercariae of M. turgidus and compared the behavior of these parasites to the known host behavior.
    [Show full text]
  • Diversity of Shell-Bearing Gastropods Along the Western Coast of the Arctic Archipelago Novaya Zemlya: an Evaluation of Modern and Historical Data
    Diversity of shell-bearing gastropods along the western coast of the Arctic archipelago Novaya Zemlya: an evaluation of modern and historical data Ivan O. Nekhaev & Ekaterina N. Krol Polar Biology ISSN 0722-4060 Polar Biol DOI 10.1007/s00300-017-2140-1 1 23 Your article is protected by copyright and all rights are held exclusively by Springer- Verlag GmbH Germany. This e-offprint is for personal use only and shall not be self- archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy Polar Biol DOI 10.1007/s00300-017-2140-1 ORIGINAL PAPER Diversity of shell-bearing gastropods along the western coast of the Arctic archipelago Novaya Zemlya: an evaluation of modern and historical data 1 2 Ivan O. Nekhaev • Ekaterina N. Krol Received: 27 June 2016 / Revised: 15 May 2017 / Accepted: 6 June 2017 Ó Springer-Verlag GmbH Germany 2017 Abstract Accurate estimation of biodiversity is necessary between local coastal gastropod faunas from various parts to provide a baseline for further ecosystem investigations of the Barents Sea (including Novaya Zemlya).
    [Show full text]
  • Helminthes of Goby Fish of the Hryhoryivsky Estuary (Black Sea, Ukraine)
    Vestnik zoologii, 36(3): 71—76, 2002 © Yu. Kvach, 2002 UDC 597.585.1 : 616.99(262.55) HELMINTHES OF GOBY FISH OF THE HRYHORYIVSKY ESTUARY (BLACK SEA, UKRAINE) Yu. Kvach Department of Zoology, Odessa University, Shampansky prov., 2, Odessa, 65058 Ukraine E-mail: [email protected] Accepted 4 September 2001 Helminthes of Goby Fish of the Hryhoryivsky Estuary (Black Sea, Ukraine). Kvach Yu. – In the paper the data about the helminthofauna of Neogobius melanostomus, N. ratan, N. fluviatilis, Mesogobius batrachocephalus, Zosterisessor ophiocephalus, and Proterorhynus marmoratus in the Hryhoryivsky Estu- ary are presented. The fauna of gobies’ helmint hes consist of 10 species: 5 trematods (Cryptocotyle concavum met., C. lingua met., Pygidiopsis genata met., Acanthostomum imbutiforme met.), Asymphylo- dora pontica, one cestoda (Proteocephalus gobiorum), 2 nematods (Streptocara crassicauda l., Dichelyne minutus), and 2 acanthocephalans (Acanthocephaloides propinquus, Telosentis exiguus). Only one of trematods species was presented by adult stage. The modern fauna of helminthes and published data are compared. The relative stability of the goby fish helminthofauna of the Estuary is mentioned. Key words: goby, helminth, infection, Hryhoryivsky Estuary. Ãåëüìèíòû áû÷êîâûõ ðûá Ãðèãîðüåâñêîãî ëèìàíà (×åðíîå ìîðå, Óêðàèíà). Êâà÷ Þ. – Èññëåäî- âàíà ãåëüìèíòîôàóíà Neogobius melanostomus, N. ratan, N. fluviatilis, Mesogobius batrachocephalus, Zosterisessor ophiocephalus è Proterorhynus marmoratus èç Ãðèãîðüåâñêîãî ëèìàíà. Ôàóíà ãåëüìèí- òîâ áû÷êîâ âêëþ÷àåò 10 âèäîâ. Èç íèõ 5 âèäîâ òðåìàòîä (Cryptocotyle lingua met., C. concavum met., Pygidiopsis genata met., Acanthostomum imbutiforme met., Asymphylodora pontica), îäèí âèä öåñ- òîä (Proteocephalus gobiorum), 2 âèäà íåìàòîä (Streptocara crassicauda l., Dichelyne minutus), 2 âèäà ñêðåáíåé (Acanthocephaloides propinquus, Telosentis exiguus). Èç ïÿòè âèäîâ òðåìàòîä òîëüêî îäèí ïðåäñòàâëåí âçðîñëîé ñòàäèåé.
    [Show full text]
  • Rough Periwinkles at Emersion Presence Or Absence of Response in Gene Expression of Aspartate Aminotransferase?
