Effects of Super Typhoons on Cyclonic Ocean Eddies in the Western North

Total Page:16

File Type:pdf, Size:1020Kb

Effects of Super Typhoons on Cyclonic Ocean Eddies in the Western North PUBLICATIONS Journal of Geophysical Research: Oceans AUTHOR’S PREFACE Effects of super typhoons on cyclonic ocean eddies in the TO A SPECIAL western North Pacific: A satellite data-based evaluation COLLECTION 10.1002/2013JC009575 between 2000 and 2008 Liang Sun1,2, Ying-Xin Li1, Yuan-Jian Yang1,3, Qiaoyan Wu2, Xue-Tao Chen1, Qiu-Yang Li1, Yu-Bin Li4, Special Section: and Tao Xian1 Western Pacific Ocean Circulation and Climate 1Key Laboratory of the Atmospheric Composition and Optical Radiation, CAS, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, People’s Republic of China, 2State Key Laboratory of Satellite Ocean Correspondence to: Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, People’s Republic of L. Sun, 3 [email protected] China, Key Laboratory of Atmospheric Sciences and Satellite Remote Sensing of Anhui Province, Anhui Institute of Meteorological Sciences, Hefei, People’s Republic of China, 4School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, People’s Republic of China Citation: Sun, L., Y.-X. Li, Y.-J. Yang, Q. Wu, X.-T. Chen, Q.-Y. Li, Y.-B. Li, and T. Xian (2014), Effects of super typhoons on Abstract A composite time series of the merged satellite altimeters sea surface height anomaly (SSHA) cyclonic ocean eddies in the western data and satellite-observed sea surface temperature (SST) data were used to identify eddies in the Western North Pacific: A satellite data-based North Pacific Ocean (WNPO), where there were numbers of intense typhoons. This study systematically evaluation between 2000 and 2008, J. Geophys. Res. Oceans, 119, doi:10.1002/ investigated 15 super typhoons during the period of 2000-2008 in the WNPO to study their impacts on the 2013JC009575. pre-typhoon ocean features, e.g., the cyclonic ocean eddy (COE) feature (closed contours of SSHA < 26 cm) and neutral condition (SSHA between 26 and 6 cm). Two new COEs are generated by two super typhoons, Received 7 NOV 2013 and 18 pre-existing COEs are intensified by 13 super typhoons. 5 of the 13 super typhoons each influenced Accepted 6 AUG 2014 two pre-exisiting COEs. Although the typhoon-induced maximum cooling centers had a right bias along the Accepted article online 11 AUG 2014 tracks due to wind conditions, pre-existing COEs also play a significant role in determining the strength and location of large SST cooling. Three possible factors (maximum wind speed, typhoon translation speed and the typhoon forcing time, Tf) are employed to explain the interactions. Above all, the changes of the COE geo- metric and physical parameters (e.g., effective radius, area, SST, SSHA, and eddy kinetic energy) were mostly related to the typhoon forcing time, Tf. This is because Tf is a parameter that is a combination of the typhoon’s translation speed, intensity and size. Although the typhoons may significantly impact COEs, such samples were not commonly observed. Thus, the impact of typhoon on the strength of COEs is generally inefficient. 1. Introduction When typhoons pass over the ocean, their strong winds stir the upper ocean and generate divergent outward flows through local (entrainment, vertical mixing, and upwelling) and nonlocal (horizontal advection, horizon- tal mixing, and pressure gradients) processes [Price,1981;Lin et al., 2003; Davis and Yan 2004; Han et al., 2012]. The wind stress vector of a typhoon turns clockwise with time on the right side of the track, which is roughly resonant with the current in the mixed layer. This, together with the asymmetry of wind stress, makes the upper ocean exhibit stronger sea surface temperature (SST) cooling on the right side of typhoon track [Price, 1981; Dickey and Simpson, 1983; Stramma et al., 1986; Vincent et al., 