Studies of West Palearctic Birds*
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ohio Birding Checklist with Difficulty Codes Daily/Year/Life
Ohio Birding Checklist with ____ Common Merganser 2 ____ Belted Kingfisher 1 ____ Louisiana Waterthrush 2 ____ Red-breasted Merganser 1 ____ Red-headed Woodpecker 2 ____ Northern Waterthrush 2 Difficulty Codes ____ Ruddy Duck 1 ____ Red-bellied Woodpecker 1 ____ Blue-winged Warbler 1 ____ Wild Turkey 2 ____ Yellow-bellied Sapsucker 2 ____ Black-and-white Warbler 1 Daily/Year/Life ________________ ____ Pied-billed Grebe 1 ____ Downy Woodpecker 1 ____ Prothonotary Warbler 2 ____ Horned Grebe 1 ____ Hairy Woodpecker 1 ____ Tennessee Warbler 2 This checklist is arranged in three sections, each ____ Rock Pigeon 1 ____ Northern Flicker 1 ____ Nashville Warbler 1 corresponding to a pair of difficulty codes. The ____ Mourning Dove 1 ____ Pileated Woodpecker 1 ____ Kentucky Warbler 2 six codes/descriptions are based primarily on the ____ Yellow-billed Cuckoo 2 ____ American Kestrel 1 ____ Common Yellowthroat 1 collective experience of Greg Miller and Dan ____ Common Nighthawk 2 ____ Eastern Wood-Pewee 2 ____ Hooded Warbler 1 Sanders. Overall abundance and ease of ____ Chimney Swift 1 ____ Acadian Flycatcher 2 ____ American Redstart 1 identification have been factored into each of the ____ Ruby-throated Hummingbird 1 ____ Willow Flycatcher 2 ____ Cape May Warbler 2 six codes and are as follows: ____ Virginia Rail 2 ____ Least Flycatcher 1 ____ Cerulean Warbler 2 ____ Sora 1 ____ Eastern Phoebe 1 ____ Northern Parula 2 Easier to See Birds ____ Common Gallinule 2 ____ Great Crested Flycatcher 1 ____ Magnolia Warbler 1 1. Readily found within expected habitat ____ American Coot 1 ____ Eastern Kingbird 1 ____ Bay-breasted Warbler 2 during at least one season of the year. -
Red and Fallow Deer Determine the Density of Ixodes Ricinus Nymphs Containing Anaplasma Phagocytophilum
Red and Fallow Deer Determine the Density of Ixodes Ricinus Nymphs Containing Anaplasma Phagocytophilum Katsuhisa Takumi ( [email protected] ) Centre for Zoonoses and Environmental Microbiology Centre for Infectious Disease Control National Institute for Public Health and the Environment (RIVM) Bilthoven The Netherlands Tim Hofmeester Swedish University of Agricultural Sciences Faculty of Natural Resources and Agricultural Sciences Hein Sprong Centre for Zoonoses and Environmental Microbiology Centre for Infectious Disease Control National Institute for Public Health and the Environment (RIVM) Bilthoven The Netherlands Research Keywords: Ixodes ricinus nymphs, Anaplasma phagocytophilum, phagocytophilum, anaplasmosis Posted Date: October 26th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-96286/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published on January 19th, 2021. See the published version at https://doi.org/10.1186/s13071-020-04567-4. 1 Red and fallow deer determine the density of Ixodes ricinus 2 nymphs containing Anaplasma phagocytophilum 1, 2 1 3 Katsuhisa Takumi ✉, Tim R. Hofmeester , and Hein Sprong 4 1 Centre for Zoonoses and Environmental Microbiology Centre for Infectious Disease Control 5 National Institute for Public Health and the Environment (RIVM) Bilthoven The Netherlands 6 2 Department of Wildlife Fish and Environmental Studies Swedish University of Agricultural 7 Sciences Skogsmarksgränd 7 907 36 Umeå Sweden 8 ✉ Correspondence: Katsuhisa Takumi <[email protected]> 9 1 10 Abstract 11 Background: The density of Ixodes ricinus nymphs infected with Anaplasma phagocytophilum 12 is one of the parameters that determines the risk for humans and domesticated animals to 13 contract anaplasmosis. -
Growth and Development of Long-Billed Curlew Chicks
April 1973] General Notes 435 Pitelka and Donald L. Beaver critically read the manuscript. This work was con- ducted under the I.B.P. Analysis of Ecosystems-TundraProgram and supported by a grant to F. A. Pitelka from the National ScienceFoundation.--THo•rAs W. CUSTrR, Department o! Zoology and Museum o! Vertebrate Zoology, University o! California, Berkeley,California 94720. Accepted9 May 72. Growth and development of Long-billed Curlew chicks.--Compared with the altricial nestlings of passerinesand the semiprecocialyoung of gulls, few studies of the growth and developmentof the precocialchicks of the Charadrii have been made (Pettingill, 1970: 378). In Europe, yon Frisch (1958, 1959) describedthe develop- ment of behavior in 14 plovers and sandpipers. Davis (1943) and Nice (1962) have reported on the growth of Killdeer (Charadriusvociferus), Nice (1962) on the Spotted Sandpiper (Actiris macularia), and Webster (1942) on the growth and development of plumages in the Black Oystercatcher (Haematopus bachmani). Pettingill (1936) studiedthe atypical AmericanWoodcock (Philohelaminor). Among the curlews, Genus Numenius, only the Eurasian Curlew (N. arquata) has been studied (von Frisch, 1956). Becauseof the scant knowledgeabout the development of the youngin the Charadriiand the scarcityof informationon all aspectsof the breeding biology of the Long-billed Curlew (N. americanus) (Palmer, 1967), I believe that the following data on the growth and development of Long-billed Curlew chicks are relevant. I took four eggs,one being pipped, from a nest 10 miles west of Brigham City, Box Elder County, Utah, on 24 May 1966. One egg was preservedimmediately for additional study, the others I placed in a 4' X 3' X 2' cardboard box with a 60-watt lamp for warmth in a vacant room in my home until they hatched. -
