Resolving the 150 Year Debate Over the Ecological History of the Common Periwinkle Snail, Littorina Littorea, in Northeast North America

Total Page:16

File Type:pdf, Size:1020Kb

Resolving the 150 Year Debate Over the Ecological History of the Common Periwinkle Snail, Littorina Littorea, in Northeast North America University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Spring 2007 Resolving the 150 year debate over the ecological history of the common periwinkle snail, Littorina littorea, in northeast North America April M H Blakeslee University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation Blakeslee, April M H, "Resolving the 150 year debate over the ecological history of the common periwinkle snail, Littorina littorea, in northeast North America" (2007). Doctoral Dissertations. 364. https://scholars.unh.edu/dissertation/364 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. RESOLVING THE 150 YEAR DEBATE OVER THE ECOLOGICAL HISTORY OF THE COMMON PERIWINKLE SNAIL, Littorina littorea, IN NORTHEAST NORTH AMERICA. BY APRIL M.H. BLAKESLEE B.A., Boston University, 1998 M.A., Boston University, 2001 DISSERTATION Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Zoology May, 2007 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: 3260587 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. ® UMI UMI Microform 3260587 Copyright 2007 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, Ml 48106-1346 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. This dissertation has been examined and approved. Dissertation Co-Director, Dr. James E. Byers, Associate Professor of Zoology Dissertation Co-DiretSjgr, Dr. Michael P. Lesser, Research Professor of Zoology y ' X- - < - X Dr. Thomas D. Kocher,Professor of Zoology Dr. Daniel A. Brazeau, Research Associate Professor of Pharmaceutics, University at Buffalo • ? _____ D/. James T. Carlton, Professor of Marine Sciences, fliams College; Director, Williams-Mystic Program Dr. Todd C. Huspeni, Assistant Professor of Biology, University of Wisconsin-Stevens Point Date Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. DEDICATION I wish to dedicate this dissertation to my parents, Dr. Jan Laws Houghton and Dr. Raymond C. Houghton, Jr., for their continued encouragement and support over the years in helping me work towards the kind of education that would make me happiest. I am grateful for the opportunities they have provided for me, and I only hope I can do the same someday for my son, Westley. iii Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. ACKNOWLEDGEMENTS I have numerous upon numerous people to thank for help/advice/support over the past 5 Vi years of my Ph.D. career. First and foremost, I thank my advisors, Jeb Byers and Michael Lesser, who provided me this opportunity in the first place and got me working in a direction I never dreamed or ever expected I would find myself. I now have a great appreciation for molecular tools, and I find parasitology fascinating. I thank both Jeb and Michael for all their support over the years, their great advice, and finally their financial help. I have learned a great deal from both of them, and I hope to continue to learn more. I know they have done a lot for me— some of which I know about and some of which was behind the scenes, and I am thankful for everything. I also thank my committee members, Dr. Dan Brazeau, Dr. Jim Carlton, Dr. Todd Huspeni, and Dr. Tom Kocher. Each has given me a lot of advice over the years in all aspects of my project. Dan and Tom provided extensive molecular advice and support; Todd was invaluable in his parasitology and ecological understanding and advice; and finally, Jim imparted a lot of his immense knowledge and advice in all aspects of marine ecology but especially in invasion biology. I also thank Jim for mentioning the whole Littorina littorea dilemma to me when I first met him back in 2001—that got the wheels turning for my advisors and I and thus my project was borne. Jim has also provided a great deal of advice and help towards my future career, and I am extremely appreciative iv Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. of that. Finally, all of my committee members have helped in reviewing manuscript drafts—thank you for that! Thank you to the Byers lab graduate students, past and present, which include Irit Altman, Aaren Freeman, Blaine Griffen, Wan Jean Lee, John Meyer, and