NATURAL RESOURCE USE and LIVELIHOOD TRENDS in the TONLE SAP FLOODPLAIN, CAMBODIA a Socio-Economic Analysis of Direct Use Values
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Rice Production in Tonle Sap Floodplains in Response to Anthropogenic Changes in Hydrology, Climate, and Agronomic Practices
Rice Production in Tonle Sap Floodplains in Response to Anthropogenic Changes in Hydrology, Climate, and Agronomic Practices Manuel P. Marcaida III A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science University of Washington 2020 Committee: Soo-Hyung Kim Faisal Hossain Rebecca Neumann Program Authorized to Offer Degree: Environmental and Forest Sciences © Copyright 2020 Manuel P. Marcaida III University of Washington Abstract Rice Production in Tonle Sap Floodplains in Response to Anthropogenic Changes in Hydrology, Climate, and Agronomic Practices Manuel P. Marcaida III Chair of the Supervisory Committee: Soo-Hyung Kim Environmental and Forest Sciences Rice is the most important agricultural commodity in Cambodia as food and source of livelihood. Majority of rice production happens around the Tonle Sap floodplains sustained by the sediment- rich flood from the Mekong River. With the increased construction of hydropower dams upstream, the natural flow of water, organic materials, and fish species delivered to the Tonle Sap Lake is altered. While these changes open up more areas for rice cultivation especially during the dry season, the quality of the sediments is expected to decline. Moreover, drought is becoming a frequent occurrence and temperature is increasing. This study examined how the rice cultivation in the Tonle Sap floodplains is impacted by the hydrological changes, climate, and agronomic practices. Specifically, we 1) assessed the impacts of the increasing presence of dams on the timing and location of rice cropping, and 2) tested and applied an ecophysiological crop model to simulate the effect of changes in hydrology, agronomic practices, and increasing temperature on rice production in Tonle Sap floodplains. -
Appendix Color Plates of Solanales Species
Appendix Color Plates of Solanales Species The first half of the color plates (Plates 1–8) shows a selection of phytochemically prominent solanaceous species, the second half (Plates 9–16) a selection of convol- vulaceous counterparts. The scientific name of the species in bold (for authorities see text and tables) may be followed (in brackets) by a frequently used though invalid synonym and/or a common name if existent. The next information refers to the habitus, origin/natural distribution, and – if applicable – cultivation. If more than one photograph is shown for a certain species there will be explanations for each of them. Finally, section numbers of the phytochemical Chapters 3–8 are given, where the respective species are discussed. The individually combined occurrence of sec- ondary metabolites from different structural classes characterizes every species. However, it has to be remembered that a small number of citations does not neces- sarily indicate a poorer secondary metabolism in a respective species compared with others; this may just be due to less studies being carried out. Solanaceae Plate 1a Anthocercis littorea (yellow tailflower): erect or rarely sprawling shrub (to 3 m); W- and SW-Australia; Sects. 3.1 / 3.4 Plate 1b, c Atropa belladonna (deadly nightshade): erect herbaceous perennial plant (to 1.5 m); Europe to central Asia (naturalized: N-USA; cultivated as a medicinal plant); b fruiting twig; c flowers, unripe (green) and ripe (black) berries; Sects. 3.1 / 3.3.2 / 3.4 / 3.5 / 6.5.2 / 7.5.1 / 7.7.2 / 7.7.4.3 Plate 1d Brugmansia versicolor (angel’s trumpet): shrub or small tree (to 5 m); tropical parts of Ecuador west of the Andes (cultivated as an ornamental in tropical and subtropical regions); Sect. -
Typification and Nomenclature of the Convolvulaceae in N. L. Burman's Flora Indica, with an Introduction to the Burman Collect
