The Recent Advancement in Unmanned Aerial Vehicle Tracking Antenna: a Review
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI National Radio Science Meeting
2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI National Radio Science Meeting Final Program 7–12 July 2019 Hilton Atlanta Atlanta, Georgia, U.S.A. Conference at a Glance Saturday, July 6 14:00-16:00 Strategic Planning Committee 16:15-17:15 AP-S Meetings Committee 17:15-18:15 JMC Meeting (Closed Session) 18:15-21:30 JMC Meeting, Dinner and Presentations 19:15-21:15 IEEE AP-S Constitution and Bylaws Committee Meeting & Dinner Sunday, July 7 08:00-10:00 Past Presidents’ Breakfast 10:00-18:00 AdCom Meeting 19:30-22:00 Welcome Dessert Reception at the Georgia Aquarium Monday, July 8 07:00-08:00 Amateur Radio Operators Breakfast 08:00-11:40 Technical Sessions 09:00-18:00 Technical Tour - “An Engineer’s Eye View” of the Mercedes Benz Stadium 12:00-13:20 Transactions on Antennas and Propagation Editorial Board Lunch Meeting 13:20-17:00 Technical Sessions 17:00-18:00 URSI Commission A Business Meeting 17:00-18:00 URSI Commission B Business Meeting 17:00-18:00 URSI Commissions C/E (combined) Business Meeting Tuesday, July 9 07:00-08:00 AP Magazine Staff Meeting 07:00-08:00 APS 2020 Committee Meeting 07:00-08:00 Industrial Initiatives 07:00-08:00 Membership Committee Meeting 07:00-08:00 Student Design Contest (Set-Up - Closed to Others) 07:00-08:00 Technical Committee on Antenna Measurement 08:00-11:40 Student Paper Competition 08:00-11:40 Technical Sessions 08:00-09:30 Student Design Contest (Demo for Judges - Closed to Others) 08:30-14:00 Standards Committee Meeting 09:30-12:00 Student Design Contest (Demo for Public) -
Development of Epstein-Peterson Method- Based Approach for Computing Multiple Knife Edgediffraction Loss As a Function of Refractivity Gradient
Journal of Multidisciplinary Engineering Science and Technology (JMEST) ISSN: 2458-9403 Vol. 6 Issue 9, September - 2019 Development Of Epstein-Peterson Method- Based Approach For Computing Multiple Knife Edgediffraction Loss As A Function Of Refractivity Gradient Akaninyene B. Obot1 Ukpong,Victor Joseph2 Department of Electrical/Electronic and Computer Department of Electrical/Electronic and Computer Engineering, University of Uyo, AkwaIbom, Nigeria Engineering, University of Uyo, AkwaIbom, Nigeria Kalu Constance3 Department of Electrical/Electronic and Computer Engineering, University of Uyo, AkwaIbom, Nigeria [email protected] Abstract— In this paper, the development of I. INTRODUCTION Epstein-Peterson method-based approach for Radio wave propagation over irregular computing multiple knife edge diffraction loss as a function of refractivity gradient. Specifically, the terrain consisting of mountain, buildings, hills study utilized Epstein Peterson diffraction loss and even trees and other high rising methodology alongside the International obstructions is of great concern to Telecommunication Union (ITU) knife edge communication network designers [1,2,3,4]. approximation model to compute multiple knife When a wireless signal is propagated over a edge diffraction loss as a function of refractivity gradient. Analytical expression for the long distance, the signal may get distorted and determination of obstacles height, the earth bulge attenuated due to obstacles along its path. This and the effective obstruction height were modeled causes the signal to be reflected, absorbed in terms of the refractivity gradient (∆). A case scattered or diffracted. Diffraction occurs when study of 10 knife edge obstructions located in a a wireless signal encounter obstacles in its path communication link with a path length of 36km was used as a numerical example to demonstrate [6,7,8,9,10]. -
Hitless Space Diversity STL Enables IP+Audio in Narrow STL Bands
Hitless Space Diversity STL Enables IP+Audio in Narrow STL Bands Presented at the 2005 National Association of Broadcasters Annual Convention Broadcast Engineering Conference Session "HD Radio™ Technology" April 17, 2005 Howard Friedenberg, Senior RF Engineer Sunil Naik, Director of Engineering Moseley Associates, Inc. Santa Barbara, CA, USA Contacts: [email protected] [email protected] www.moseleysb.com (805) 968-9621 Hitless Space Diversity STL Enables IP+Audio in Narrow STL Bands Howard Friedenberg Moseley Associates, Inc. Santa Barbara, CA, USA ABSTRACT In this paper we will be looking at issues that affect HD Radio™ poses a new challenge to STLs, requiring STL transmission reliability as they pertain to newer the ability to transport an Ethernet channel at 300 kbps high rate applications. Path reliability and keeping your along side a 44.1 kHz sampled AES digital stereo pair station on-air is the name of the game. Fading and ultimately fit them into a single 300 kHz STL mitigation techniques must be implemented to handle channel. This requirement is only possible with latest these higher level data packing modulations effectively generation digital STLs operating with very high against channel impairments and to maintain consistent efficiency, e.g. 128 QAM. As QAM rates are increased, path integrity. Receive site frequency and space also is the sensitivity to multipath. “Hitless” switching diversity techniques are a major tool in battling these enables real time space diversity antenna systems to effects. We’ll describe how to properly implement STL combat instantaneous multipath fading on microwave diversity techniques with a “hitless” transfer switch. paths that commonly occurs in Spring and Fall seasons. -