2013]. In addition to wind stress, it has been suggested that preexisting negative sea surface height anomaly (SSHA) features or cyclonic ocean eddies (COEs) play important roles in the response of the upper ocean to typhoons [Nan et al., 2005; Walker et al., 2005; Zheng et al., 2008, 2010; Liu et al., 2009]. The COEs provide a relatively unstable thermodynamic structure that easily elevates cold and nutrient-rich water. On the other hand, COEs might be influenced by typhoons in various ways. The preexisting cyclonic ocean circulation might be intensified under appropriate conditions after the passage of a typhoon [Shang et al., 2008; Sun et al., 2009, 2012; Yang et al., 2010, 2012b]. New cyclonic eddies were generated by looping trajectory typhoons in the South China Sea [Chu et al., 2000; Hu and Kawamura, 2004]. A cyclonic ocean eddy was observed in the preexisting positive SSHA area, which was result from three sequential typhoons in September 2008 [Yang et al., 2012a]. Recently, two COEs result from long forcing time of strong wind stress curl were found in two certain locations along the trails of binary typhoons [Yang et al., 2012b]. Above studies implied that certain typhoons, such as looping trajectory SUN ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 1 Journal of Geophysical Research: Oceans 10.1002/2013JC009575 Figure 1. (a) Tracks of 15 super typhoons. (b) The forcing time for typhoon Chanchu (2006). typhoons or sequential typhoons, passing over the same region, may play a notable role in intensifying or generating COEs. However, the underlining physical processes of typhoon’s impact on COEs are still not clear. Due to the harsh conditions bought out by typhoons, little in situ data were available to study the typhoon-ocean interactions. Fortunately, microwaves can penetrate clouds with little attenuation, pro- viding an uninterrupted view of the ocean surface accompanying a typhoon [Wentz et al., 2000]. The responses of COEs to typhoons were mostly studied by using microwave satellite data. However, the features of COEs observed by satellite are very limited. COEs are mostly represented by SST and SSHA. In this paper, we explore the response of COEs to typhoon in a more complete way. COEs are gener- ally represented by geometric parameters and physical parameters. Geometric parameters include the effective radius, the area, and the distance from the COE center to the typhoon center. Physical param- eters include SST, SSHA, and eddy kinetic energy (EKE) of the COE. Then, the responses of COEs to typhoons are studied by analyzing the correlation of these COE parameters and the properties of typhoons (i.e., intensity, translation speed, and forcing time). The western North Pacific Ocean (WNPO) is a region with high frequency of typhoons and abundant COEs observed all year round. This paper primarily investigated the activity of 20 COEs influenced by 15 super typhoons during the period of 2000–2008 in the WNPO (Figure 1a). Supper typhoons are defined as storms whose maximum 1 min sustained winds speed exceeding 59 m/s, see section 2 for details. The rest of the paper is organized as follows. In section 2, data and data processing method are presented. Two typical activities of COEs induced by typhoons Dujuan (2003) , Sudal (2004), and Chanchu (2006) are described in section 3. In section 4, the influences of typhoons on COEs are fully explored. Finally, a summary and discus- sion are presented in section 6. 