Remote Sensing Observations of the Subsidence Zone Within the Eye of Typhoon Nuri in Hong Kong in 2008 C.P

Total Page:16

File Type:pdf, Size:1020Kb

Remote Sensing Observations of the Subsidence Zone Within the Eye of Typhoon Nuri in Hong Kong in 2008 C.P Remote Sensing Observations of the Subsidence Zone Within the Eye of Typhoon Nuri in Hong Kong in 2008 C.P. Wong1, P.W. Chan1 1Hong Kong Observatory, 134A Nathan Road, Kowloon, Hong Kong, China, [email protected] ABSTR ACT to the south of Tsing Yi Island, and turned northwards There are a number of ground-based remote sensing to cross the northeastern part of Lantau Island, Tuen equipment operating at or near the Hong Kong Inter- Mun and Yuen Long that ev ening. Nuri then crossed national Airport (HKIA), including two wind prof ilers, a Deep Bay, the western part of Shenzhen and the Pearl minisodar (sonic radar) and a multi-wavelength micro- River Estuary that night and made a second landfall wav e radiometer. The wind profilers and minisodar near Nansha of the Guangdong province subse- are able to measure the three components of wind, quently . whilst the microwave radiometer provides the tem- Radar imagery in Figure 2 depicts that there was no perature profile of the troposphere continuously. In intense precipitation at 7 p.m. on 22 August 2008 at August 2008, during the period when Typhoon Nuri Siu Ho Wan and near the centre of Nuri. Only a f ew made landfall in Hong Kong, these equipment millimeters of rainfall were estimated in the imagery. prov ided continuous data f or close monitoring of the In f act, only a few millimeters of rainfall were recorded v ariation of dynamic and thermodynamic parameters by the automatic weather stations nearby Nuri’s eye. of the atmosphere. When the eye of Nuri approached HKIA, a subsidence zone with downward motion of up 2. REMOTE-SENSING EQUIPMENT to 6 m/s within the eye was captured by the wind pro- f iler and minisodar while rise of temperature of 6 deg The radar wind prof ilers located at Siu Ho Wan and C together with a temperature inversion at the lower Sha Lo Wan (locations in Figure 1) continuously moni- atmosphere were revealed by the microwave radiome- tored the v ariation of v ertical wind profiles when Nuri ter. This paper analyses the remote sensing data was ov er Hong Kong. Technical details of these pro- mentioned above. f ilers can be f ound in [1]. They belong to the boundary -layer type and operate at a f requency of 1299 MHz. Wind profiles, including the horizontal and 1. INTRODUCTION v erticalv elocities, are available every 10 minutes. There are a number of remote sensing equipment operating in Hong Kong, including the wind profiler, The minisodar (co-located with Siu Ho Wan wind minisodar and multi-wavelength microwave radiome- prof iler) uses acoustic waves of 4500 kHz to disturb ter. The wind prof iler and minisodar measure the the atmosphere. The turbulent eddies in the atmos- three components of wind, whilst the microwave radi- phere will cause the sound wave to become reflected. ometer provides the temperature profile of the tropo- From the backscattered signal, the three-dimensional sphere continuously. In August 2008, during the pe- wind components of the lower atmosphere could be riod when Ty phoon Nuri made landfall in Hong Kong, obtained. The detection height of the minisodar is 100 these equipment provided continuous data f or close m and the height resolution is 5 m. Wind profiles are monitoring of the v ariation of dynamic and thermody- av ailable every 5 minutes. namic profiles of the atmosphere. Nuri was the f ourth The microwave radiometer at the HKIA (location in tropical cyclone that necessitated the issuance of Figure 1) is similar to that described in [2]. It retrieves tropical cyclone warning signals in Hong Kong in 2008. the temperature and humidity profiles up to 10 km by It also necessitated the issuance of the Increasing measuring the radiation intensity at 14 channels in the Gale or Storm Signal No. 9. This was the f irst No. 9 microwave spectrum that are dominated by molecular signal since the passage of Typhoon Dujuan in Sep- oxy gen emissions (51-59 GHz) and atmospheric water tember 2003. v apor (22-30 GHz) respectively. The microwave On 22 August 2008, Nuri made landfall in Hong Kong radiometer is able to make both zenith scans (for tem- and its track within the territory is given in Figure 1. perature and humidity profiles up to 10 km) and eleva- Ty phoon Nuri was f irst located near the Hong Kong tion scans (for temperature measurements within the University of Science and Technology (H.K.U. of Sci & boundary layer of the atmosphere, up to 2 km). Tech) in Sai Kung area ov er