Radiowave Propagation August 17, 2018 1 / 52 I

Total Page:16

File Type:pdf, Size:1020Kb

Radiowave Propagation August 17, 2018 1 / 52 I Terrain Reflection and Diffraction, Part One 1 UHF and VHF paths near the ground 2 Propagation over a plane Earth 3 Fresnel zones Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 1 / 52 I. UHF and VHF paths near the ground In many applications communications are influenced by reflections from the Earth surface Particular problem when antenna gains are small and receivers are near the ground In Chapter 7 we will study the direct + Earth reflections mechanism and also terrain diffraction The Earth surface also plays a role in groundwave propagation (Chapter 9) but this applies mainly at lower than VHF frequencies Since ionospheric propagation is also negligible for VHF and higher freqencies, direct + Earth reflections and terrain diffraction are the main mechanism for these frequencies over medium distances Tropospheric scatter applies at very long distances Consideration of \multipath environments" in Chapter 8 Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 2 / 52 We will learn basic methods for predicting propagation over a specified terrain path Primarily applied to assess antenna heights needed to maintain communications for various values of κ Used in designing line-of-sight UHF and SHF point-to-point links Numerical methods are also now being applied here; we will learn a little about these as well Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 3 / 52 II. Propagation over a plane Earth Begin by assuming the Earth surface to be planar (valid approximation for short distances and smooth terrain), so that 0 00 R2 = R2 + R2 (1) tan 2 = (h1 + h2)=d (2) tan 1 = (h1 − h2)=d (3) d = R1 cos 1 = R2 cos 2 (4) We know the power density in the direct ray in free space is PT GT jSdir j = 2 (5) 4πR1 from which we can find p dir 60P G jE j = T T (6) R p 1 60P G ≈ T T (7) d Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 4 / 52 Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 5 / 52 We can re-write the direct field strength as dir E jE j = 0 (8) d where p E0 = α 2PT (9) and p α = 30GT (10) E0 is known as the \unattenuated field intensity at unit distance" Antenna type α for d in km α for d in mi isotropic 173 108 short dipole 212 132 λ/2 dipole 222 138 short monopole* 150 93.2 λ/4 monopole* 157 97.5 Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 6 / 52 Table: Values for α in eqn (7.11) with E0 in millivolts/m, note that * antennas are fed against ground, to find unattenuated field intensity in presence of ground use 2E0 The magnitude of the reflected ray can be found from ref E jE j = j 0 Γj (11) d and the total field should be found by adding the direct and reflected fields in the proper phase relationship tot E0 jE j = e−jk0R1 + Γe−jk0R2 ; (12) d Since distances are likely to be large in terms of λ, it is better to use tot E0 jE j = 1 + Γe−jk0(R2−R1) (13) d Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 7 / 52 Examining the geometry, we can find 2 21=2 R2 = d + (h1 + h2) (14) 1 ≈ d + (h + h )2 (15) 2d 1 2 and 1 R ≈ d + (h − h )2 (16) 1 2d 1 2 so that 2h h R − R ≈ 1 2 ; (17) 2 1 d if we are near grazing, to obtain tot E0 jE j = 1 + Γe−j2k0h1h2=d (18) d dkm If jΓj ≈ 1 and h1h2 < 12 , we obtain fGHz tot E 4πh h jE j = 0 1 2 (19) d λd Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 8 / 52 Example: 1 GHz source 10 m above a perfectly conducting plane, plot received power as a function of height relative to free space for varying receiver heights at 1 km range. PEC, horizontal polarization: Γ = −1 tot E0 −j2k0h1h2=d Thus, jE j = d 1 − e This will be zero when 2k0h1h2=d = 2nπ Solve to find h2 = 15n m Field strength relative to free space is given by term in brackets Maximum value: 6 dB, minimum: -1 dB Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 9 / 52 1 GHz, 1 km distance, Transmitter height 10 m 40 35 30 25 Γ=−1 Γ=−0.5 20 Low antenna 15 Receiver Height (m) 10 5 0 −20 −15 −10 −5 0 5 10 Received power relative to free space (dB) Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 10 / 52 1 GHz, Transmitter/Receiver heights 10 m 10 0 −10 Γ=−1 −20 Γ=−0.5 Low antenna −30 −40 200 400 600 800 1000 1200 1400 1600 1800 2000 Relative Received Power (dB) Distance (m) Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 11 / 52 III. Fresnel zones Fresnel zones are defined as the locus of points around a direct ray that produce a specified phase delay if a reflection occurs there Convention is to define the nth Fresnel zone as the set of points at which reflection would produce an excess path length of nλ/2 Analytic geometry shows that these are ellipsoids of revolution centered on the direct ray, axes increase with increasing n When considered in a two dimensional plane, these become ellipses Since Γ ≈ −1 at grazing incidence, a signal reflected from the first Fresnel zone will be received in phase with the