Candollea 60(2): 445-467 (2005) Typification and nomenclature of the Convolvulaceae in N. L. Burman’s Flora Indica, with an introduction to the Burman collection at Geneva GEORGES W. STAPLES & FERNAND JACQUEMOUD ABSTRACT STAPLES, G. W. & F. JACQUEMOUD (2005). Typification and nomenclature of the Convol- vulaceae in N. L. Burman’s Flora Indica, with an introduction to the Burman collection at Geneva. Candollea 60: 445-467. In English, English and French abstracts. The history and current status of the Burman Herbarium conserved at Geneva (G) are reviewed. Lectotypifications are made for seven Burman names in Convolvulaceae, Convolvulus angularis Burm. f., C. mollis Burm. f., C. nervosus Burm. f., C. uniflorus Burm. f., C. vitifolius Burm. f., Evolvulus emarginatus Burm. f., Ipomoea paniculata Burm. f., and an eighth name is neotypified, Porana volubilis Burm. f. A new lectotype for Convolvulus gemellus Burm. f. is selected. The discovery of the heretofore missing holotype of Ipomoea sagittifolia Burm. f. requires a name change for the widespread Old World species, I. sepiaria Roxb., which has recently undergone several name changes, latterly to I. marginata (Desr.) Manitz. RÉSUMÉ STAPLES, G. W. & F. JACQUEMOUD (2005). Typification et nomenclature des Convolvulaceae dans la Flora Indica de N. L. Burman, précédées d’une introduction aux collections Burman déposées à Genève. Candollea 60: 445-467. En anglais, résumés anglais et français. Les auteurs présentent l’histoire et la situation actuelle de l’herbier Burman conservé à Genève (G). Sept noms de la famille des Convolvulaceae publiés par Burman sont lectotypifiés, Convolvulus angularis Burm. f., C. mollis Burm. f., C. -
Aniseia Martinicensis (Jacq.) Choisy
Aniseia martinicensis (Jacq.) Choisy Identifiants : 2497/animar Association du Potager de mes/nos Rêves (https://lepotager-demesreves.fr) Fiche réalisée par Patrick Le Ménahèze Dernière modification le 05/10/2021 Classification phylogénétique : Clade : Angiospermes ; Clade : Dicotylédones vraies ; Clade : Astéridées ; Clade : Lamiidées ; Ordre : Solanales ; Famille : Convolvulaceae ; Classification/taxinomie traditionnelle : Règne : Plantae ; Sous-règne : Tracheobionta ; Division : Magnoliophyta ; Classe : Magnoliopsida ; Ordre : Solanales ; Famille : Convolvulaceae ; Genre : Aniseia ; Synonymes : Aniseia uniflora Choisy, Convolvulus martinicensis Jacq, Convolvulus uniflorus Burm.f, Ipomoea uniflora Roem. & Schult, Ipomoea uniflora Choisy, Ipomoea martinicensis G.F.W. Meyer, et d'autres ; Nom(s) anglais, local(aux) et/ou international(aux) : Ulan puteh, , Anndat trakuet, Lidah patong, Lotombo, Venthiruthali, Vor andatt trokourt ; Rapport de consommation et comestibilité/consommabilité inférée (partie(s) utilisable(s) et usage(s) alimentaire(s) correspondant(s)) : Parties comestibles : feuilles, légumes{{{0(+x) (traduction automatique) | Original : Leaves, Vegetable{{{0(+x) La plante entière est consommée en période de pénurie alimentaire. Les feuilles sont utilisées comme légume Partie testée : feuilles{{{0(+x) (traduction automatique) Original : Leaves{{{0(+x) Taux d'humidité Énergie (kj) Énergie (kcal) Protéines (g) Pro- Vitamines C (mg) Fer (mg) Zinc (mg) vitamines A (µg) 0 0 0 0 0 0 0 néant, inconnus ou indéterminés. Illustration(s) (photographie(s) et/ou dessin(s)): Page 1/3 Autres infos : dont infos de "FOOD PLANTS INTERNATIONAL" : Statut : C'est un aliment de famine{{{0(+x) (traduction automatique). Original : It is a famine food{{{0(+x). Distribution : Une plante tropicale. Cela peut être dans les marécages ou les forêts ouvertes. Il pousse près du niveau de la mer. C'est surtout près de la côte{{{0(+x) (traduction automatique). -
Evolvulus Alsinoides (Convolvulaceae): an American Herb in the Old World Daniel F
This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Available online at www.sciencedirect.com Journal of Ethnopharmacology 117 (2008) 185–198 Review Evolvulus alsinoides (Convolvulaceae): An American herb in the Old World Daniel F. Austin Arizona-Sonora Desert Museum, 2021 North Kinney Road, Tucson, AZ 85743, USA Received 23 October 2007; received in revised form 28 January 2008; accepted 29 January 2008 Available online 12 February 2008 Abstract People in the Indian region often apply shankhapushpi and vishnukranti, two Sanskrit-based common names, to Evolvulus alsinoides. These are pre-European names that are applied to a medicinal American species transported into the area. The period of introduction is uncertain, but probably took place in the 1500s or 1600s. Examination of relationships of Evolvulus alsinoides, geographic distribution, its names in Asia, medical uses, and chemical and laboratory analysis indicates that the alien plant was adopted, given an ancient Indian name, and incorporated into some Old World pharmacopoeias. The herb apparently was included in medicines because it not only reminded people of certain aspects of their gods and goddesses, but also because the chemicals it contained were useful against some maladies. -