Review of the Conflict Between Migratory Birds and Electricity Power Grids in the African-Eurasian Region
CMS CONVENTION ON Distribution: General MIGRATORY UNEP/CMS/Inf.10.38/ Rev.1 SPECIES 11 November 2011 Original: English TENTH MEETING OF THE CONFERENCE OF THE PARTIES Bergen, 20-25 November 2011 Agenda Item 19 REVIEW OF THE CONFLICT BETWEEN MIGRATORY BIRDS AND ELECTRICITY POWER GRIDS IN THE AFRICAN-EURASIAN REGION (Prepared by Bureau Waardenburg for AEWA and CMS) Pursuant to the recommendation of the 37 th Meeting of the Standing Committee, the AEWA and CMS Secretariats commissioned Bureau Waardenburg to undertake a review of the conflict between migratory birds and electricity power grids in the African-Eurasian region, as well as of available mitigation measures and their effectiveness. Their report is presented in this information document and an executive summary is also provided as document UNEP/CMS/Conf.10.29. A Resolution on power lines and migratory birds is also tabled for COP as UNEP/CMS/Resolution10.11. For reasons of economy, documents are printed in a limited number, and will not be distributed at the meeting. Delegates are kindly requested to bring their copy to the meeting and not to request additional copies. The Agreement on the Conservation of African-Eurasian Migratory Waterbirds (AEWA) and the Convention on the Conservation of Migratory Species of Wild Animals (CMS) REVIEW OF THE CONFLICT BETWEEN MIGRATORY BIRDS AND ELECTRICITY POWER GRIDS IN THE AFRICAN-EURASIAN REGION Funded by AEWA’s cooperation-partner, RWE RR NSG, which has developed the method for fitting bird protection markings to overhead lines by helicopter. Produced by Bureau Waardenburg Boere Conservation Consultancy STRIX Ambiente e Inovação Endangered Wildlife Trust – Wildlife & Energy Program Compiled by: Hein Prinsen 1, Gerard Boere 2, Nadine Píres 3 & Jon Smallie 4. -
Effect of Weather Conditions on the Spring Migration of Eurasian Woodcock and Consequences for Breeding
Ibis (2018) doi: 10.1111/ibi.12657 Effect of weather conditions on the spring migration of Eurasian Woodcock and consequences for breeding KEVIN LE REST,1* ANDREW HOODLESS,2 CHRISTOPHER HEWARD,2 JEAN-LOUIS CAZENAVE3 & YVES FERRAND1 1Office National de la Chasse et de la Faune Sauvage, 8 boulevard Albert Einstein, Nantes, 44300, France 2Game & Wildlife Conservation Trust, Burgate Manor, Fordingbridge, Hampshire SP6 1EF, UK 3Club National des Becassiers, 105 rue Louis Pergaud, Villeneuve, Champniers, 16430, France Migration is a critical period of time with fitness consequences for birds. The develop- ment of tracking technologies now allows researchers to examine how different aspects of bird migration affect population dynamics. Weather conditions experienced during migration are expected to influence movements and, subsequently, the timing of arrival and the energetic costs involved. We analysed satellite-tracking data from 68 Eurasian Woodcock Scolopax rusticola fitted with Argos satellite tags in the British Isles and France (2012–17). First, we evaluated the effect of weather conditions (temperature, humidity, wind speed and direction, atmospheric stability and visibility) on migration movements of individuals. Then we investigated the consequences for breeding success (age ratio) and brood precocity (early-brood ratio) population-level indices while accounting for cli- matic variables on the breeding grounds. Air temperature, wind and relative humidity were the main variables related to migration movements, with high temperatures and northward winds greatly increasing the probability of onward flights, whereas a trend towards greater humidity over 4 days decreased the probability of movement. Breeding success was mostly affected by climatic variables on the breeding grounds. The propor- tion of juveniles in autumn was negatively correlated with temperature in May, but posi- tively correlated with precipitation in June and July. -
Migration Timing, Routes, and Connectivity of Eurasian Woodcock Wintering in Britain and Ireland