Digital Radio-Relay Systems
- iii - TABLE OF CONTENTS Page CHAPTER 1 - INTRODUCTION........................................................................................ 1 1.1 INTENT OF HANDBOOK ..................................................................................... 1 1.2 EVOLUTION OF DIGITAL RADIO-RELAY SYSTEMS .................................... 2 1.3 DIGITAL RADIO-RELAY SYSTEMS AS PART OF DIGITAL TRANSMISSION NETWORKS............................................................................. 3 1.4 GENERAL OVERVIEW OF THE HANDBOOK .................................................. 5 1.5 OUTLINE OF THE HANDBOOK.......................................................................... 5 CHAPTER 2 - BASIC PRINCIPLES .................................................................................. 7 2.1 DIGITAL SIGNALS, SOURCE CODING, DIGITAL HIERARCHIES AND MULTIPLEXING .......................................................................................... 7 2.1.1 Digitization (A/D conversion) of analogue voice signals ........................... 7 2.1.2 Digitization of video signals........................................................................ 8 2.1.3 Non voice services, ISDN and data signals ................................................. 8 2.1.4 Multiplexing of 64 kbit/s channels .............................................................. 8 2.1.5 Higher order multiplexing, Plesiochronous Digital Hierarchy (PDH) ........ 8 2.1.6 Other multiplexers ...................................................................................... -
Various Types of Antenna with Respect to Their Applications: a Review
INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 7, NO. 3, MARCH 2016 Various Types of Antenna with Respect to their Applications: A Review Abdul Qadir Khan1, Muhammad Riaz2 and Anas Bilal3 1,2,3School of Information Technology, The University of Lahore, Islamabad Campus [email protected], [email protected], [email protected] Abstract– Antenna is the most important part in wireless point to point communication where increase gain and communication systems. Antenna transforms electrical signals lessened wave impedance are required [45]. into radio waves and vice versa. The antennas are of various As the knowledge about antennas along with its application kinds and having different characteristics according to the need is particularly less thus this review is essential for determining of signal transmission and reception. In this paper, we present various antennas and their applications in different systems. comparative analysis of various types of antennas that can be differentiated with respect to their shapes, material used, signal In this paper a detailed review of various types of antenna bandwidth, transmission range etc. Our main focus is to classify which developed to perform useful task of communication in these antennas according to their applications. As in the modern different field of communication network is presented. era antennas are the basic prerequisites for wireless communications that is required for fast and efficient II. WIRE ANTENNA communications. This paper will help the design architect to choose proper antenna for the desired application. A. Biconical Dipole Antenna Keywords– Antenna, Communications, Applications and Signal There is no restriction to the data transfer capacity of an Transmission infinite constant-impedance transmission line however any pragmatic execution of the biconical dipole has appendages of constrained extend forming an open-circuit stub in the same I. -
Here's a Quick Way to Know About Different Types of Antennas
11/28/2016 Different types of Antennas with Properties and thier Working HOME PROJECT IDEAS › POPULAR PROJECTS › ELECTRICAL › ELECTRONICS B.TECH PROJECTS Expert Outreach Communication Giveaways IC › Infographics Projects › Here’s a Quick Way to Know about Different Types of Antennas by Tarun Agarwal | at COMMUNICATION China Prototype PCB: 2 Register to get 10pcs for Free 4 days shipping. Register 10pcs Free now! In this modern era of wireless communication, many engineers are showing interest to do specialization in communication fields, but this requires basic knowledge of fundamental communication concepts such as types of antennas, electromagnetic radiation and various phenomena related to propagation, etc. In case of wireless communication systems, antennas play a prominent role as they convert the electronic signals into electromagnetic waves efficiently. Ads by Google Antenna Design Patch Antenna Types of Antennas https://www.elprocus.com/differenttypesofantennaswithpropertiesandthierworking/ 1/13 11/28/2016 Different types of Antennas with Properties and thier Working Antennas are basic components of any electrical circuit as they provide interconnecting links between transmitter and free space or between free space and receiver. Before we discuss about antenna types, there are a few properties that need to be understood. Apart from these properties, we also cover about different types of antennas used in communication system in detail. Properties of Antennas Antenna Gain Aperture Directivity and bandwidth Polarization Effective length Polar diagram Antenna Gain: The parameter that measures the degree of directivity of antenna’s radial pattern is known as gain. An antenna with a higher gain is more effective in its radiation pattern. -