Laura Page. Every member of the lab has been supportive, and I have developed lasting friendships with my present and former lab-mates. Thank you to all of them for reading countless drafts, listening to countless talks, talking over ideas, and just talking in general. I thank all the many undergraduate and recent post-undergraduate students who have helped me in the lab and field, which include: Lena Collins, Erin Dewey, Sarah Fierce, Amy Fowler, Greg Goldsmith, Amy Houghton, Anna Kintner, Tim Maguire, Vicky Taibe, and Deb Zdankoweicz. Every single person I worked with was excellent, though I must thank a few of them who worked with me for awhile and made my life so much easier—Amy H (my sister), Amy F, Greg, Anna, Lena and Deb. Thanks guys! I would also like to thank the many people who helped me acquire snails overseas and at distant North American sites. Thank you to: Thierry Backeljau, Ross Coleman, Andres Figueroa, John Grahame, Maya Janamma, Kurt Jensen, Kerstin Johannesson, Ladd Johnson, Anna Kintner, Manuela Krakau, Ruth Ramsay, Colleen Suckling, Sarah Teck, Abe Tucker, and Suzanne Williams. This help has been invaluable to my research and I am so grateful for everyone who took the time out to collect and ship snails to me. I have several funding sources to thank. First and foremost, thank you to the History of Marine Animal Populations (HMAP) and Andy Rosenberg who provided me funding for my first two years and allowed me to come to UNH. Being part of the HMAP v Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. program has been extremely rewarding—I have made some lasting friendships, collaborations, and have gone on some great overseas trips (twice to Denmark!) all thanks to this program and to Andy Rosenberg who selected me to be part of it. In addition, various UNH departments and programs have also been very generous: I have received travel funding to attend conferences for the past 5 years from the graduate school, the Zoology department, and the Marine Program. In addition, the Marine Program provided a couple small research grants, which helped fund my molecular work and travel to collection sites. The Zoology department also awarded me a Hatch Grant summer 2006. Finally, the UNH Writing Center provided me two years of a Graduate Fellowship, and the Zoology Department gave me three Teaching Assistant positions. I have also received small grants from several sources outside the University, including Sigma Xi, which provided me research grants two years in a row; Lemer-Gray (American Museum of Natural History); and the American Malacological Society. Jeb Byers also received an NSF SGER grant (OCE 05-03932), which was used to fund many aspects of my research, especially the expensive molecular parts. Finally, the Shoals REU program has provided me with a lot of support in the form of research help and in my experimental and mentoring education. I also thank several UNH and non-UNH people who have provided me with molecular and other advice/support over the years, including Karen Carleton, Andy Cooper, Fiona Cuthbert (Bonne Bay Laboratory) and John Wares (University of Georgia). UNH support by Flora Joyal, Diane Lavallier, and Nancy Wallingford was also vi Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. much appreciated. I bugged each of them on numerous occasions and they were always really helpful and kind to me. Finally, I thank my family: my parents, to whom I have dedicated this dissertation; my sister, Amy, who worked with me one summer and was always hard­ working and helpful during that time; and my twin brother, Ray, who made all the maps in this dissertation and also the trematode life cycle diagram. Ray has also let me practice talks for him and has been willing to listen when I needed an ear to bend. Finally, words cannot describe how grateful I am to my husband, Mike, who has supported me in so many ways during this process—he helped me dissect more snails than I know he wants to remember; he accompanied me on many travels (some of which were extremely unpleasant; e.g., long, long hours of driving and working in record heat during the summer of 2003); he let me practice talks over and over for him; he kept me sane when 1 was feeling overwhelmed; and he let me work as hard as 1 needed to without ever making me feel guilty (I, of course, felt guilty on my own for those weeks where we barely got to see each other).