High Risk, Widely Naturalized, Agricultural Weed, Tropical Vine, Seed Contaminant
Family: Convolvulaceae Taxon: Ipomoea triloba Synonym: Ipomoea krugii Urb. Common Name: little bell three-lobed morning-glory Questionaire : current 20090513 Assessor: Chuck Chimera Designation: H(HPWRA) Status: Assessor Approved Data Entry Person: Chuck Chimera WRA Score 15 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? y=1, n=-1 103 Does the species have weedy races? y=1, n=-1 201 Species suited to tropical or subtropical climate(s) - If island is primarily wet habitat, then (0-low; 1-intermediate; 2- High substitute "wet tropical" for "tropical or subtropical" high) (See Appendix 2) 202 Quality of climate match data (0-low; 1-intermediate; 2- High high) (See Appendix 2) 203 Broad climate suitability (environmental versatility) y=1, n=0 n 204 Native or naturalized in regions with tropical or subtropical climates y=1, n=0 y 205 Does the species have a history of repeated introductions outside its natural range? y=-2, ?=-1, n=0 y 301 Naturalized beyond native range y = 1*multiplier (see y Appendix 2), n= question 205 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see Appendix 2) 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see y Appendix 2) 304 Environmental weed n=0, y = 2*multiplier (see Appendix 2) 305 Congeneric weed n=0, y = 1*multiplier (see y Appendix 2) 401 Produces spines, thorns or burrs y=1, n=0 n 402 Allelopathic y=1, n=0 n 403 Parasitic y=1, n=0 n 404 Unpalatable to grazing animals y=1, n=-1 405 Toxic to animals y=1, n=0 y 406 Host -
Tonle Sap Ecosystem Water Quality Index Development and Fish Production
Sustainable Development and Planning III 901 Tonle Sap ecosystem water quality index development and fish production N. T. H. Yen1, K. Sunda1, S. Oishi1 & K. Ikejima2 1Department of Civil Engineering, University of Yamanashi, Japan 2Asian Institute of Technology, Bangkok, Thailand Abstract The Tonle Sap ecosystem of Cambodia is situated in the lower part of the Mekong River basin (MRB), the TS ecosystem water environment is influenced by 181,035 km2 of its catchments and water inflow from 4000 km in length of the upper Mekong River. The water quality index (WQI) was developed based on seven environmental chemical factors of DO, NO3+NH4, TOTP, TSS, temperature, pH and conductivity at Kampong Luong monitoring station during the period 1995 - 2002. On PCA, among 15 candidate parameters, the six most variation parameters of ‘concentration of TSS mg l-1’, ‘temperature C degree’, ‘conductivity mS m-1’, ‘ratio between N and P’, ‘average monthly variation of NO3+NH4N’, ‘average monthly variation of pH’, were identified and selected to constitute the WQI. Each parameter was scored as 1, 3 and 5 and narrated, in order, as poor, fair and good conditions. The yearly WQI score was calculated from these six parameter scores in the relative year. The WQI showed that the highest score of 4.3 was in 1996, while the lowest scores were of 1.3 and 1.0 in 2002 and 1998. Importantly, the WQI was significantly (P<0.05) correlated with the ‘dai’ fish catch (r2 = 0.858) and the fish biological group 4 (r-species) (r2 = 0.75) during the period 1995-2002 indicating that the index was sensitive to reflect the relation between water quality condition and fish production. -
Phytogeographic Review of Vietnam and Adjacent Areas of Eastern Indochina L