Lecture 28 Different Types of Antennas–Heuristics
Lecture 28 Different Types of Antennas{Heuristics 28.1 Types of Antennas There are different types of antennas for different applications [128]. We will discuss their functions heuristically in the following discussions. 28.1.1 Resonance Tunneling in Antenna A simple antenna like a short dipole behaves like a Hertzian dipole with an effective length. A short dipole has an input impedance resembling that of a capacitor. Hence, it is difficult to drive current into the antenna unless other elements are added. Hertz used two metallic spheres to increase the current flow. When a large current flows on the stem of the Hertzian dipole, the stem starts to act like inductor. Thus, the end cap capacitances and the stem inductance together can act like a resonator enhancing the current flow on the antenna. Some antennas are deliberately built to resonate with its structure to enhance its radiation. A half-wave dipole is such an antenna as shown in Figure 28.1 [124]. One can think that these antennas are using resonance tunneling to enhance their radiation efficiencies. A half-wave dipole can also be thought of as a flared open transmission line in order to make it radiate. It can be gradually morphed from a quarter-wavelength transmission line as shown in Figure 28.1. A transmission is a poor radiator, because the electromagnetic energy is trapped between two pieces of metal. But a flared transmission line can radiate its field to free space. The dipole antenna, though a simple device, has been extensively studied by King [129]. He has reputed to have produced over 100 PhD students studying the dipole antenna. -
All About the Discone Antenna: Antenna of Mysterious Origin And
All About the Discone Antenna: Antenna of Mysterious Origin and Superb Broadband Performance Learn about the development, history and some applications of a discone antenna. Steve Stearns, K6OIK he frequency bandwidths as extensions of it.1 The discone antenna ent on the discone antenna. Kandoian’s novel “ demanded by high-definition (Figure 1) is one such extension, in which the or inventive element was apparently that the T television have considerable biconical dipole is asymmetric, one cone’s antenna could be encased in a radome, making range…” With these prescient words, Philip angle being 90°, which gives a flat disk of ra- it suitable for aircraft, not that it used a cone or S. Carter of RCA opened a 1939 paper that dius equal to the cone length. Two years later, disk per se, those ideas being obvious in view compared a variety of antennas for the emerg- in 1943, Armig Kandoian at the Federal Tele- of Schelkunoff’s prior work. The patent was ing field of “high-definition” television. Carter phone and Radio Corporation applied for a pat- granted in 1945, whereupon Kandoian and his showed conclusively that conical antennas colleagues, Sichak, Felsenheld, and Nail, at held distinct advantages over dipoles and fold- 1Notes appear on page 43. the newly renamed Federal Telecommunica- ed dipoles when it comes to broadband perfor- mance. Today, conical antennas are making a comeback for broadband applications such as digital television and UWB (ultra-wideband) or impulse radio. Stacked arrays of bowties and biconical dipoles are gradually displacing traditional mainstay antennas such as Yagis and log-periodics for the rooftop reception of digital television (DTV). -
New Trends in Energy Harvesting from Earth Long-Wave Infrared Emission
Hindawi Publishing Corporation Advances in Materials Science and Engineering Volume 2014, Article ID 252879, 10 pages http://dx.doi.org/10.1155/2014/252879 Review Article New Trends in Energy Harvesting from Earth Long-Wave Infrared Emission Luciano Mescia1 and Alessandro Massaro2 1 Dipartimento di Ingegneria Elettrica e dell’Informazione (DEI), Politecnico di Bari, Via E. Orabona 4, 70125 Bari, Italy 2 Istituto Italiano di Tecnologia (IIT), Center for Biomolecurar Nanotechnologies (CBN), Via Barsanti, 73010 Arnesano, Italy Correspondence should be addressed to Luciano Mescia; [email protected] Received 12 June 2014; Accepted 18 July 2014; Published 11 August 2014 Academic Editor: Andrea Chiappini Copyright © 2014 L. Mescia and A. Massaro. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. A review, even if not exhaustive, on the current technologies able to harvest energy from Earth’s thermal infrared emission is reported. In particular, we discuss the role of the rectenna system on transforming the thermal energy, provided by the Sun and reemitted from the Earth, in electricity. The operating principles, efficiency limits, system design considerations, and possible technological implementations are illustrated. Peculiar features of THz and IR antennas, such as physical properties and antenna parameters, are provided. Moreover, some design guidelines for isolated antenna, rectifying diode, and antenna coupled to rectifying diode are exploited. 1. Introduction power generation without increasing environmental pollu- tion [3]. Duringthelast20years,theworldwideenergydemandshave Photovoltaic (PV) conversion is the direct conversion of been strongly increased and as a consequence the deleterious sunlight into electricity without any heat engine to interfere. -