the eastern part of Hong Kong at around 4:50 p.m. (08:50 UTC, local time = 3. WIND PROFILER OBSERVATIONS UTC + 8 hours) and weakened into a sev ere tropical Figure 3 depicts that, at around 7 p.m. on 22 August storm. Under the effect of terrain, the circulation of 2008 when the eye of Nuri moved closer to the Siu Ho Nuri re-organized itself. The original centre moved Wan profiler, changes in the v ertical wind prof ile northwestwards and dissipated rapidly. A new centre occurred at altitudes of 1800 m to 3000 m abov e Siu f ormed near Tseung Kwan O and turned to move Ho Wan. Within this y ear, the wind speed reduced westwards, passing over the eastern part of Victoria signif icantly, changing f rom f resh northwesterly to light Harbour and the southern part of Kowloon Peninsula westerlies, and finally picking up as strong southwest- within 1 km south of the Hong Kong Observatory erlies. Similar variation of the wind profile occurred at (HKO) headquarters. The centre of Nuri then passed altitudes of 3000 m to 4200 m later at about 8 p.m., 6. COMPARISON WITH OTHER STUDIES and similar changes also occurred near the surface Because of the high temporal resolution, wind profilers (between the ground and 600 m) at about the same become more important in daily meteorological time. The appearance of the tilting of the circulation operations. Reference [3] made use of wind profiler centre with height within the eye of Nuri suggests that data f rom Macao and Hong Kong to analyze the tropi- the intensity of Nuri had weakened. cal storm Kompasu. Their result showed that under If we consider the vertical motion measured by the Siu the influence of a tropical storm, the change in wind Ho Wan profiler, subsidence occurred from a height of direction could be v ery f ast and there was an obvious 4200 m to near the surface at about 6:30 p.m. (Figure change in the wind direction before and after a tropical 4). The blue colour in the figure represents downward storm made landfall. In the present study, besides the motion. Approaching 8 p.m., the subsidence was change in wind direction with the passage of Nuri, the ev en stronger than before with vertical v elocity subsidence associated with the cyclone is also (downward) reaching 5.8 m/s. Precipitation could also examined from v erticalv elocity data of wind profiler. appear as downward motion in the data of boundary - There are v ery f ew studies to observe the warm core lay er wind profiler. However, the radar imagery in structure of tropical cyclones using ground-based Figure 2 showed that there was no intense precipita- microwave radiometers so f ar. There have been tion near Siu Ho Wan around the time. Theref ore the studies to observe the warm core using satellite-based downward motion in Figure 4 is believed to mainly microwave radiometer, e.g. [4]. At the warm core of a arise f rom the subsidence within the eye of Nuri. tropical cyclone, the temperature difference at the higher lev els of the troposphere (at around 250 hPa) 4. MINISODAR OBSERVATIONS could reach 16 degrees Celsius. This paper gives a Figure 5 shows that when Nuri passed over Siu Ho preliminary study on the warm core structure of a Wan, there was an obvious change in the wind tropical cyclone in the boundary layer using a ground- direction in the lower atmosphere as measured by the based microwave radiometer. minisodar. The lower lev el wind changed f rom north- westerly to northeasterly at around 6 p.m. initially. 7. CONCLUSIONS After Nuri departed Siu Ho Wan, southwesterlies pre- The remote sensing equipment operating in Hong v ailed at the lower levels after 8 p.m. Kong, including the wind profiler, minisodar and multi- Figure 6 depicts the distribution of the vertical wav elength microwave radiometer, provide continuous v elocities at the lower levels of Siu Ho Wan at around data f or the close monitoring of the v ariation of 7 p.m. It is observed that subsidence occurred at the dy namic and thermodynamic profiles of the atmos- lower lev els of Siu Ho Wan with the maximum down- phere. Their data are used in the present paper to ward v elocity of about 3.2 m/s. In between 7 p.m. and document the eye structure of Typhoon Nuri when it 8 p.m., the subsidence persisted (not shown) and the made landf all over Hong Kong. The wind prof iler and maximum downward v elocity reached about 4.3 m/s. the minisodar capture the subsidence motion within This v alue was close to that measured by the wind the eye. The microwave radiometer measures the prof iler in Section 3. warming of the boundary layer associated with the subsidence. The remote-sensing equipment would be used to study the structures of other tropical cyclones 5.