direct signal Thus, odd Fresnel zone reflections produce constructive interference, even Fresnal zone reflections produce destructive interference Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 12 / 52 2nd Fresnel zone 1st Fresnel zone Direct Ray Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 13 / 52 To derive the Fresnel zone radii at a specified distance d1 from one end of the path use r1 + r2 = d1 + d2 + nλ/2 (20) q q 2 2 2 2 d1 + Fn + d2 + Fn = d1 + d2 + nλ/2 (21) Approximating yields 2 2 Fn Fn d1 + + d2 + = d1 + d2 + nλ/2 (22) 2d1 2d2 and 2 Fn 1 1 2 d1 + d2 + = Fn = nλ/2 (23) 2 d1 d2 2d1d2 so r nλd d F = 1 2 (24) n D s nd d = 17:3 1;km 2;km (25) fGHz Dkm with Fn in m Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 14 / 52 C r1 r2 Fn B A d1 O d2 Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 15 / 52 0 0.6 F 1 F 1 20 F 2 F 3 F Fresnel Zone Size (m) 4 40 0 5 10 15 20 Distance (km) Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 16 / 52 Revisit our planar Earth direct plus reflected model in terms of Fresnel zones: transmit/receive heights h1 & h2, distance d First, write an equation for a line between transmitter image and receiver; intersection with plane is the reflection point Next, write an equation for a line between transmitter and receiver (the \direct path"); we can determine the height of this line above the reflection point As derived in Section 7.3.1 of the book, this clearance h divided by the first Fresnel zone radius at the reflection point F1 is r h h h = 2 1 2 (26) F1 λd When h=pF1 is unity, constructive interference occurs, when h=F1 = 2 destructive interference occurs, etc. 2 Also it turns out that π h is the phase difference between the F1 direct and reflected rays at the receiver As the receiver height increases, the lowest height at which a free space equivalent power occurs is when h=F1 = 0:577 Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 17 / 52 Terrain Reflection and Diffraction, Part Two 1 Path profile construction 2 Calculation of Earth \bulge" 3 Height gain curves 4 Obstructed region 5 Reflection region Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 18 / 52 I. Path profile construction Predicting propagation over a particular path requires knowledge of the terrain between Tx and Rx Such information can be obtained from topographical maps or from mapping agencies, although accuracy may be questionable Ground or aerial surveys can be used to obtain more accurate information, but these can get expensive On longer paths, Earth curvature and refraction become more important and we need to consider these Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 19 / 52 We'll use our Chapter 6 models: either straight rays-modified Earth radius or curved rays-flat Earth The former is more useful if we want to consider several antenna heights for a given κ value, the latter if we want to consider several different refractive conditions for fixed antennas Note when we draw paths the horizontal scale will usually be much larger than the vertical; this makes angles appear incorrect Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 20 / 52 II. Calculation of Earth \bulge" Using the figure and a theorem for chords in a circle, we have AD · DC = BD · DE (27) AD ≈ d1 (28) DC ≈ d2 (29) BD ≈ b (30) ED ≈ 2Re = 2κa (31) so that d1d2 = (2b)(κa) (32) and d d b = 1 2 (33) 2κa Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 21 / 52 d2 B d1 b= BD A C AD D DC Re - b= DO Re= AO Re= CO O Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 22 / 52 If we use d in km and b in m we find d d b = 1 2 (34) 12:74κ d2 Maximum value occurs at center of path, where b = 4(12:7κ) Note that the Earth bulge becomes larger as the antennas are spread further apart Note this \bulge" is not relative to the horizon, it is relative to the direct ray (through the Earth) between Tx and Rx This occurs because as Rx moves further from Tx it decreases in height so that it appears the Earth surface is \bulging" Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 23 / 52 For ground based links: We want to minimize costs so we should minimize the number of stations by spacing them far apart If they are too far apart the Earth \bulge" will block the line of sight under certain refractive index variations Even if we are not blocked, reflections from the ground can produce nulls in our pattern that change as refractive indices vary This would require a reflection coefficient magnitude near unity The aim of microwave link design is to assure proper path clearance and to avoid interference due to reflections by choosing paths and antenna heights Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 24 / 52 Distance to the \radio horizon": Given the Earth bulge, we can find the distance to the \radio horizon" by drawing lines between specified transmitters and receivers and trying to determine whether the Earth bulge is intersected Derivation in Sect.