2. Data and Method 2.1. Satellite Data and Parameters of COE Merged altimeter data were obtained from multiple satellite sensors, including those of the systems of Jason-1, TOPEX/Poseidon, Geosat Follow-On (GFO), European Remote Sensing 2 (ERS-2), and Envi- ronmental Satellite (ENVISAT). Data were produced and distributed by the Archiving, Validation and Interpretation of Satellite Oceanographic (AVISO) organization. Near real-time merged sea surface height anomaly (SSHA) data (TOPEX/POSEIDON or Jason-11 ERS-1/2 or ENVISAT) with Mercator grids are available at www.aviso.oceanobs.com. Currently, the products are available on a daily scale with 0.25 3 0.25 resolution in the global ocean. The daily SST data were derived from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI), with a spatial resolution of 0.25 3 0.25. The oceanic dynamic features are defined as positive-SSHA (anticyclonic eddy) feature (closed contours, SSHA > 6 cm), negative-SSHA (cyclonic eddy) feature (closed contours, SSHA < 26 cm), and neutral SUN ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 2 Journal of Geophysical Research: Oceans 10.1002/2013JC009575 condition (SSHA between 26 and 6 cm) [Lin et al., 2008] with a mononuclear eddy constrain [Li et al., 2014]. The eddy is usually in the form of an irregular circle with the eddy’s area of ACOE. The meridional component, ug, and the zonal component, vg, of the geostrophic velocity of the ocean cur- rent were calculated as follows: g @g g @g u 5 ; v 5 (1) g f @y g f @x where g is the acceleration of gravity, f is the Coriolis parameter, and g is the SSHA. If the eddy covers a region with n grids of 0.25 3 0.25, the EKE is computed [e.g., Xu et al., 2011]: Xn 1 2 2 EKE5 ðug1vgÞqAiHi (2) i51 2 3 where q 5 1020 kg/m is the density of seawater, Ai is the area of the ith grid, Hi is the depth of the ocean at ith grid according to the ‘‘Smith & Sandwell’’ database (the Gridded Global Relief Data (ETOPO2v2)) from National Geophysical Data Center. This database is a worldwide set of 2 min gridded ocean bathymetry derived from 1978 satellite radar altimetry of the sea surface. The changes of COE parameters induced by typhoon are defined as the differences between before COE under the influence of typhoon and COE after typhoon passage. In general, changes of COE parameters at a point might include two parts: the changes due to COE variations and the changes due to COE propagation.
Recommended publications
  • Performance of Horizontal Drains
    FACTUAL REPORT ON HONG KONG RAINFALL AND LANDSLIDES IN 2003 GEO REPORT No. 186 T.H.H. Hui & A.F.H. Ng GEOTECHNICAL ENGINEERING OFFICE CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT THE GOVERNMENT OF THE HONG KONG SPECIAL ADMINISTRATIVE REGION FACTUAL REPORT ON HONG KONG RAINFALL AND LANDSLIDES IN 2003 GEO REPORT No. 186 T.H.H. Hui & A.F.H. Ng This report was originally produced in April 2004 as GEO Special Project Report No. SPR 3/2004 - 2 - © The Government of the Hong Kong Special Administrative Region First published, September 2006 Prepared by: Geotechnical Engineering Office, Civil Engineering and Development Department, Civil Engineering and Development Building, 101 Princess Margaret Road, Homantin, Kowloon, Hong Kong. - 3 - PREFACE In keeping with our policy of releasing information which may be of general interest to the geotechnical profession and the public, we make available selected internal reports in a series of publications termed the GEO Report series. The GEO Reports can be downloaded from the website of the Civil Engineering and Development Department (http://www.cedd.gov.hk) on the Internet. Printed copies are also available for some GEO Reports. For printed copies, a charge is made to cover the cost of printing. The Geotechnical Engineering Office also produces documents specifically for publication. These include guidance documents and results of comprehensive reviews. These publications and the printed GEO Reports may be obtained from the Government’s Information Services Department. Information on how to purchase these documents is given on the last page of this report. R.K.S. Chan Head, Geotechnical Engineering Office September 2006 - 4 - FOREWORD This report presents a summary of the factual information on rainfall and landslides in Hong Kong throughout 2003.