Recommended publications
  • Performance of Horizontal Drains
    FACTUAL REPORT ON HONG KONG RAINFALL AND LANDSLIDES IN 2003 GEO REPORT No. 186 T.H.H. Hui & A.F.H. Ng GEOTECHNICAL ENGINEERING OFFICE CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT THE GOVERNMENT OF THE HONG KONG SPECIAL ADMINISTRATIVE REGION FACTUAL REPORT ON HONG KONG RAINFALL AND LANDSLIDES IN 2003 GEO REPORT No. 186 T.H.H. Hui & A.F.H. Ng This report was originally produced in April 2004 as GEO Special Project Report No. SPR 3/2004 - 2 - © The Government of the Hong Kong Special Administrative Region First published, September 2006 Prepared by: Geotechnical Engineering Office, Civil Engineering and Development Department, Civil Engineering and Development Building, 101 Princess Margaret Road, Homantin, Kowloon, Hong Kong. - 3 - PREFACE In keeping with our policy of releasing information which may be of general interest to the geotechnical profession and the public, we make available selected internal reports in a series of publications termed the GEO Report series. The GEO Reports can be downloaded from the website of the Civil Engineering and Development Department (http://www.cedd.gov.hk) on the Internet. Printed copies are also available for some GEO Reports. For printed copies, a charge is made to cover the cost of printing. The Geotechnical Engineering Office also produces documents specifically for publication. These include guidance documents and results of comprehensive reviews. These publications and the printed GEO Reports may be obtained from the Government’s Information Services Department. Information on how to purchase these documents is given on the last page of this report. R.K.S. Chan Head, Geotechnical Engineering Office September 2006 - 4 - FOREWORD This report presents a summary of the factual information on rainfall and landslides in Hong Kong throughout 2003.
    [Show full text]
  • Global Catastrophe Review – 2015
    GC BRIEFING An Update from GC Analytics© March 2016 GLOBAL CATASTROPHE REVIEW – 2015 The year 2015 was a quiet one in terms of global significant insured losses, which totaled around USD 30.5 billion. Insured losses were below the 10-year and 5-year moving averages of around USD 49.7 billion and USD 62.6 billion, respectively (see Figures 1 and 2). Last year marked the lowest total insured catastrophe losses since 2009 and well below the USD 126 billion seen in 2011. 1 The most impactful event of 2015 was the Port of Tianjin, China explosions in August, rendering estimated insured losses between USD 1.6 and USD 3.3 billion, according to the Guy Carpenter report following the event, with a December estimate from Swiss Re of at least USD 2 billion. The series of winter storms and record cold of the eastern United States resulted in an estimated USD 2.1 billion of insured losses, whereas in Europe, storms Desmond, Eva and Frank in December 2015 are expected to render losses exceeding USD 1.6 billion. Other impactful events were the damaging wildfires in the western United States, severe flood events in the Southern Plains and Carolinas and Typhoon Goni affecting Japan, the Philippines and the Korea Peninsula, all with estimated insured losses exceeding USD 1 billion. The year 2015 marked one of the strongest El Niño periods on record, characterized by warm waters in the east Pacific tropics. This was associated with record-setting tropical cyclone activity in the North Pacific basin, but relative quiet in the North Atlantic.
    [Show full text]
  • Recent Advances in Research on Tropical Cyclogenesis
    Available online at www.sciencedirect.com ScienceDirect Tropical Cyclone Research and Review 9 (2020) 87e105 www.keaipublishing.com/tcrr Recent advances in research on tropical cyclogenesis Brian H. Tang a,*, Juan Fang b, Alicia Bentley a,y, Gerard Kilroy c, Masuo Nakano d, Myung-Sook Park e, V.P.M. Rajasree f, Zhuo Wang g, Allison A. Wing h, Liguang Wu i a University at Albany, State University of New York, Albany, USA b Nanjing University, Nanjing, China c Ludwig-Maximilians University of Munich, Munich, Germany d Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan e Korea Institute of Ocean Science and Technology, Busan, South Korea f Centre for Atmospheric and Climate Physics Research, University of Hertfordshire, Hatfield, UK g University of Illinois, Urbana, USA h Florida State University, Tallahassee, USA i Fudan University, Shanghai, China Available online 7 May 2020 Abstract This review article summarizes recent (2014e2019) advances in our understanding of tropical cyclogenesis, stemming from activities at the ninth International Workshop on Tropical Cyclones. Tropical cyclogenesis involves the interaction of dynamic and thermodynamic processes at multiple spatio-temporal scales. Studies have furthered our understanding of how tropical cyclogenesis may be affected by external processes, such as intraseasonal oscillations, monsoon circulations, the intertropical convergence zone, and midlatitude troughs and cutoff lows. Addi- tionally, studies have furthered our understanding of how tropical cyclogenesis may be affected by internal processes, such as the organization of deep convection; the evolution of the “pouch” structure; the role of friction; the development of the moist, warm core; the importance of surface fluxes; and the role of the mid-level vortex.