Recommended publications
  • (Gastropoda: Littorinidae) in the Temperate Southern Hemisphere: the Genera Nodilittorina, Austrolittorina and Afrolittorina
    © Copyright Australian Museum, 2004 Records of the Australian Museum (2004) Vol. 56: 75–122. ISSN 0067-1975 The Subfamily Littorininae (Gastropoda: Littorinidae) in the Temperate Southern Hemisphere: The Genera Nodilittorina, Austrolittorina and Afrolittorina DAVID G. REID* AND SUZANNE T. WILLIAMS Department of Zoology, The Natural History Museum, London SW7 5BD, United Kingdom [email protected] · [email protected] ABSTRACT. The littorinine gastropods of the temperate southern continents were formerly classified together with tropical species in the large genus Nodilittorina. Recently, molecular data have shown that they belong in three distinct genera, Austrolittorina, Afrolittorina and Nodilittorina, whereas the tropical species are members of a fourth genus, Echinolittorina. Austrolittorina contains 5 species: A. unifasciata in Australia, A. antipodum and A. cincta in New Zealand, and A. fernandezensis and A. araucana in western South America. Afrolittorina contains 4 species: A. africana and A. knysnaensis in southern Africa, and A. praetermissa and A. acutispira in Australia. Nodilittorina is monotypic, containing only the Australian N. pyramidalis. This paper presents the first detailed morphological descriptions of the African and Australasian species of these three southern genera (the eastern Pacific species have been described elsewhere). The species-level taxonomy of several of these has been confused in the past; Afrolittorina africana and A. knysnaensis are here distinguished as separate taxa; Austrolittorina antipodum is a distinct species and not a subspecies of A. unifasciata; Nodilittorina pyramidalis is separated from the tropical Echinolittorina trochoides with similar shell characters. In addition to descriptions of shells, radulae and reproductive anatomy, distribution maps are given, and the ecological literature reviewed.
    [Show full text]
  • The Systematics and Ecology of the Mangrove-Dwelling Littoraria Species (Gastropoda: Littorinidae) in the Indo-Pacific
    ResearchOnline@JCU This file is part of the following reference: Reid, David Gordon (1984) The systematics and ecology of the mangrove-dwelling Littoraria species (Gastropoda: Littorinidae) in the Indo-Pacific. PhD thesis, James Cook University. Access to this file is available from: http://eprints.jcu.edu.au/24120/ The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owner of any third party copyright material included in this document. If you believe that this is not the case, please contact [email protected] and quote http://eprints.jcu.edu.au/24120/ THE SYSTEMATICS AND ECOLOGY OF THE MANGROVE-DWELLING LITTORARIA SPECIES (GASTROPODA: LITTORINIDAE) IN THE INDO-PACIFIC VOLUME I Thesis submitted by David Gordon REID MA (Cantab.) in May 1984 . for the Degree of Doctor of Philosophy in the Department of Zoology at James Cook University of North Queensland STATEMENT ON ACCESS I, the undersigned, the author of this thesis, understand that the following restriction placed by me on access to this thesis will not extend beyond three years from the date on which the thesis is submitted to the University. I wish to place restriction on access to this thesis as follows: Access not to be permitted for a period of 3 years. After this period has elapsed I understand that James Cook. University of North Queensland will make it available for use within the University Library and, by microfilm or other photographic means, allow access to users in other approved libraries. All uses consulting this thesis will have to sign the following statement: 'In consulting this thesis I agree not to copy or closely paraphrase it in whole or in part without the written consent of the author; and to make proper written acknowledgement for any assistance which I have obtained from it.' David G.
    [Show full text]
  • FISH Mapping of 18S-28S and 5S Ribosomal DNA, (GATA)N
    Heredity (2002) 88, 381–384 2002 Nature Publishing Group All rights reserved 0018-067X/02 $25.00 www.nature.com/hdy FISH mapping of 18S-28S and 5S ribosomal DNA, (GATA)n and (TTAGGG)n telomeric repeats in the periwinkle Melarhaphe neritoides (Prosobranchia, Gastropoda, Caenogastropoda) MS Colomba1, R Vitturi2, L Castriota3, R Bertoni4 and A Libertini5 1Facolta` di Scienze Ambientali, Universita` di Urbino, Localita` Crocicchia, 61029 Urbino, Italy; 2Dipartimento di Biologia Animale, Universita` di Palermo, Via Archirafi 18, 90123 Palermo; 3ICRAM, Via Emerico Amari 124, 90139 Palermo, Italy; 4Dipartimento di Biologia Animale, Universita` di Modena, Via Campi 213/d, 41100 Modena, Italy; 5Istituto di Biologia del Mare, CNR, Riva 7 Martiri 1364/a, 30122 Venezia, Italy Spermatocyte chromosomes of Melarhaphe neritoides with termini of all chromosomes whereas the (GATA)n probe (Mollusca, Prosobranchia, Caenogastropoda) were studied did not label any areas. Simultaneous 18S-5S rDNA and using fluorescent in situ hybridization (FISH) with four repeti- 18S-(TTAGGG)n FISH demonstrated that repeated units of tive DNA probes (18S rDNA, 5S rDNA, (TTAGGG)n and the three multicopy families are closely associated on the (GATA)n). Single-colour FISH consistently mapped one same chromosome pair. chromosome pair per spread using either 18S or 5S rDNA Heredity (2002) 88, 381–384. DOI: 10.1038/sj/hdy/6800070 as probes. The telomeric sequence (TTAGGG)n hybridized Keywords: chromosomes; repetitive DNA; FISH; invertebrate; Mollusca; Caenogastropoda Introduction to map repeated units of the two rDNA families (18S-28S rDNA and 5S rDNA) and to test the presence of (GATA)n Fluorescence in situ hybridization (FISH) is a powerful and (TTAGGG)n repeats in the genome of this species.