    [Show full text]
  • Global Catastrophe Review – 2015
    GC BRIEFING An Update from GC Analytics© March 2016 GLOBAL CATASTROPHE REVIEW – 2015 The year 2015 was a quiet one in terms of global significant insured losses, which totaled around USD 30.5 billion. Insured losses were below the 10-year and 5-year moving averages of around USD 49.7 billion and USD 62.6 billion, respectively (see Figures 1 and 2). Last year marked the lowest total insured catastrophe losses since 2009 and well below the USD 126 billion seen in 2011. 1 The most impactful event of 2015 was the Port of Tianjin, China explosions in August, rendering estimated insured losses between USD 1.6 and USD 3.3 billion, according to the Guy Carpenter report following the event, with a December estimate from Swiss Re of at least USD 2 billion. The series of winter storms and record cold of the eastern United States resulted in an estimated USD 2.1 billion of insured losses, whereas in Europe, storms Desmond, Eva and Frank in December 2015 are expected to render losses exceeding USD 1.6 billion. Other impactful events were the damaging wildfires in the western United States, severe flood events in the Southern Plains and Carolinas and Typhoon Goni affecting Japan, the Philippines and the Korea Peninsula, all with estimated insured losses exceeding USD 1 billion. The year 2015 marked one of the strongest El Niño periods on record, characterized by warm waters in the east Pacific tropics. This was associated with record-setting tropical cyclone activity in the North Pacific basin, but relative quiet in the North Atlantic.
    [Show full text]
  • A Summary of Palau's Typhoon History 1945-2013
    A Summary of Palau’s Typhoon History 1945-2013 Coral Reef Research Foundation, Palau Dec, 2014 © Coral Reef Research Foundation 2014 Suggested citation: Coral Reef Research Foundation, 2014. A Summary of Palau’s Typhoon History. Technical Report, 17pp. www.coralreefpalau.org Additions and suggestions welcome. Please email: [email protected] 2 Summary: Since 1945 Palau has had 68 recorded typhoons, tropical storms or tropical depressions come within 200 nmi of its islands or reefs. At their nearest point to Palau, 20 of these were typhoon strength with winds ≥64kts, or an average of 1 typhoon every 3 years. November and December had the highest number of significant storms; July had none over 40 kts and August had no recorded storms. Data Compilation: Storms within 200 nmi (nautical miles) of Palau were identified from the Digital Typhoon, National Institute of Informatics, Japan web site (http://agora.ex.nii.ac.jp/digital- typhoon/reference/besttrack.html.en). The storm tracks and intensities were then obtained from the Joint Typhoon Warning Center (JTWC) (https://metoc.ndbc.noaa.gov/en/JTWC/). Three storm categories were used following the JTWC: Tropical Depression, winds ≤ 33 kts; Tropical Storm, winds 34-63 kts; Typhoon ≥64kts. All track data was from the JTWC archives. Tracks were plotted on Google Earth and the nearest distance to land or reef, and bearing from Palau, were measured; maximum sustained wind speed in knots (nautical miles/hr) at that point was recorded. Typhoon names were taken from the Digital Typhoon site, but typhoon numbers for the same typhoon were from the JTWC archives.
    [Show full text]
  • The Improvement of Trap by Considering Typhoon Intensity Variation
    THE IMPROVEMENT OF TRAP BY CONSIDERING TYPHOON INTENSITY VARIATION Yu-Chun Chen*1, Gin-Rong Liu2, and Yen-Ju Chen3 1Graduate Student, Institute of Atmospheric Physics, National Central University, 300, Jhongda Rd., Jhongli, Taoyuan 32001, Taiwan; Tel: + 886-3-4227151#57665 Email: [email protected] 2Professor, Central for Space and Remote Sensing Research, and Institute of Atmospheric Physics, National Central University, 300, Jhongda Rd., Jhongli, Taoyuan 32001, Taiwan; Tel: + 886-3-4227151#57634 E-mail: [email protected] 3Graduate Student, Institute of Atmospheric Physics, National Central University, 300, Jhongda Rd., Jhongli, Taoyuan 32001, Taiwan; Tel: + 886-3-4227151#57634 Email: [email protected] KEY WORDS: Typhoon, TRaP, Typhoon Intensity, Typhoon Rainfall ABSTRACT: For years, the flash floods, mudflows and landslides brought by typhoons always cause severe loss of property and human life. For this reason, it is crucial to develop a more accurate and prompt typhoon rainfall prediction technique and thus can provide necessary rainfall potential information to the relevant disaster mitigation agencies. Kidder et al. (2005) developed the Tropical Rainfall Potential (TRaP) technique, which applied satellite-borne passive microwave radiometers, to retrieve a tropical cyclone’s rainfall amount and predict its 24-h accumulated rainfall distribution. However, the effects of a tropical cyclone’s rainband rotation and intensity variation were not considered in their method. To obtain a better approximation to the actual rainfall system, this study will improve the TRaP technique by considering those effects. In the typhoon intensity variation part, the method proposed by DeMaria (2006) was applied to predict the 6-h intensity change with GOES-9 and MTSAT satellites, and the result was further extended to predict the 24-h intensity change and accumulated rainfall.