    [Show full text]
  • The Improvement of Trap by Considering Typhoon Intensity Variation
    THE IMPROVEMENT OF TRAP BY CONSIDERING TYPHOON INTENSITY VARIATION Yu-Chun Chen*1, Gin-Rong Liu2, and Yen-Ju Chen3 1Graduate Student, Institute of Atmospheric Physics, National Central University, 300, Jhongda Rd., Jhongli, Taoyuan 32001, Taiwan; Tel: + 886-3-4227151#57665 Email: [email protected] 2Professor, Central for Space and Remote Sensing Research, and Institute of Atmospheric Physics, National Central University, 300, Jhongda Rd., Jhongli, Taoyuan 32001, Taiwan; Tel: + 886-3-4227151#57634 E-mail: [email protected] 3Graduate Student, Institute of Atmospheric Physics, National Central University, 300, Jhongda Rd., Jhongli, Taoyuan 32001, Taiwan; Tel: + 886-3-4227151#57634 Email: [email protected] KEY WORDS: Typhoon, TRaP, Typhoon Intensity, Typhoon Rainfall ABSTRACT: For years, the flash floods, mudflows and landslides brought by typhoons always cause severe loss of property and human life. For this reason, it is crucial to develop a more accurate and prompt typhoon rainfall prediction technique and thus can provide necessary rainfall potential information to the relevant disaster mitigation agencies. Kidder et al. (2005) developed the Tropical Rainfall Potential (TRaP) technique, which applied satellite-borne passive microwave radiometers, to retrieve a tropical cyclone’s rainfall amount and predict its 24-h accumulated rainfall distribution. However, the effects of a tropical cyclone’s rainband rotation and intensity variation were not considered in their method. To obtain a better approximation to the actual rainfall system, this study will improve the TRaP technique by considering those effects. In the typhoon intensity variation part, the method proposed by DeMaria (2006) was applied to predict the 6-h intensity change with GOES-9 and MTSAT satellites, and the result was further extended to predict the 24-h intensity change and accumulated rainfall.
    [Show full text]
  • Report on UN ESCAP / WMO Typhoon Committee Members Disaster Management System
    Report on UN ESCAP / WMO Typhoon Committee Members Disaster Management System UNITED NATIONS Economic and Social Commission for Asia and the Pacific January 2009 Disaster Management ˆ ` 2009.1.29 4:39 PM ˘ ` 1 ¿ ‚fiˆ •´ lp125 1200DPI 133LPI Report on UN ESCAP/WMO Typhoon Committee Members Disaster Management System By National Institute for Disaster Prevention (NIDP) January 2009, 154 pages Author : Dr. Waonho Yi Dr. Tae Sung Cheong Mr. Kyeonghyeok Jin Ms. Genevieve C. Miller Disaster Management ˆ ` 2009.1.29 4:39 PM ˘ ` 2 ¿ ‚fiˆ •´ lp125 1200DPI 133LPI WMO/TD-No. 1476 World Meteorological Organization, 2009 ISBN 978-89-90564-89-4 93530 The right of publication in print, electronic and any other form and in any language is reserved by WMO. Short extracts from WMO publications may be reproduced without authorization, provided that the complete source is clearly indicated. Editorial correspon- dence and requests to publish, reproduce or translate this publication in part or in whole should be addressed to: Chairperson, Publications Board World Meteorological Organization (WMO) 7 bis, avenue de la Paix Tel.: +41 (0) 22 730 84 03 P.O. Box No. 2300 Fax: +41 (0) 22 730 80 40 CH-1211 Geneva 2, Switzerland E-mail: [email protected] NOTE The designations employed in WMO publications and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of WMO concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • Minnesota Weathertalk Newsletter for Friday, January 3, 2014