    [Show full text]
  • Mild Osmotic Stress in Intertidal Gastropods Littorina Saxatilis and Littorina Obtusata (Mollusca: Caenogastropoda): a Proteomic Analysis
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Saint PetersburgFULL State University COMMUNICATION PHYSIOLOGY Mild osmotic stress in intertidal gastropods Littorina saxatilis and Littorina obtusata (Mollusca: Caenogastropoda): a proteomic analysis Olga Muraeva1, Arina Maltseva1, Marina Varfolomeeva1, Natalia Mikhailova1,2, and Andrey Granovitch1 1 Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab. 7–9, St. Petersburg, 199034, Russian Federation; 2 Center of Cell Technologies, Institute of Cytology RAS, Tikhoretsky prospect, 4, St. Petersburg, 194064, Russian Federation Address correspondence and requests for materials to Arina Maltseva, [email protected] Abstract Salinity is a crucial abiotic environmental factor for marine animals, affecting their physiology and geographic ranges. Deviation of environmental salin- ity from the organismal optimum range results in an osmotic stress in osmo- conformers, which keep their fluids isotonic to the environment. The ability to overcome such stress is critical for animals inhabiting areas with considerable salinity variation, such as intertidal areas. In this study, we compared the reac- tion to mild water freshening (from 24 to 14 ‰) in two related species of inter- tidal snails, Littorina saxatilis and L. obtusata, with respect to several aspects: survival, behavior and proteomic changes. Among these species, L. saxatilis is Citation: Muraeva, O., Maltseva, A., Varfolomeeva, M., Mikhailova, N., more tolerant to low salinity and survives in estuaries. We found out that the Granovitch, A. 2017. Mild osmotic response of these species was much milder (with no mortality or isolation re- stress in intertidal gastropods Littorina saxatilis and Littorina obtusata (Mollusca: action observed) and involved weaker proteomic changes than during acute Caenogastropoda): a proteomic analysis.
    [Show full text]
  • Littorina Sitkana Philippi, 1846)
    UVicSPACE: Research & Learning Repository _____________________________________________________________ Faculty of Science Faculty Publications _____________________________________________________________ Local site differences in survival and parasitism of periwinkles (Littorina sitkana Philippi, 1846) Mónica Ayala-Díaz, Jean M. L. Richardson, & Bradley R. Anholt 2017 © 2017 Ayala- Díaz et al. This is an open access article distributed under the terms of the Creative Commons Attribution License. http://creativecommons.org/licenses/by/4.0 This article was originally published at: https://doi.org/10.1002/ece3.2708 Citation for this paper: Ayala-Díaz, M.; Richardson, J. M. L.; & Anholt, B. R. (2017). Local site differences in survival and parasitism of periwinkles (Littorina sitkana Philippi, 1846). Ecology and Evolution, 7(4), 1021-1029. https://doi.org/10.1002/ece3.2708 Received: 7 August 2016 | Revised: 4 November 2016 | Accepted: 17 December 2016 DOI: 10.1002/ece3.2708 ORIGINAL RESEARCH Local site differences in survival and parasitism of periwinkles (Littorina sitkana Philippi, 1846) Mónica Ayala-Díaz1,2 | Jean M. L. Richardson1 | Bradley R. Anholt1,2 1Bamfield Marine Sciences Centre, Bamfield, BC, Canada Abstract 2Department of Biology, University of Victoria, The periwinkle, Littorina sitkana, is found throughout the intertidal zone, often in iso- Victoria, BC, Canada lated subpopulations. The majority of trematode parasites use snails as intermediate Correspondence hosts, and decreased survivorship is often observed in snails infected with trematodes. Mónica Ayala-Díaz, Bamfield Marine Sciences Sampling L. sitkana from four sites in Barkley Sound, British Columbia, Canada, we test Centre, Bamfield, BC, Canada. Email: [email protected] the effects of parasitic infection on snail survival using maximum likelihood and Bayesian approaches using the software MARK and WinBUGS.