Recommended publications
  • Path Loss, Delay Spread, and Outage Models As Functions of Antenna Height for Microcellular System Design
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 43, NO. 3, AUGUST 1994 487 Path Loss, Delay Spread, and Outage Models as Functions of Antenna Height for Microcellular System Design Martin J. Feuerstein, Kenneth L. Blackard, Member, IEEE, Theodore S. Rappaport, Senior Member, IEEE, Scott Y. Seidel, Member, IEEE, and Howard H. Xia Abstract-This paper presents results of wide-band path loss be encountered in a microcellular system using lamp-post- and delay spread measurements for five representative microcel- mounted base stations at street comers, Measurement locations Mar environments in the San Francisco Bay area at 1900 MHz. were chosen to coincide with places where microcellular Measurements were made with a wide-band channel sounder using a 100-ns probing pulse. Base station antenna heights of systems will likely be deployed in urban and suburban areas. 3.7 m, 8.5 m, and 13.3 m were tested with a mobile receiver The power delay profiles recorded at each receiver lo- antenna height of 1.7 m to emulate a typical microcellular cation were used to calculate path loss and delay spread. scenario. The results presented in this paper provide insight into Path loss and delay spread are two important methods of the satistical distributions of measured path loss by showing the characterizing channel behavior in a way that can be related validity of a double regression model with a break point at a distance that has first Fresnel zone clearance for line-of-sight to system performance measures such as bit error rate [4] topographies. The variation of delay spread as a function of and outage probability [7].
    [Show full text]
  • Fresnel Diffraction.Nb Optics 505 - James C
    Fresnel Diffraction.nb Optics 505 - James C. Wyant 1 13 Fresnel Diffraction In this section we will look at the Fresnel diffraction for both circular apertures and rectangular apertures. To help our physical understanding we will begin our discussion by describing Fresnel zones. 13.1 Fresnel Zones In the study of Fresnel diffraction it is convenient to divide the aperture into regions called Fresnel zones. Figure 1 shows a point source, S, illuminating an aperture a distance z1away. The observation point, P, is a distance to the right of the aperture. Let the line SP be normal to the plane containing the aperture. Then we can write S r1 Q ρ z1 r2 z2 P Fig. 1. Spherical wave illuminating aperture. !!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!! 2 2 2 2 SQP = r1 + r2 = z1 +r + z2 +r 1 2 1 1 = z1 + z2 + þþþþ r J þþþþþþþ + þþþþþþþN + 2 z1 z2 The aperture can be divided into regions bounded by concentric circles r = constant defined such that r1 + r2 differ by l 2 in going from one boundary to the next. These regions are called Fresnel zones or half-period zones. If z1and z2 are sufficiently large compared to the size of the aperture the higher order terms of the expan- sion can be neglected to yield the following result. l 1 2 1 1 n þþþþ = þþþþ rn J þþþþþþþ + þþþþþþþN 2 2 z1 z2 Fresnel Diffraction.nb Optics 505 - James C. Wyant 2 Solving for rn, the radius of the nth Fresnel zone, yields !!!!!!!!!!! !!!!!!!! !!!!!!!!!!! rn = n l Lorr1 = l L, r2 = 2 l L, , where (1) 1 L = þþþþþþþþþþþþþþþþþþþþ þþþþþ1 + þþþþþ1 z1 z2 Figure 2 shows a drawing of Fresnel zones where every other zone is made dark.