    Minnesota WeatherTalk Newsletter for Friday, January 3, 2014 To: MPR's Morning Edition From: Mark Seeley, Univ. of Minnesota, Dept of Soil, Water, and Climate Subject: Minnesota WeatherTalk Newsletter for Friday, January 3, 2014 HEADLINES -December 2013 was climate near historic for northern communities -Cold start to 2014 -Weekly Weather potpourri -MPR listener questions -Almanac for January 3rd -Past weather -Outlook Topic: December 2013 near historic for far north In assessing the climate for December 2013 it should be said that from the standpoint of cold temperatures the month was quite historic for many northern Minnesota communities, especially due to the Arctic cold that prevailed over the last few days of the month. Minnesota reported the coldest temperature in the 48 contiguous states thirteen times during the month, the highest frequency among all 48 states. Many northern observers saw overnight temperatures drop below -30 degrees F on several occasions. The mean monthly temperature for December from several communities ranked among the coldest Decembers ever. A sample listing includes: -4.1 F at International Falls, 2nd coldest all-time 4.6 F at Duluth, 8th coldest all-time 0.1 F at Crookston, 3rd coldest all-time -3.1 F at Roseau, 3rd coldest all-time 0.3 F at Park Rapids, 3rd coldest all-time -4.4 F at Embarrass, 2nd coldest all-time -4.1 F at Baudette, coldest all-time -3.7 F at Warroad, coldest all-time -2.9 F at Babbitt, coldest all-time -2.8 F at Gunflint Lake, coldest all-time In addition, some communities reported an exceptionally snowy month of December.
    [Show full text]
  • The Interaction of Supertyphoon Maemi (2003) with a Warm Ocean Eddy
    17A.2 THE INTERACTION OF SUPERTYPHOON MAEMI (2003) WITH A WARM OCEAN EDDY I-I Lin1 ,Chun-Chieh Wu2, Kerry A. Emanuel3, W. Timothy Liu4, and I-Huan Lee5 1National Center for Ocean Research, Taipei, Taiwan 2 Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan 3Dept. of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, USA 4Jet Propulsion Lab, NASA, USA 5Inst. of Marine Geology and Chemistry, National Taiwan Sun Yat-Sen Univ., Kaohsiung, Taiwan 1. INTRODUCTION impact of the NWPO warm ocean eddies on The Northwest Pacific Ocean (NWPO) is the typhoon intensification is not well understood. world's most prolific generator of tropical cyclones, This work serves as our first investigation of producing about 6-10 category-4 (in Saffir-Simpson the impact of a warm ocean eddy on the intensity scale) or category-5 typhoons each year. These change of Maemi (2003) in the NWPO, by using the severe typhoons are direct threats to the half-billion synergy of the multiple remote sensing data and people living on the coast of East Asia. The high the CHIPS (Coupled Hurricane Intensity Prediction frequency of strong typhoons in these regions is System) model (Emanuel, 1999). partly related to the large area of warm sea surface temperature (SST) and correspondingly large 2. EXPERIMENT DESIGN potential intensity (Emanuel 1991). Nevertheless, TOPEX/Poseidon satellite altimetry Sea it remains unclear why some storms reach higher Surface Height Anomaly (SSHA) data and cloud- intensity than others. penetrating SST data from the Tropical Rainfall Recent studies (Bender and Ginis, 2000; Measuring Mission (TRMM) Microwave Imager Shay et al., 2000; Goni and Trinanes, 2003) (TMI) are used to improve the initial and boundary suggest that one of the major stumbling blocks in conditions for hindcast experiments using CHIPS.