    [Show full text]
  • Infection by Parorchis Acanthus (Trematoda) Decreases Grazing by the Keystone Gastropod, Littoraria Irrorata
    Infection by Parorchis acanthus (Trematoda) decreases grazing by the keystone gastropod, Littoraria irrorata Joseph P. Morton Division of Marine Science and Conservation, Nicholas School of the Environment, Duke University, Beaufort, NC, United States of America ABSTRACT Parasites are well-known to alter the behavior of their hosts, but there is still a paucity of knowledge about how parasites modify the behavior of many ecologically influential host species. I studied the keystone grazer, the salt marsh periwinkle (Littoraria irrorata), to determine the influence of infection by the digenetic trematode, Parorchis acanthus, on its grazing behavior. Comparative laboratory grazing studies of wild- collected and experimentally infected snails revealed that Parorchis decreased grazing on live Spartina by more than 80%. Because of the large ecological influence of Littoraria in southern U.S. marshes, parasite modification of snail grazing may have ramifications for marsh ecosystem stability if parasite prevalence is sufficiently high. Subjects Animal Behavior, Ecology, Marine Biology, Parasitology Keywords Grazing, Parasitism, Salt marsh, Behavior modification, Trematode INTRODUCTION A broad body of research demonstrates the ability of parasites to induce powerful changes in the behavior of their hosts (Holmes & Bethel, 1972; Dobson, 1988; Moore & Gotelli, 1990; Lafferty & Morris, 1996; Moore, 2002; Toscano, Newsome & Griffen, 2014; Soghigian, Submitted 25 April 2017 Accepted 6 March 2018 Valsdottir & Livdahl, 2017). These changes may be adaptive for the parasite because Published 27 March 2018 behavioral modification often facilities transmission to the next host species in its life Corresponding author cycle, an adaptive response of the host species, or a non-adaptive byproduct of parasitic Joseph P. Morton, infection (Lafferty, 1999; Levri, 1999; Moore, 2002).
    [Show full text]
  • Larval Stages of Digenetic Flukes and Their Molluscan
    STUDIES ON THE INTERACTIONS BETWEEN LARVAL STAGES OF DIGENETIC FLUKES AND THEIR MOLLUSCAN HOSTS. MICHAEL ANTONY PRICE SUBMITTED IN ACCORDANCE WITH THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY THE UNIVERSITY OF LEEDS DEPARTMENT OF PURE AND APPLIED ZOOLOGY. MARCH 1984 Snails of the species Thais (Nucella) lapillus (L) were collected from Scarborough South Bay, and Robin Hoods Bay, North Yorkshire. The presence of the rediae of Parorchia acanthus. NICOLL (Digenea: PHILOPHTHALMIDAE) in T-,. lapillus individuals was previously associated with abnormal shell growth by Feare (1970a). His work has been extended to provide more conclusive evidence of parasitic gigantism in T, larAllus infested with P-,. acanthus-. - The energy increment and soft tissue mass increase associated with shell growth has been calculated for a sample of infested T, lapillus individuals. As reported by Cooley (1958) and Feare (1969) infestation with P_.. acanthus rediae progressively destroys the host gonad. The resultant reproductive saving was estimated for non-infested male and female T, lapillus from Robin Hoods Bay in 1981 and the energy values obtained were compared with estimates of the average energy loss from infested M., laDillus as a result of cercarial production and redial growth. The proportion of the whole body dry mass of infested M, lapillus. individuals contributed by the redial population was generally similar to the gonadal proportion of non-infested femalest but did not follow the same seasonal cycle. The digestive gland of infested dogwhelks was proportionally reduced from that of non-infested females in August only. The growth of redial populations within the hosts through the summer is suggested as a possible cause of host gigantism.