    [Show full text]
  • Line-Of-Sight-Obstruction.Pdf
    App. Note Code: 3RF-E APPLICATION NOT Line of Sight Obstruction 6/16 E Copyright © 2016 Campbell Scientific, Inc. Table of Contents PDF viewers: These page numbers refer to the printed version of this document. Use the PDF reader bookmarks tab for links to specific sections. 1. Introduction ................................................................ 1 2. Fresnel Zones ............................................................. 4 3. Fresnel Zone Clearance ............................................. 6 4. Effective Earth Radius ............................................... 7 5. Signal Loss Due to Diffraction .................................. 9 6. Conclusion ............................................................... 10 Figures 1-1. Wavefronts with 180° Phase Shift ....................................................... 2 1-2. Multipath Reception ............................................................................. 2 1-3. Totally Obstructed LOS ....................................................................... 3 1-4. Knife-Edge Type Obstruction .............................................................. 4 2-1. Fresnel Zones ....................................................................................... 5 3-1. Effective Ellipsoid Shape ..................................................................... 6 3-2. Path Profile Traversing Uneven Terrain with Knife-Edge Obstruction ....................................................................................... 7 5-1. Diffraction Parameter ..........................................................................
    [Show full text]
  • Development of Epstein-Peterson Method- Based Approach for Computing Multiple Knife Edgediffraction Loss As a Function of Refractivity Gradient
    Journal of Multidisciplinary Engineering Science and Technology (JMEST) ISSN: 2458-9403 Vol. 6 Issue 9, September - 2019 Development Of Epstein-Peterson Method- Based Approach For Computing Multiple Knife Edgediffraction Loss As A Function Of Refractivity Gradient Akaninyene B. Obot1 Ukpong,Victor Joseph2 Department of Electrical/Electronic and Computer Department of Electrical/Electronic and Computer Engineering, University of Uyo, AkwaIbom, Nigeria Engineering, University of Uyo, AkwaIbom, Nigeria Kalu Constance3 Department of Electrical/Electronic and Computer Engineering, University of Uyo, AkwaIbom, Nigeria [email protected] Abstract— In this paper, the development of I. INTRODUCTION Epstein-Peterson method-based approach for Radio wave propagation over irregular computing multiple knife edge diffraction loss as a function of refractivity gradient. Specifically, the terrain consisting of mountain, buildings, hills study utilized Epstein Peterson diffraction loss and even trees and other high rising methodology alongside the International obstructions is of great concern to Telecommunication Union (ITU) knife edge communication network designers [1,2,3,4]. approximation model to compute multiple knife When a wireless signal is propagated over a edge diffraction loss as a function of refractivity gradient. Analytical expression for the long distance, the signal may get distorted and determination of obstacles height, the earth bulge attenuated due to obstacles along its path. This and the effective obstruction height were modeled causes the signal to be reflected, absorbed in terms of the refractivity gradient (∆). A case scattered or diffracted. Diffraction occurs when study of 10 knife edge obstructions located in a a wireless signal encounter obstacles in its path communication link with a path length of 36km was used as a numerical example to demonstrate [6,7,8,9,10].