Microwave Radio Transmission Design Guide
Microwave Radio Transmission Design Guide Second Edition page i Finals 06-17-09 10:39:14 For a listing of recent titles in the Artech House Microwave Library, turn to the back of this book. page ii Finals 06-17-09 10:39:14 Microwave Radio Transmission Design Guide Second Edition Trevor Manning page iii Finals 06-17-09 10:39:14 Library of Congress Cataloging-in-Publication Data A catalog record for this book is available from the U.S. Library of Congress. British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library. ISBN-13: 978-1-59693-456-6 Cover design by Igor Valdman 2009 ARTECH HOUSE 685 Canton Street Norwood, MA 02062 All rights reserved. Printed and bound in the United States of America. No part of this book may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the publisher. All terms mentioned in this book that are known to be trademarks or service marks have been appropriately capitalized. Artech House cannot attest to the accuracy of this information. Use of a term in this book should not be regarded as affecting the validity of any trademark or service mark. 10 987654321 page iv Finals 06-17-09 10:39:14 Contents Foreword xiii Preface xv 1 Introduction 1 1.1 History of Wireless Telecommunications 2 1.2 What Is Microwave Radio? 3 1.2.1 Microwave Fundamentals 3 1.2.2 RF Spectrum 4 1.2.3 Safety of Microwaves 5 1.2.4 Allocation -
Aeronautical Radio Communication Systems and Networks
JWBK149-FM JWBK149-Stacey February 9, 2008 21:57 Aeronautical Radio Communication Systems and Networks Dale Stacey John Wiley & Sons, Ltd iii JWBK149-FM JWBK149-Stacey February 9, 2008 21:57 ii JWBK149-FM JWBK149-Stacey February 9, 2008 21:57 Aeronautical Radio Communication Systems and Networks i JWBK149-FM JWBK149-Stacey February 9, 2008 21:57 ii JWBK149-FM JWBK149-Stacey February 9, 2008 21:57 Aeronautical Radio Communication Systems and Networks Dale Stacey John Wiley & Sons, Ltd iii JWBK149-FM JWBK149-Stacey February 9, 2008 21:57 Copyright C 2008 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England Telephone (+44) 1243 779777 Email (for orders and customer service enquiries): [email protected] Visit our Home Page on www.wiley.com All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the Publisher. Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to [email protected], or faxed to (+44) 1243 770620. Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. -
Bibliography on Tropospheric Propagation of Radio Waves
National Bureau of Standards Library, M.W. Bldg APR 8 1965 ^ecknical ^iote 304 BIBLIOGRAPHY ON TROPOSPHERIC PROPAGATION OF RADIO WAVES WILHELM NUPEN mm U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS THE NATIONAL BUREAU OF STANDARDS The National Bureau of Standards is a principal focal point in the Federal Government for assuring maximum application of the physical and engineering sciences to the advancement of technology in industry and commerce. Its responsibilities include development and maintenance of the national stand- ards of measurement, and the provisions of means for making measurements consistent with those standards; determination of physical constants and properties of materials; development of methods for testing materials, mechanisms, and structures, and making such tests as may be necessary, particu- larly for government agencies; cooperation in the establishment of standard practices for incorpora- tion in codes and specifications; advisory service to government agencies on scientific and technical problems; invention and development of devices to serve special needs of the Government; assistance to industry, business, and consumers in the development and acceptance of commercial standards and simplified trade practice recommendations; administration of programs in cooperation with United States business groups and standards organizations for the development of international standards of practice; and maintenance of a clearinghouse for the collection and dissemination of scientific, tech- nical, and engineering information. The scope of the Bureau's activities is suggested in the following listing of its four Institutes and their organizational units. Institute for Basic Standards. Electricity. Metrology. Heat. Radiation Physics. Mechanics. Ap- plied Mathematics. Atomic Physics. Physical Chemistry. Laboratory Astrophysics.* Radio Stand- ards Laboratory: Radio Standards Physics; Radio Standards Engineering.** Office of Standard Ref- erence Data.