    [Show full text]
  • Four Marine Digenean Parasites of Austrolittorina Spp. (Gastropoda: Littorinidae) in New Zealand: Morphological and Molecular Data
    Syst Parasitol (2014) 89:133–152 DOI 10.1007/s11230-014-9515-2 Four marine digenean parasites of Austrolittorina spp. (Gastropoda: Littorinidae) in New Zealand: morphological and molecular data Katie O’Dwyer • Isabel Blasco-Costa • Robert Poulin • Anna Falty´nkova´ Received: 1 July 2014 / Accepted: 4 August 2014 Ó Springer Science+Business Media Dordrecht 2014 Abstract Littorinid snails are one particular group obtained. Phylogenetic analyses were carried out at of gastropods identified as important intermediate the superfamily level and along with the morpholog- hosts for a wide range of digenean parasite species, at ical data were used to infer the generic affiliation of least throughout the Northern Hemisphere. However the species. nothing is known of trematode species infecting these snails in the Southern Hemisphere. This study is the first attempt at cataloguing the digenean parasites Introduction infecting littorinids in New Zealand. Examination of over 5,000 individuals of two species of the genus Digenean trematode parasites typically infect a Austrolittorina Rosewater, A. cincta Quoy & Gaim- gastropod as the first intermediate host in their ard and A. antipodum Philippi, from intertidal rocky complex life-cycles. They are common in the marine shores, revealed infections with four digenean species environment, particularly in the intertidal zone representative of a diverse range of families: Philo- (Mouritsen & Poulin, 2002). One abundant group of phthalmidae Looss, 1899, Notocotylidae Lu¨he, 1909, gastropods in the marine intertidal environment is the Renicolidae Dollfus, 1939 and Microphallidae Ward, littorinids (i.e. periwinkles), which are characteristic 1901. This paper provides detailed morphological organisms of the high intertidal or littoral zone and descriptions of the cercariae and intramolluscan have a global distribution (Davies & Williams, 1998).
    [Show full text]
  • Linking Behaviour and Climate Change in Intertidal Ectotherms: Insights from 1 Littorinid Snails 2 3 Terence P.T. Ng , Sarah
    1 Linking behaviour and climate change in intertidal ectotherms: insights from 2 littorinid snails 3 4 Terence P.T. Nga, Sarah L.Y. Laua, Laurent Seurontb, Mark S. Daviesc, Richard 5 Staffordd, David J. Marshalle, Gray A.Williamsa* 6 7 a The Swire Institute of Marine Science and School of Biological Sciences, The 8 University of Hong Kong, Pokfulam Road, Hong Kong SAR, China 9 b Centre National de la Recherche Scientifique, Laboratoire d’Oceanologie et de 10 Geosciences, UMR LOG 8187, 28 Avenue Foch, BP 80, 62930 Wimereux, France 11 c Faculty of Applied Sciences, University of Sunderland, Sunderland, U.K. 12 d Faculty of Science and Technology, Bournemouth University, U.K. 13 e Environmental and Life Sciences, Faculty of Science, Universiti Brunei Darussalam, 14 Gadong BE1410, Brunei Darussalam 15 16 Corresponding author: The Swire Institute of Marine Science, The University of Hong 17 Kong, Cape d' Aguilar, Shek O, Hong Kong; [email protected] (G.A. Williams) 18 19 Keywords: gastropod, global warming, lethal temperature, thermal safety margin, 20 thermoregulation 21 22 Abstract 23 A key element missing from many predictive models of the impacts of climate change 24 on intertidal ectotherms is the role of individual behaviour. In this synthesis, using 25 littorinid snails as a case study, we show how thermoregulatory behaviours may 26 buffer changes in environmental temperatures. These behaviours include either a 27 flight response, to escape the most extreme conditions and utilize warmer or cooler 28 environments; or a fight response, where individuals modify their own environments 29 to minimize thermal extremes. A conceptual model, generated from studies of 30 littorinid snails, shows that various flight and fight thermoregulatory behaviours may 31 allow an individual to widen its thermal safety margin (TSM) under warming or 32 cooling environmental conditions and hence increase species’ resilience to climate 33 change.