    [Show full text]
  • The Interaction of Supertyphoon Maemi (2003) with a Warm Ocean Eddy
    17A.2 THE INTERACTION OF SUPERTYPHOON MAEMI (2003) WITH A WARM OCEAN EDDY I-I Lin1 ,Chun-Chieh Wu2, Kerry A. Emanuel3, W. Timothy Liu4, and I-Huan Lee5 1National Center for Ocean Research, Taipei, Taiwan 2 Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan 3Dept. of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, USA 4Jet Propulsion Lab, NASA, USA 5Inst. of Marine Geology and Chemistry, National Taiwan Sun Yat-Sen Univ., Kaohsiung, Taiwan 1. INTRODUCTION impact of the NWPO warm ocean eddies on The Northwest Pacific Ocean (NWPO) is the typhoon intensification is not well understood. world's most prolific generator of tropical cyclones, This work serves as our first investigation of producing about 6-10 category-4 (in Saffir-Simpson the impact of a warm ocean eddy on the intensity scale) or category-5 typhoons each year. These change of Maemi (2003) in the NWPO, by using the severe typhoons are direct threats to the half-billion synergy of the multiple remote sensing data and people living on the coast of East Asia. The high the CHIPS (Coupled Hurricane Intensity Prediction frequency of strong typhoons in these regions is System) model (Emanuel, 1999). partly related to the large area of warm sea surface temperature (SST) and correspondingly large 2. EXPERIMENT DESIGN potential intensity (Emanuel 1991). Nevertheless, TOPEX/Poseidon satellite altimetry Sea it remains unclear why some storms reach higher Surface Height Anomaly (SSHA) data and cloud- intensity than others. penetrating SST data from the Tropical Rainfall Recent studies (Bender and Ginis, 2000; Measuring Mission (TRMM) Microwave Imager Shay et al., 2000; Goni and Trinanes, 2003) (TMI) are used to improve the initial and boundary suggest that one of the major stumbling blocks in conditions for hindcast experiments using CHIPS.