KOMAROVIA (2003) 3: 1–83 Saint Petersburg Phytogeographic review of Vietnam and adjacent areas of Eastern Indochina L. V. Averyanov, Phan Ke Loc, Nguyen Tien Hiep, D. K. Harder Leonid V. Averyanov, Herbarium, Komarov Botanical Institute of the Russian Academy of Sciences, Prof. Popov str. 2, Saint Petersburg 197376, Russia E-mail: [email protected], [email protected] Phan Ke Loc, Department of Botany, Viet Nam National University, Hanoi, Viet Nam. E-mail: [email protected] Nguyen Tien Hiep, Institute of Ecology and Biological Resources of the National Centre for Natural Sciences and Technology of Viet Nam, Nghia Do, Cau Giay, Hanoi, Viet Nam. E-mail: [email protected] Dan K. Harder, Arboretum, University of California Santa Cruz, 1156 High Street, Santa Cruz, California 95064, U.S.A. E-mail: [email protected] The main phytogeographic regions within the eastern part of the Indochinese Peninsula are delimited on the basis of analysis of recent literature on geology, geomorphology and climatology of the region, as well as numerous recent literature information on phytogeography, flora and vegetation. The following six phytogeographic regions (at the rank of floristic province) are distinguished and outlined within eastern Indochina: Sikang-Yunnan Province, South Chinese Province, North Indochinese Province, Central Annamese Province, South Annamese Province and South Indochinese Province. Short descriptions of these floristic units are given along with analysis of their floristic relationships. Special floristic analysis and consideration are given to the Orchidaceae as the largest well-studied representative of the Indochinese flora. 1. Background The Socialist Republic of Vietnam, comprising the largest area in the eastern part of the Indochinese Peninsula, is situated along the southeastern margin of the Peninsula. -
BIODIVERSITY CONSERVATION on the TIWI ISLANDS, NORTHERN TERRITORY: Part 1. Environments and Plants
BIODIVERSITY CONSERVATION ON THE TIWI ISLANDS, NORTHERN TERRITORY: Part 1. Environments and plants Report prepared by John Woinarski, Kym Brennan, Ian Cowie, Raelee Kerrigan and Craig Hempel. Darwin, August 2003 Cover photo: Tall forests dominated by Darwin stringybark Eucalyptus tetrodonta, Darwin woollybutt E. miniata and Melville Island Bloodwood Corymbia nesophila are the principal landscape element across the Tiwi islands (photo: Craig Hempel). i SUMMARY The Tiwi Islands comprise two of Australia’s largest offshore islands - Bathurst (with an area of 1693 km 2) and Melville (5788 km 2) Islands. These are Aboriginal lands lying about 20 km to the north of Darwin, Northern Territory. The islands are of generally low relief with relatively simple geological patterning. They have the highest rainfall in the Northern Territory (to about 2000 mm annual average rainfall in the far north-west of Melville and north of Bathurst). The human population of about 2000 people lives mainly in the three towns of Nguiu, Milakapati and Pirlangimpi. Tall forests dominated by Eucalyptus miniata, E. tetrodonta, and Corymbia nesophila cover about 75% of the island area. These include the best developed eucalypt forests in the Northern Territory. The Tiwi Islands also include nearly 1300 rainforest patches, with floristic composition in many of these patches distinct from that of the Northern Territory mainland. Although the total extent of rainforest on the Tiwi Islands is small (around 160 km 2 ), at an NT level this makes up an unusually high proportion of the landscape and comprises between 6 and 15% of the total NT rainforest extent. The Tiwi Islands also include nearly 200 km 2 of “treeless plains”, a vegetation type largely restricted to these islands. -
Cambodian Journal of Natural History
Cambodian Journal of Natural History Rediscovery of the Bokor horned frog Four more Cambodian bats How to monitor a marine reserve The need for community conservation areas Eleven new Masters of Science December 2013 Vol 2013 No. 2 Cambodian Journal of Natural History ISSN 2226–969X Editors Email: [email protected] • Dr Jenny C. Daltry, Senior Conservation Biologist, Fauna & Flora International. • Dr Neil M. Furey, Research Associate, Fauna & Flora International: Cambodia Programme. • Hang Chanthon, Former Vice-Rector, Royal University of Phnom Penh. • Dr Nicholas J. Souter, Project Manager, University Capacity Building Project, Fauna & Flora International: Cambodia Programme. International Editorial Board • Dr Stephen J. Browne, Fauna & Flora International, • Dr Sovanmoly Hul, Muséum National d’Histoire Singapore. Naturelle, Paris, France. • Dr Martin Fisher, Editor of Oryx—The International • Dr Andy L. Maxwell, World Wide Fund for Nature, Journal of Conservation, Cambridge, United