    [Show full text]
  • Hitless Space Diversity STL Enables IP+Audio in Narrow STL Bands
    Hitless Space Diversity STL Enables IP+Audio in Narrow STL Bands Presented at the 2005 National Association of Broadcasters Annual Convention Broadcast Engineering Conference Session "HD Radio™ Technology" April 17, 2005 Howard Friedenberg, Senior RF Engineer Sunil Naik, Director of Engineering Moseley Associates, Inc. Santa Barbara, CA, USA Contacts: [email protected] [email protected] www.moseleysb.com (805) 968-9621 Hitless Space Diversity STL Enables IP+Audio in Narrow STL Bands Howard Friedenberg Moseley Associates, Inc. Santa Barbara, CA, USA ABSTRACT In this paper we will be looking at issues that affect HD Radio™ poses a new challenge to STLs, requiring STL transmission reliability as they pertain to newer the ability to transport an Ethernet channel at 300 kbps high rate applications. Path reliability and keeping your along side a 44.1 kHz sampled AES digital stereo pair station on-air is the name of the game. Fading and ultimately fit them into a single 300 kHz STL mitigation techniques must be implemented to handle channel. This requirement is only possible with latest these higher level data packing modulations effectively generation digital STLs operating with very high against channel impairments and to maintain consistent efficiency, e.g. 128 QAM. As QAM rates are increased, path integrity. Receive site frequency and space also is the sensitivity to multipath. “Hitless” switching diversity techniques are a major tool in battling these enables real time space diversity antenna systems to effects. We’ll describe how to properly implement STL combat instantaneous multipath fading on microwave diversity techniques with a “hitless” transfer switch. paths that commonly occurs in Spring and Fall seasons.
    [Show full text]
  • Digital Radio-Relay Systems
    - iii - TABLE OF CONTENTS Page CHAPTER 1 - INTRODUCTION........................................................................................ 1 1.1 INTENT OF HANDBOOK ..................................................................................... 1 1.2 EVOLUTION OF DIGITAL RADIO-RELAY SYSTEMS .................................... 2 1.3 DIGITAL RADIO-RELAY SYSTEMS AS PART OF DIGITAL TRANSMISSION NETWORKS............................................................................. 3 1.4 GENERAL OVERVIEW OF THE HANDBOOK .................................................. 5 1.5 OUTLINE OF THE HANDBOOK.......................................................................... 5 CHAPTER 2 - BASIC PRINCIPLES .................................................................................. 7 2.1 DIGITAL SIGNALS, SOURCE CODING, DIGITAL HIERARCHIES AND MULTIPLEXING .......................................................................................... 7 2.1.1 Digitization (A/D conversion) of analogue voice signals ........................... 7 2.1.2 Digitization of video signals........................................................................ 8 2.1.3 Non voice services, ISDN and data signals ................................................. 8 2.1.4 Multiplexing of 64 kbit/s channels .............................................................. 8 2.1.5 Higher order multiplexing, Plesiochronous Digital Hierarchy (PDH) ........ 8 2.1.6 Other multiplexers ......................................................................................
    [Show full text]
  • Image Grating Metrology Using a Fresnel Zone Plate Chulmin
    Image Grating Metrology Using a Fresnel Zone Plate by Chulmin Joo B.S. Aerospace Engineering, Korea Advanced Institute of Science and Technology (1998) Submitted to the Department of Mechanical Engineering in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY September 2003 @ Massachusetts Institute of Technology 2003. All rights resH S T OF TECHNOLOGY OCT 0 6 2003 LIBRARIES A uthor ......... .. ........... Department of Mechanical Engineering August 20, 2003 Certified by .. ...... ................ Mark L. Schattenburg Principal Research Scientist Thesis Supervisor C ertified by .... ....................... George Barbastathis Assistant Professor, Mechanical Engineering Thesis Supervisor Accepted by ....... ............. Ain A. Sonin Chairman, Department Committee on Graduate Students BARKER Image Grating Metrology Using a Fresnel Zone Plate by Chulmin Joo Submitted to the Department of Mechanical Engineering on August 20, 2003, in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering Abstract Scanning-beam interference lithography (SBIL) is a novel concept for nanometer- accurate grating fabrication. It can produce gratings with nanometer phase accuracy over large area by scanning a photoresist-coated substrate under phase-locked image grating. For the successful implementation of the SBIL, it is crucial to measure the spatial period, phase, and distortion of the image grating accurately, since it enables the precise stitching of subsequent scans. This thesis describes the efforts to develop an image grating metrology that is capable of measuring a wide range of image periods, regardless of changes in grat- ing orientation. In order to satisfy the conditions, the use of a Fresnel zone plate is proposed.