    [Show full text]
  • World - ECHO Flash Events
    17 July 2014: World - ECHO Flash Events Gaza - Israel – Conflict Syria – Humanitarian access / assistance Tropical cyclone Disease outbreak Legend • Both parties agreed to respect a humanitarian pause • As of 16 July, UN agencies and NGO partners are Conflict Humanitarian access of 5 hours after 9 days of fighting. This must allow organizing the delivery of assistance through Cyclones Track points safe access for humanitarian assistance. designated border points to reach up to 2.9 million WIND_SPEEDTROPICAL CYCLONE INTENSITY TROPICAL CYCLONE • Since the start of Operation “Protective Edge” on 7 more people. July 2014, over 200 Palestinians have been killed in • The World Food Program is putting in place the UN Ï Tropical0.000000 Depression - 17.000000 Observed position Gaza and more than thousand have been injured. monitoring mechanism mandated in the relevant Tropical Storm Forecast position (ECHO) resolution. UNICEF has already positioned supplies Ï 17.000001 - 32.500000 ready for the first cross-border convoys. Area of Forecast Typhoon (ECHO, UN) Track Uncertainty Ï 32.500001 - 69.000000 Ï 69.000001 - 100.000000 SYRIA CHINA PALESTINE Gaza 17 July 6.00 UTC ISRAEL 138km/h sust. winds RAMMASUN GUINEA VIETNAM SIERRA LEONE THE LIBERIA PHILIPPINES Philippines, China, Vietnam – Tropical Cyclone RAMMASUN West Africa – Ebola Virus Disease outbreak • Typhoon RAMMASUN (named “GLENDA” in The Philippines) made Typhoon RAMMASUN landfall overnight 15-16 July (local time) in Albay and Quezon. On 17 Damage in The Philippines • As the number of Ebola cases and deaths in Guinea and, in particular, July, 6.00 UTC, its centre was located over the South China Sea, as of 17 July; source: NDRRMC Sierra Leone and Liberia continues to mount (964 cases and 603 approx.
    [Show full text]
  • Initializing the WRF Model with Tropical Cyclone Real-Time Reports Using the Ensemble
    Initializing the WRF Model with Tropical Cyclone Real-Time Reports using the Ensemble Kalman Filter Algorithm Tien Duc Du(1), Thanh Ngo-Duc(2), and Chanh Kieu(3)* (1)National Center for Hydro-Meteorological Forecasting, 8 Phao Dai Lang, Hanoi, Vietnam 1 (2)Department of Space and Aeronautics, University of Science and Technology of Hanoi, Vietnam 2 (3)Department of Earth and Atmospheric Sciences, Indiana University, Bloomington IN 47405, USA Revised: 18 April 2017 Submitted to Pure and Applied Geophysical Science Abbreviated title: Tropical Cyclone Ensemble Forecast Keywords: Tropical cyclones, ensemble Kalman filter, the WRF model, tropical cyclone vital, ensemble forecasting ____________________ *Corresponding author: Chanh Kieu, Atmospheric Program, GY428A Geological Building, Department of Earth and Atmospheric Sciences, Indiana University, Bloomington, IN 47405. Tel: 812-856-5704. Email: [email protected]. 1 1 Abstract 2 This study presents an approach to assimilate tropical cyclone (TC) real-time reports and the 3 University of Wisconsin-Cooperative Institute for Meteorological Satellite Studies (CIMSS) 4 Atmospheric Motion Vectors (AMV) data into the Weather Research and Forecasting (WRF) model 5 for TC forecast applications. Unlike current methods in which TC real-time reports are used to either 6 generate a bogus vortex or spin-up a model initial vortex, the proposed approach ingests the TC real- 7 time reports through blending a dynamically consistent synthetic vortex structure with the CIMSS- 8 AMV data. The blended dataset is then assimilated into the WRF initial condition, using the local 9 ensemble transform Kalman filter (LETKF) algorithm. Retrospective experiments for a number of 10 TC cases in the north Western Pacific basin during 2013-2014 demonstrate that this approach could 11 effectively increase both the TC circulation and enhance the large-scale environment that the TCs are 12 embedded in.