    [Show full text]
  • Complex Male Mate Choice in Marine Snails Littorina
    Complex Male Mate Choice in Marine Snails Littorina Sara Hintz Saltin Licentiate thesis Department of Marine Ecology University of Gothenburg Till Mamma, Pappa och Hanna Abstract The ability to recognise potential mates and choose the best possible mating-partner is of fundamental importance for most animal species. This thesis presents studies of male mate choice within the genus Littorina. Males of this genus are sometimes observed to initiate mating with other males or with females of other species. How such suboptimal mating patterns can evolve is the theme of this thesis. In one study we investigated pre-copulatory- and copulation behaviour in L. fabalis and between this species and its sister-species L. obtusata. We found that males preferred to mount and mate with large and more fecund females rather than small females. Males also preferred to track the largest females mucus trails even though these were trails from another species (L. obtusata) although cross-matings were interrupted before completion. In a second study we found that males of three species (L. littorea, L. fabalis and L. obtusata) preferentially followed female trails. This suggests that females add a “gender cue” in the mucus. In the forth species, L. saxatilis, males followed male and female trails at random. Along with experimental evidence for high mating costs and abilities for male L. saxatilis to detect females of a related species, this suggests a sexual conflict over mating frequency. To reduce number of matings females avoid advertising their sex by disguise their mucus. The reason for the different species strategies is that L.
    [Show full text]
  • The Causal Relationship Between Sexual Selection and Sexual Size Dimorphism in Marine Gastropods
    Title Document The causal relationship between sexual selection and sexual size dimorphism in marine gastropods Terence P. T. Ng1,a, Emilio Rolán-Alvarez2,3,a, Sara Saltin Dahlén4, Mark S. Davies5, Daniel Estévez2, Richard Stafford6, Gray A. Williams1* 1 The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China 2 Departamento de Bioquímica, Genética e Inmunología, Facultad de Biología, Universidad de Vigo, 36310 Vigo Spain 3 Centro de Investigación Mariña da Universidade de Vigo 4 Department of Marine Sciences - Tjärnö, University of Gothenburg, SE-452 96 Strömstad, Sweden 5 Faculty of Applied Sciences, University of Sunderland, Sunderland, U.K. 6 Faculty of Science and Technology, Bournemouth University, U.K. a Contributed equally to this work *Correspondence: Gray A. Williams, The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong E-mail: [email protected] Telephone: (852) 2809 2551 Fax: (852) 2809 2197 Author contribution. TPTN obtained data from all species except L. fabalis and contributed to data analysis, SHS contributed to sampling Swedish littorinids, MSD, RS and GAW to sampling HK littorinids, DE to Spanish samples, and ER-A contributed to Spanish sampling and data analysis. Developing the MS was led by TPTN, ER-A and GAW and all authors contributed to writing the MS and gave final approval for submission. Competing interests. We declare we have no competing interests. Acknowledgements. Permission to work at the Cape d' Aguilar Marine Reserve was granted by the Agriculture, Fisheries and Conservation Department of the Hong Kong SAR Government (Permit No.: (116) in AF GR MPA 01/5/2 Pt.12).
    [Show full text]
  • Kenai National Wildlife Refuge Species List, Version 2018-07-24
    Kenai National Wildlife Refuge Species List, version 2018-07-24 Kenai National Wildlife Refuge biology staff July 24, 2018 2 Cover image: map of 16,213 georeferenced occurrence records included in the checklist. Contents Contents 3 Introduction 5 Purpose............................................................ 5 About the list......................................................... 5 Acknowledgments....................................................... 5 Native species 7 Vertebrates .......................................................... 7 Invertebrates ......................................................... 55 Vascular Plants........................................................ 91 Bryophytes ..........................................................164 Other Plants .........................................................171 Chromista...........................................................171 Fungi .............................................................173 Protozoans ..........................................................186 Non-native species 187 Vertebrates ..........................................................187 Invertebrates .........................................................187 Vascular Plants........................................................190 Extirpated species 207 Vertebrates ..........................................................207 Vascular Plants........................................................207 Change log 211 References 213 Index 215 3 Introduction Purpose to avoid implying
    [Show full text]