    [Show full text]
  • Improving Comms with 5Ghz
    Improving Comms With 5GHz Essential EG Guide ESSENTIAL GUIDES Introduction As broadcasters strive for more and RF technologies such as OFDM more unique content, live events are (Orthogonal Frequency Division growing in popularity. Consequently, Multiplexing) further improve the productions are increasing in complexity robustness of transmission. Rather than resulting in an ever-expanding number transmitting on one frequency, lower of production staff all needing access to symbol rate audio data is spread across high quality communications. Wireless multiple carriers to help protect against intercom systems are essential and multi-path interference and reflections, provide the flexibility needed to host essential for moving wireless handsets or today’s highly coordinated events. But highly dynamic environments. this ever-increasing demand is placing unprecedented pressure on the existing As 5GHz appears in the SHF range, it lower frequency solutions. displays some interesting beneficial characteristics associated with this The 5GHz spectrum offers new band, specifically directionality. This opportunities as the higher carrier allows engineers to direct narrow beams frequencies involved deliver more and steer them to make better use bandwidth for increased data of the available power. Furthermore, Tony Orme. transmission. In excess of twenty- interference with nearby transmissions five non-overlapping channels, each on the same frequency is reduced with a bandwidth of typically 20MHz, allowing frequency reuse. demonstrates the opportunity this technology has to outperform legacy The concept of constructive interference Broadcasters rely on clear and reliable systems based on lower frequencies provides signal amplification for communications now more than ever, such as DECT in the highly congested certain relative signal phases through especially when we consider how many 2.4GHz frequency spectrum.
    [Show full text]
  • Reconfigurable Intelligent Surfaces: Bridging the Gap Between
    1 Reconfigurable Intelligent Surfaces: Bridging the gap between scattering and reflection Juan Carlos Bucheli Garcia, Student Member, IEEE, Alain Sibille, Senior Member, IEEE, and Mohamed Kamoun, Member, IEEE. Abstract—In this work we address the distance dependence of is concentrated on algorithmic and signal processing aspects. reconfigurable intelligent surfaces (RIS). As differentiating factor In fact, the comprehension of the involved electromagnetic to other works in the literature, we focus on the array near- specificities has not been fully addressed. field, what allows us to comprehend and expose the promising potential of RIS. The latter mostly implies an interplay between More specifically, reconfigurable intelligent surfaces (RIS) the physical size of the RIS and the size of the Fresnel zones at correspond to the arrangement of a massive amount of in- the RIS location, highlighting the major role of the phase. expensive antenna elements with the objective of capturing To be specific, the point-like (or zero-dimensional) conventional and scattering energy in a controllable manner. Such a control scattering characterization results in the well-known dependence method varies widely in the literature [1]; among which PIN- with the fourth power of the distance. On the contrary, the characterization of its near-field region exposes a reflective diode and varactor based are popular. behavior following a dependence with the second and third In this context, the authors investigate an impedance con- power of distance, respectively, for a two-dimensional (planar) trolled RIS, although the addressed fundamentals are of a and one-dimensional (linear) RIS. Furthermore, a smart RIS much wider applicability. As a matter of fact, by characterizing implementing an optimized phase control can result in a power RIS in terms of the elements’ observed impedance, it is exponent of four that, paradoxically, outperforms free-space propagation when operated in its near-field vicinity.
    [Show full text]
  • Fresnel Zone in VTI and Orthorhombic Media
    Geophysical Journal International Geophys. J. Int. (2018) 213, 181–193 doi: 10.1093/gji/ggx544 Advance Access publication 2017 December 18 GJI Seismology Fresnel zone in VTI and orthorhombic media Downloaded from https://academic.oup.com/gji/article-abstract/213/1/181/4757074 by Norges Teknisk-Naturvitenskapelige Universitet user on 04 January 2019 Shibo Xu and Alexey Stovas Department of Geoscience and Petroleum, Norwegian University of Science and Technology, S.P.Andersens veg 15a, 7031 Trondheim, Norway. E-mail: [email protected] Accepted 2017 December 17. Received 2017 November 15; in original form 2017 September 16 SUMMARY The reflecting zone in the subsurface insonified by the first quarter of a wavelength and the portion of the reflecting surface involved in these reflections is called the Fresnel zone or first Fresnel zone. The horizontal resolution is controlled by acquisition factors and the size of the Fresnel zone. We derive an analytic expression for the radius of the Fresnel zone in time domain in transversely isotropic medium with a vertical symmetry axis (VTI) using the perturbation method from the parametric offset-traveltime equation. The acoustic assumption is used for simplification. The Shanks transform is applied to stabilize the convergence of approximation and to improve the accuracy. The similar strategy is applied for the azimuth-dependent radius of the Fresnel zone in orthorhombic (ORT) model for a horizontal layer. Different with the VTI case, the Fresnel zone in ORT model has a quasi-elliptic shape. We show that the size of the Fresnel zone is proportional to the corresponding traveltime, depth and the frequency.