Kingdom. Cambodia. • Dr L. Lee Grismer, La Sierra University, California, • Dr Jörg Menzel, University of Bonn, Germany. USA. • Dr Brad Pett itt , Murdoch University, Australia. • Dr Knud E. Heller, Nykøbing Falster Zoo, Denmark. • Dr Campbell O. Webb, Harvard University Herbaria, USA. Other peer reviewers for this volume • Dr Judith Eger, Royal Ontario Museum, Toronto, • Berry Mulligan, Fauna & Flora International, Phnom Canada. Penh, Cambodia. • Pisuth Ek-Amnuay, Siam Insect Zoo & Museum, • Prof. Dr. Annemarie Ohler, Muséum national Chiang Mai, Thailand. d’Histoire naturelle, Paris, France. • Dr James Guest, University of New South Wales, • Dr Jodi Rowley, Australian Museum, Sydney, Sydney, Australia. Australia. • Dr Kristofer M. Helgen, Smithsonian Institute, • Dr Manuel Ruedi, Natural History Museum of Washington DC, USA. Geneva, Geneva, Switz erland. -
Tonle Sap Lake and River and Confluence with the Mekong River in Cambodia Kenneth R
doi:10.2489/jswc.73.3.60A FEATURE Tonle Sap Lake and River and confluence with the Mekong River in Cambodia Kenneth R. Olson and Lois Wright Morton or centuries the floating villages on Figure 1 Tonle Sap Lake, Cambodia (figure 1), The floating villages on the upper 65 km of Tonle Sap River and in Tonle Sap Fhave derived their livelihoods from the Lake are home to fisheries: men, women, and children who make their livings fish and water resources of the lake and catching, processing, and marketing fish, reptiles, frogs and other amphibians, its expanding and contracting floodplains. insects, and aquatic vegetation. Historically, the lake enabled the powerful Khmer civilization near Siem Reap (figure 2) to develop an elaborate hydraulic com- plex to irrigate rice (Oryza sativa) fields and support one of the largest premodern urban populations in the world (Goscha 2016). Today the rice-fish diet continues to be the staple of rural and urban daily Copyright © 2018 Soil and Water Conservation Society. All rights reserved. meals throughout Southeast Asia. Journal of Soil and Water Conservation The Tonle Sap River flows 147 km (91 mi) southeast from Tonle Sap Lake to meet during the dry season with the Mekong River near Phnom Penh, the capital of Cambodia. In the monsoon season (May to October), the Mekong River floods and causes the water to back up into the Tonle Sap River, reversing its flow (Carling 2009). This wet season flow reversal brings Mekong River sediments, nutrients, and an abundance of fish into the lake and 73(3):60A-66A enlarges the lake into its floodplain 20 to ers produce more than 80% of Southeast the Mekong River and Cambodia’s Great 40 km (12 to 25 mi). -
Cruise Vietnam & Cambodia
Cruise Vietnam & Cambodia ©ICS Travel Group Best Time to Travel to Vietnam Vietnam Vietnam’s weather is dictated by two monsoons. The winter monsoon comes from the northeast between October and March, bringing damp Touristically, Vietnam delivers. Cruise an azure ocean decorated by surreal-looking and chilly winters to all areas north of Nha Trang, and dry and warm limestone islands in Halong Bay, and wind through the majestic inland karst mountains temperatures to the south. From April or May to October, the summer of Cao Bang. Hike mountain tracks and explore tribal villages near Sapa. Explore the monsoon brings hot, humid weather to the whole country except for bewitching backwaters of the Mekong Delta. Finally, no visit would be complete without those areas sheltered by mountains. For the best balance, travel in experiencing the energy of big-city life in Vietnam’s capital Hanoi, the grand old lady April, May or October. For those sticking to the south, November to of the Orient, and Ho Chi Minh City, the engine room of the economy and the nation. February is dry and a touch cooler. From July to November, violent and unpredictable typhoons hit central and northern Vietnam. Cambodia Best Time to Travel to Cambodia Cambodia had its hey day during the Angkorian period when the Khmers ruled much The best months to travel in Cambodia are November through April, of what we now know as Laos, Thailand and Vietnam. Evidence of this is seen in the when it is dry. Outside of these months, humidity increases and the rains sublime Angkor Wat, which is easily on a par with Machu Picchu or Petra.