    [Show full text]
  • Introduction to Emergency Management Second Edition
    Introduction to Emergency Management Second Edition Introduction to Emergency Management Second Edition George D. Haddow Jane A. Bullock With Contributions by Damon P. Coppola Amsterdam • Boston • Heidelberg • London • New York • Oxford • Paris San Diego • San Francisco • Singapore • Sydney • Tokyo Elsevier Butterworth–Heinemann 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA Linacre House, Jordan Hill, Oxford OX2 8DP, UK Copyright © 2006, Elsevier Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, e-mail: permissions@elsevier. co.uk. You may also complete your request on-line via the Elsevier homepage (http://elsevier.com), by selecting “Customer Support” and then “Obtaining Permissions.” Recognizing the importance of preserving what has been written, Elsevier prints its books on acid-free paper whenever possible. Library of Congress Cataloging-in-Publication Data Haddow, George D. Introduction to emergency management / George D. Haddow, Jane A. Bullock. — 2nd ed. p. cm. Includes bibliographical references and index. ISBN 0-7506-7961-1 (hardcover : alk. paper) 1. Emergency management. 2. Emergency management—United States. I. Bullock, Jane A. II. Title. HV551.2.H3
    [Show full text]
  • Statistical Characteristics of the Response of Sea Surface Temperatures to Westward Typhoons in the South China Sea
    remote sensing Article Statistical Characteristics of the Response of Sea Surface Temperatures to Westward Typhoons in the South China Sea Zhaoyue Ma 1, Yuanzhi Zhang 1,2,*, Renhao Wu 3 and Rong Na 4 1 School of Marine Science, Nanjing University of Information Science and Technology, Nanjing 210044, China; [email protected] 2 Institute of Asia-Pacific Studies, Faculty of Social Sciences, Chinese University of Hong Kong, Hong Kong 999777, China 3 School of Atmospheric Sciences, Sun Yat-Sen University and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; [email protected] 4 College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China; [email protected] * Correspondence: [email protected]; Tel.: +86-1888-885-3470 Abstract: The strong interaction between a typhoon and ocean air is one of the most important forms of typhoon and sea air interaction. In this paper, the daily mean sea surface temperature (SST) data of Advanced Microwave Scanning Radiometer for Earth Observation System (EOS) (AMSR-E) are used to analyze the reduction in SST caused by 30 westward typhoons from 1998 to 2018. The findings reveal that 20 typhoons exerted obvious SST cooling areas. Moreover, 97.5% of the cooling locations appeared near and on the right side of the path, while only one appeared on the left side of the path. The decrease in SST generally lasted 6–7 days. Over time, the cooling center continued to diffuse, and the SST gradually rose. The slope of the recovery curve was concentrated between 0.1 and 0.5.
    [Show full text]
  • Ingredients for a Tropical Cyclone /Typhoon
    Saffir-Simpson Tropical Cyclone Scale Examples of Satellite Imagery for Potential Damages Examples of Damage for Each (STCS) Each Category (structures, infrastructure, and vegetation) Category Tropical Storm Category A STCS is a scale that relates maximum tropical cyclone Damage only to the flimsiest lean-to type structure. TS CAT B TY CAT 1 Tropical cyclone is a general term that refers to Minor damage to banana and papaya trees. surface winds to potential damage and storm surge. A tropical depressions, tropical storms, and typhoons. similar scale has been used in the Atlantic for three decades. Guard and Lander (1999) adapted the Tropical Storm Category B TS CAT A TS CAT B Atlantic scale to tropical regions and added a tropical Major damage to huts made of thatch or loosely attached storm scale. STCS considers: tropical building corrugated sheet metal or plywood; sheet metal and materials/practices; tropical vegetation/agriculture; plywood may become airborne. Minor damage to weakening effects of termites, wood rot, salt spray; buildings of light materials. Moderate damage to banana and effects of the coral reefs on storm surge. and papaya trees. Damage to banana trees Weakened, unguyed Two tropical storm categories; five typhoon categories Typhoon Category 1 wooden power poles Corrugated metal and plywood stripped from poorly can break Note: Categories are based on 1-min. average maximum constructed or termite infested structures and may become sustained winds (MSW) and it’s corresponding 1-3 airborne. Few wooden, non-reinforced power poles tilted TY CAT 2 TY CAT 3 second peak gust. and some rotten power poles broken.