    [Show full text]
  • Radio Wave Propagation Fundamentals
    Chapter 2: Radio Wave Propagation Fundamentals M.Sc. Sevda Abadpour Dr.-Ing. Marwan Younis INSTITUTE OF RADIO FREQUENCY ENGINEERING AND ELECTRONICS KIT – The Research University in the Helmholtz Association www.ihe.kit.edu Scope of the (Today‘s) Lecture D Effects during wireless transmission of signals: A . physical phenomena that influence the propagation analog source & of electromagnetic waves channel decoding . no statistical description of those effects in terms digital of modulated signals demodulation filtering, filtering, amplification amplification Noise Antennas Propagation Time and Frequency Phenomena Selective Radio Channel 2 12.11.2018 Chapter 2: Radio Wave Propagation Fundamentals Institute of Radio Frequency Engineering and Electronics Propagation Phenomena refraction reflection zR zT path N diffraction transmitter receiver QTi path i QRi yT xR y Ti yRi xT path 1 yR scattering reflection: scattering: free space - plane wave reflection - rough surface scattering propagation: - Fresnel coefficients - volume scattering - line of sight - no multipath diffraction: refraction in the troposphere: - knife edge diffraction - not considered In general multipath propagation leads to fading at the receiver site 3 12.11.2018 Chapter 2: Radio Wave Propagation Fundamentals Institute of Radio Frequency Engineering and Electronics The Received Signal Signal fading Fading is a deviation of the attenuation that a signal experiences over certain propagation media. It may vary with time, position Frequency and/or frequency Time Classification of fading: . large-scale fading (gradual change in local average of signal level) . small-scale fading (rapid variations large-scale fading due to random multipath signals) small-scale fading 4 12.11.2018 Chapter 2: Radio Wave Propagation Fundamentals Institute of Radio Frequency Engineering and Electronics Propagation Models Propagation models (PM) are being used to predict: .
    [Show full text]
  • Microwave Radio Transmission Design Guide
    Microwave Radio Transmission Design Guide Second Edition page i Finals 06-17-09 10:39:14 For a listing of recent titles in the Artech House Microwave Library, turn to the back of this book. page ii Finals 06-17-09 10:39:14 Microwave Radio Transmission Design Guide Second Edition Trevor Manning page iii Finals 06-17-09 10:39:14 Library of Congress Cataloging-in-Publication Data A catalog record for this book is available from the U.S. Library of Congress. British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library. ISBN-13: 978-1-59693-456-6 Cover design by Igor Valdman 2009 ARTECH HOUSE 685 Canton Street Norwood, MA 02062 All rights reserved. Printed and bound in the United States of America. No part of this book may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the publisher. All terms mentioned in this book that are known to be trademarks or service marks have been appropriately capitalized. Artech House cannot attest to the accuracy of this information. Use of a term in this book should not be regarded as affecting the validity of any trademark or service mark. 10 987654321 page iv Finals 06-17-09 10:39:14 Contents Foreword xiii Preface xv 1 Introduction 1 1.1 History of Wireless Telecommunications 2 1.2 What Is Microwave Radio? 3 1.2.1 Microwave Fundamentals 3 1.2.2 RF Spectrum 4 1.2.3 Safety of Microwaves 5 1.2.4 Allocation
    [Show full text]