    Rough periwinkles at emersion Presence or absence of response in gene expression of aspartate aminotransferase? CH-14 Cecilia Helmerson Degree project for Master of Science (Two Years) in Marine Sciences and Biology Degree course in Marine ecology 45 hec Spring and Autumn 2014 Department of Biological and Environmental Sciences University of Gothenburg Examiner: Kerstin Johannesson Department of Biological and Environmental Sciences University of Gothenburg Supervisors: Marina Panova and Olga Ortega Martinez Department of Biological and Environmental Sciences University of Gothenburg Illustration: Cecilia Helmerson 2014 Index ABSTRACT ............................................................................................................................................................ 4 1. INTRODUCTION ............................................................................................................................................. 5 2. MATERIALS AND METHODS ................................................................................................................... 7 2.1 SAMPLING AND ACCLIMATION ....................................................................................................................................... 7 2.2 EMERSION EXPERIMENT .................................................................................................................................................. 8 2.3 DISSECTION AND EXTRACTION ..................................................................................................................................
    [Show full text]
  • Littorina Saxatilis Olivi and Littorina Neritoides L
    HELGOLANDER MEERESUNTERSUCHUNGEN I Helgol~nder Meeresunters. 44, 125-134 (1990) Heat production in Littorina saxatilis Olivi and Littorina neritoides L. (Gastropoda: Prosobranchia) during an experimental exposure to air Inge Kronberg Zoologisches Institut der Christian-Albrechts-Universit~t, Abt. Marine Okologie und Systematik; Olshausenstrai~e 40-60, D-2300 Kiel, Federal Republic of Germany ABSTRACT: The adaptation of littorinid molluscs to prolonged aerial exposure was investigated by the determination of heat production. I_ittorina saxatilis, inhabiting the upper euhttoral, reached a maximum metabolic activity during submersion (heat production: 3.26x 10-3J S-l(gadw)-1. On the first three days of desiccation, the heat production was continuously reduced to 40% of the submersed value. A prolonged aerial exposure was lethal for this species. In the supralittoral L. neritoides, three stages of energy metabohsm could be observed: an intermediate heat production during submersion {1.97 x I0-3j s-l{gaaw)-1), an increased metabohsm during the first hour of aerial exposure (heat production 204 % of submersed value), and a minimal metabolism (39% of the submersed value and 19 % of maximum value) during the following days and weeks of desiccation. Recovery depended on water salinity; L. saxatilis proved to be less euryhaline than L. neritoides. Thus, the metabolic adaptations correlate with the level of littoral habitat; inactivity combined with a drastically reduced energy consumption is a metabolically economic way to survive in periodically dry environments. INTRODUCTION Littorinid snails are characteristic molluscan inhabitants of rocky shores worldwide and mark the upper limit of marine influence. They live in a habitat of unpredictable change in moisture, salinity and temperature (Kronberg, 1988).
    [Show full text]
  • Number of Species of Vascular Plants, Which We Had Anticipated Would Be Higher
    PagelS4 CHAPTER 5. RESULTS A! TAXONOMIC GROUPS OF INTRODUCED SPECIES In all,we documented 212species ofintroduced organisms inthe Estuary. Thenumbers of speciesper taxonomic group are presented in Figures 2 and3 at lowerand higher levels of aggregation.Invertebrates arethe most common major groupof introducedspecies, accounting for nearly 70'/o of the total, followed by vertebratesand plants with respectivelyabout 15 and 12 percent of thetotaL The mostabundant invertebrates were the arthropods 6'to of invertebrates! followed by molluscs0'10!, annelids 4'/o! andcnidarians 2'fo!. Nearly all thevertebrates were fish,and most of theplants were vascular plants, which were about evenly split between monocots and dicots. Thesenumbers are generally in accordwith our expectations prior to this study,based upon our knowledge of theEstuary's biota and consideration of other regionalreviews of introduced marine and aquatic species, with the exception ofthe numberof species ofvascular plants, which we had anticipated would be higher. Thisresult is in partdue to ourapplication of relatively more restrictive criteria for theinclusion of marsh-edge plants, as discussed inChapter 2. Pagel55 Results For example,a studyof introduced speciesin theGreat Lakes using less restrictive criteriaproduced a listof 139introduced speciesof which59 species 2%!were vascular plants Mills et al., 1993!, and a similarstudy of the HudsonRiver produced a listof 154 introducedspecies with 97 3%! vascular plants Mills et al., 1995!. As suggested inthe "Methods"section, adding the plants in Appendix1 essentiaByterrestrial plants that havebeen reported in orat theedge of the tidaIwaters of theEstuary! to thelist of organismsin Table 1 producesa list of introducedspecies that can more reasonably be comparedto the Great Lakes and Hudson Riverlists, Thisexpanded list for the Estuary contains 240 introducedspecies of which49 0%!are vascular plants.
    [Show full text]