    [Show full text]
  • Capital Adequacy (E) Task Force RBC Proposal Form
    Capital Adequacy (E) Task Force RBC Proposal Form [ ] Capital Adequacy (E) Task Force [ x ] Health RBC (E) Working Group [ ] Life RBC (E) Working Group [ ] Catastrophe Risk (E) Subgroup [ ] Investment RBC (E) Working Group [ ] SMI RBC (E) Subgroup [ ] C3 Phase II/ AG43 (E/A) Subgroup [ ] P/C RBC (E) Working Group [ ] Stress Testing (E) Subgroup DATE: 08/31/2020 FOR NAIC USE ONLY CONTACT PERSON: Crystal Brown Agenda Item # 2020-07-H TELEPHONE: 816-783-8146 Year 2021 EMAIL ADDRESS: [email protected] DISPOSITION [ x ] ADOPTED WG 10/29/20 & TF 11/19/20 ON BEHALF OF: Health RBC (E) Working Group [ ] REJECTED NAME: Steve Drutz [ ] DEFERRED TO TITLE: Chief Financial Analyst/Chair [ ] REFERRED TO OTHER NAIC GROUP AFFILIATION: WA Office of Insurance Commissioner [ ] EXPOSED ________________ ADDRESS: 5000 Capitol Blvd SE [ ] OTHER (SPECIFY) Tumwater, WA 98501 IDENTIFICATION OF SOURCE AND FORM(S)/INSTRUCTIONS TO BE CHANGED [ x ] Health RBC Blanks [ x ] Health RBC Instructions [ ] Other ___________________ [ ] Life and Fraternal RBC Blanks [ ] Life and Fraternal RBC Instructions [ ] Property/Casualty RBC Blanks [ ] Property/Casualty RBC Instructions DESCRIPTION OF CHANGE(S) Split the Bonds and Misc. Fixed Income Assets into separate pages (Page XR007 and XR008). REASON OR JUSTIFICATION FOR CHANGE ** Currently the Bonds and Misc. Fixed Income Assets are included on page XR007 of the Health RBC formula. With the implementation of the 20 bond designations and the electronic only tables, the Bonds and Misc. Fixed Income Assets were split between two tabs in the excel file for use of the electronic only tables and ease of printing. However, for increased transparency and system requirements, it is suggested that these pages be split into separate page numbers beginning with year-2021.
    [Show full text]
  • Structural and Intensity Changes of Concentric Eyewall Typhoons in the Western North Pacific Basin
    2632 MONTHLY WEATHER REVIEW VOLUME 141 Structural and Intensity Changes of Concentric Eyewall Typhoons in the Western North Pacific Basin YI-TING YANG AND HUNG-CHI KUO Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan ERIC A. HENDRICKS AND MELINDA S. PENG Naval Research Laboratory, Monterey, California (Manuscript received 31 August 2012, in final form 7 February 2013) ABSTRACT An objective method is developed to identify concentric eyewalls (CEs) for typhoons using passive mi- crowave satellite imagery from 1997 to 2011 in the western North Pacific basin. Three CE types are identified: a CE with an eyewall replacement cycle (ERC; 37 cases), a CE with no replacement cycle (NRC; 17 cases), and a CE that is maintained for an extended period (CEM; 16 cases). The inner eyewall (outer eyewall) of the ERC (NRC) type dissipates within 20 h after CE formation. The CEM type has its CE structure maintained for more than 20 h (mean duration time is 31 h). Structural and intensity changes of CE typhoons are dem- onstrated using a T–Vmax diagram (where T is the brightness temperature and Vmax is the best-track es- timated intensity) for a time sequence of the intensity and convective activity (CA) relationship. While the intensity of typhoons in the ERC and CEM cases weakens after CE formation, the CA is maintained or increases. In contrast, the CA weakens in the NRC cases. The NRC (CEM) cases typically have fast (slow) northward translational speeds and encounter large (small) vertical shear and low (high) sea surface tem- 2 peratures. The CEM cases have a relatively high intensity (63 m s 1), and the moat size (61 km) and outer eyewall width (70 km) are approximately 50% larger than the other two categories.
    [Show full text]