    [Show full text]
  • Statistical Characteristics of the Response of Sea Surface Temperatures to Westward Typhoons in the South China Sea
    remote sensing Article Statistical Characteristics of the Response of Sea Surface Temperatures to Westward Typhoons in the South China Sea Zhaoyue Ma 1, Yuanzhi Zhang 1,2,*, Renhao Wu 3 and Rong Na 4 1 School of Marine Science, Nanjing University of Information Science and Technology, Nanjing 210044, China; [email protected] 2 Institute of Asia-Pacific Studies, Faculty of Social Sciences, Chinese University of Hong Kong, Hong Kong 999777, China 3 School of Atmospheric Sciences, Sun Yat-Sen University and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; [email protected] 4 College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China; [email protected] * Correspondence: [email protected]; Tel.: +86-1888-885-3470 Abstract: The strong interaction between a typhoon and ocean air is one of the most important forms of typhoon and sea air interaction. In this paper, the daily mean sea surface temperature (SST) data of Advanced Microwave Scanning Radiometer for Earth Observation System (EOS) (AMSR-E) are used to analyze the reduction in SST caused by 30 westward typhoons from 1998 to 2018. The findings reveal that 20 typhoons exerted obvious SST cooling areas. Moreover, 97.5% of the cooling locations appeared near and on the right side of the path, while only one appeared on the left side of the path. The decrease in SST generally lasted 6–7 days. Over time, the cooling center continued to diffuse, and the SST gradually rose. The slope of the recovery curve was concentrated between 0.1 and 0.5.
    [Show full text]
  • Capital Adequacy (E) Task Force RBC Proposal Form
    Capital Adequacy (E) Task Force RBC Proposal Form [ ] Capital Adequacy (E) Task Force [ x ] Health RBC (E) Working Group [ ] Life RBC (E) Working Group [ ] Catastrophe Risk (E) Subgroup [ ] Investment RBC (E) Working Group [ ] SMI RBC (E) Subgroup [ ] C3 Phase II/ AG43 (E/A) Subgroup [ ] P/C RBC (E) Working Group [ ] Stress Testing (E) Subgroup DATE: 08/31/2020 FOR NAIC USE ONLY CONTACT PERSON: Crystal Brown Agenda Item # 2020-07-H TELEPHONE: 816-783-8146 Year 2021 EMAIL ADDRESS: [email protected] DISPOSITION [ x ] ADOPTED WG 10/29/20 & TF 11/19/20 ON BEHALF OF: Health RBC (E) Working Group [ ] REJECTED NAME: Steve Drutz [ ] DEFERRED TO TITLE: Chief Financial Analyst/Chair [ ] REFERRED TO OTHER NAIC GROUP AFFILIATION: WA Office of Insurance Commissioner [ ] EXPOSED ________________ ADDRESS: 5000 Capitol Blvd SE [ ] OTHER (SPECIFY) Tumwater, WA 98501 IDENTIFICATION OF SOURCE AND FORM(S)/INSTRUCTIONS TO BE CHANGED [ x ] Health RBC Blanks [ x ] Health RBC Instructions [ ] Other ___________________ [ ] Life and Fraternal RBC Blanks [ ] Life and Fraternal RBC Instructions [ ] Property/Casualty RBC Blanks [ ] Property/Casualty RBC Instructions DESCRIPTION OF CHANGE(S) Split the Bonds and Misc. Fixed Income Assets into separate pages (Page XR007 and XR008). REASON OR JUSTIFICATION FOR CHANGE ** Currently the Bonds and Misc. Fixed Income Assets are included on page XR007 of the Health RBC formula. With the implementation of the 20 bond designations and the electronic only tables, the Bonds and Misc. Fixed Income Assets were split between two tabs in the excel file for use of the electronic only tables and ease of printing. However, for increased transparency and system requirements, it is suggested that these pages be split into separate page numbers beginning with year-2021.
    [Show full text]
  • Downloaded 10/01/21 11:55 PM UTC 3574 MONTHLY WEATHER REVIEW VOLUME 140 Level in Hurricanes
    NOVEMBER 2012 Z H A N G E T A L . 3573 Lightning Distribution and Eyewall Outbreaks in Tropical Cyclones during Landfall WENJUAN ZHANG Laboratory of Lightning Physics and Protection Engineering, Chinese Academy of Meteorological Sciences, and Graduate University of Chinese Academy of Sciences, Beijing, China YIJUN ZHANG Laboratory of Lightning Physics and Protection Engineering, Chinese Academy of Meteorological Sciences, and State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China DONG ZHENG Laboratory of Lightning Physics and Protection Engineering, Chinese Academy of Meteorological Sciences, Beijing, China XIUJI ZHOU Laboratory of Lightning Physics and Protection Engineering, Chinese Academy of Meteorological Sciences, and State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China (Manuscript received 23 November 2011, in final form 10 April 2012) ABSTRACT Cloud-to-ground lightning data and storm intensity data (winds and central pressure) for 33 northwest Pacific tropical cyclones were used to analyze lightning distributions during the period of landfall in China. Lightning activities varied enormously from storm to storm with an average flash rate over 500 km of radius from 3 to 3201 flashes per hour, and no obvious relationship between average intensity and average flash rate occurred. The maximum flash density shifted from the eyewall region (0–60 km) to outer rainbands (180–500 km) as the intensity level increased. The average ratio of flash density in the eyewall to outer 2 rainband was highest (1:0.5) for storms with the level of a tropical storm (17.2–24.4 m s 1) and lowest (1:8.6) 2 for severe typhoons (41.5–50.9 m s 1).
    [Show full text]
  • Typhoon Dujuan, Taiwan
    Market Update 30 September 2015 Typhoon Dujuan, Taiwan Crawford Taiwan Typhoon Dujuan was the most intense tropical cyclone of T: +886 2718 6620 the Northern Hemisphere in 2015 according to the F: +886 2718 9101 Central Weather Bureau. The storm brought wind gusts of up to 227km/h, and a sustained wind speed of Leo Chen 184km/h. Dujuan was classified as a Category 4 severe Country Manager tropical storm and it landed in Nanao, Ilan of north‐ M: +886 978 668 986 eastern Taiwan at about 17.40 on 28 September 2015. [email protected] Dujuan left three people dead, 324 injured and six Crawford Hong Kong mountain climbers missing. A total of 2,255,844 T: +852 2526 5137 households were without electricity and 181,392 without F: +852 2845 0598 water. Mike Campbell‐Pitt Schools and offices of Keelung City, Taipei City, New Greater China General Manager Taipei City, Taoyuan City, Hsinchu City, Hsinchu County, M: +852 6292 7300 Miaoli County, Taichung City, Changhua County, Yunlin [email protected] County, Nantou County, Chayi City, Chayi County, lan County, Hualian County, Penghu County, Kinmen County Crawford Singapore and Lienchiang County were closed on Tuesday due to Regional Asia Pacific Office the storm. Trading in the financial markets was also T: +65 6318 9999 halted. The storm also disrupted international and F: +65 6438 0085 domestic air travel and rail services on the island. Chris Panes Our Taiwan office has been unaffected and our team of Chief Executive Officer, Asia adjusters is ready to respond to claims arising from the M: +65 9727 6017 storm.
    [Show full text]
  • The Genesis of Typhoon Nuri As Observed During the Tropical Cyclone Structure 2008 (TCS-08) field Experiment – Part 1: the Role of the Easterly Wave Critical Layer
    Atmos. Chem. Phys., 10, 9879–9900, 2010 www.atmos-chem-phys.net/10/9879/2010/ Atmospheric doi:10.5194/acp-10-9879-2010 Chemistry © Author(s) 2010. CC Attribution 3.0 License. and Physics The genesis of Typhoon Nuri as observed during the Tropical Cyclone Structure 2008 (TCS-08) field experiment – Part 1: The role of the easterly wave critical layer M. T. Montgomery, L. L. Lussier III, R. W. Moore, and Z. Wang Naval Postgraduate School, Monterey, California, USA Received: 5 June 2009 – Published in Atmos. Chem. Phys. Discuss.: 16 September 2009 Revised: 14 April 2010 – Accepted: 25 May 2010 – Published: 20 October 2010 Abstract. An observational and real-time model forecast Real-time forecasts were produced using operational study of the genesis of Typhoon Nuri during the Tropical Cy- global prediction model data to support scientific missions clone Structure 2008 (TCS-08) field campaign in the western during TCS-08. These forecasts were found to be useful North Pacific sector is presented. Analysis and observational in flight planning discussions and predicted Typhoon Nuri’s data show that the surrounding base state is an easterly trade eventual genesis latitude within 1.5 degrees 72 h in advance. wind flow and the precursor disturbance to Typhoon Nuri is an easterly wave that originates in the ITCZ in the Central Pa- cific. This disturbance can be tracked more than 10 days prior to tropical storm formation. An overview of the field data is 1 Introduction presented here using a newly proposed dynamical framework The western North Pacific region is the most active trop- for tropical cyclone formation within the critical layer of an ical cyclone (TC) basin on the earth, responsible for, on easterly wave.
    [Show full text]