Migration Timing, Routes, and Connectivity of Eurasian Woodcock Wintering in Britain and Ireland ANDREW N. HOODLESS,1 Game & Wildlife Conservation Trust, Burgate Manor, Fordingbridge, Hampshire SP6 1EF, UK CHRISTOPHER J. HEWARD, Game & Wildlife Conservation Trust, Burgate Manor, Fordingbridge, Hampshire SP6 1EF, UK ABSTRACT Migration represents a critical time in the annual cycle of Eurasian woodcock (Scolopax rusticola), with poten- tial consequences for individual fitness and survival. In October–December, Eurasian woodcock migrate from breeding grounds in northern Eurasia over thousands of kilometres to western Europe, returning in March–May. The species is widely hunted in Europe, with 2.3–3.5 million individuals shot per year; hence, an understanding of the timing of migra- tion and routes taken is an essential part of developing sustainable flyway management. Our aims were to determine the timing and migration routes of Eurasian woodcock wintering in Britain and Ireland, and to assess the degree of connec- tivity between breeding and wintering sites. We present data from 52 Eurasian woodcock fitted with satellite tags in late winter 2012–2016, which indicate that the timing of spring departure varied annually and was positively correlated with temperature, with a mean departure date of 26 March (± 1.4 days SE). Spring migration distances averaged 2,851 ± 165 km (SE), with individuals typically making 5 stopovers. The majority of our sample of tagged Eurasian woodcock migrated to breeding sites in northwestern Russia (54%), with smaller proportions breeding in Denmark, Scandinavia, and Finland (29%); Poland, Latvia, and Belarus (9.5%); and central Russia (7.5%). The accumulated migration routes of tagged individ- uals suggest a main flyway for Eurasian woodcock wintering in Britain and Ireland through Belgium, the Netherlands, and Germany, and then dividing to pass through the countries immediately north and south of the Baltic Sea. -
Review of Illegal Killing and Taking of Birds in Northern and Central Europe and the Caucasus
Review of illegal killing and taking of birds in Northern and Central Europe and the Caucasus Overview of main outputs of the project The information collated and analysed during this project has been summarised in a variety of outputs: 1. This full report Presenting all the aspects of the project at regional and national levels http://www.birdlife.org/illegal-killing 2. Scientific paper Presenting results of the regional assessment of scope and scale of illegal killing and taking of birds in Northern and Central Europe and the Caucasus1 https://www.cambridge.org/core/journals/bird-conservation-international 3. Legislation country factsheets Presenting a review of national legislation on hunting, trapping and trading of birds in each assessed country http://www.birdlife.org/datazone/country (under ‘resources’ tab) 4. ‘The Killing 2.0’ Layman’s report Short communications publication for publicity purposes with some key headlines of the results of the project and the previous one focussing on the Mediterranean region http://www.birdlife.org/illegal-killing Credits of front cover pictures 1 2 3 4 1 Hen harrier Circus cyaneus © RSPB 2 Illegal trapping of Hen Harrier in the UK © RSPB 3 Common Coot (Fulica atra) © MISIK 4 Illegal trade of waterbirds illegally killed in Azerbaijan © AOS Citation of the report BirdLife International (2017) Review of illegal killing and taking of birds in Northern and Central Europe and the Caucasus. Cambridge, UK: BirdLife International. 1 Paper in revision process for publication in Bird Conservation International in October 2017 when this report is released 1 Executive Summary The illegal killing and taking of wild birds remains a major threat on a global scale. -
Tringa Melanoleuca (Greater Yellowlegs)
Maine 2015 Wildlife Action Plan Revision Report Date: January 13, 2016 Tringa melanoleuca (Greater Yellowlegs) Priority 3 Species of Greatest Conservation Need (SGCN) Class: Aves (Birds) Order: Charadriiformes (Plovers, Sandpipers, And Allies) Family: Scolopacidae (Curlews, Dowitchers, Godwits, Knots, Phalaropes, Sandpipers, Snipe, Yellowlegs, And Woodcock) General comments: Considered stable range wide, considered species of low or moderate concern by US Shorebird Conservation Plan however due to vulnerability to climate change considered priority 3. Listed as "Species of Least Concern" by U. S. Shorebird Conservation Plan Partnership - 2015. Species Conservation Range Maps for Greater Yellowlegs: Town Map: Tringa melanoleuca_Towns.pdf Subwatershed Map: Tringa melanoleuca_HUC12.pdf SGCN Priority Ranking - Designation Criteria: Risk of Extirpation: NA State Special Concern or NMFS Species of Concern: NA Recent Significant Declines: NA Regional Endemic: NA High Regional Conservation Priority: NA High Climate Change Vulnerability: Vulnerability: 3, Confidence: Medium, Reviewers: Decided in Workshop (W) Understudied rare taxa: NA Historical: NA Culturally Significant: NA Habitats Assigned to Greater Yellowlegs: Formation Name Cliff & Rock Macrogroup Name Rocky Coast Formation Name Freshwater Marsh Macrogroup Name Emergent Marsh Macrogroup Name Modified-Managed Marsh Formation Name Intertidal Macrogroup Name Intertidal Gravel Shore Macrogroup Name Intertidal Mudflat Macrogroup Name Intertidal Sandy Shore Stressors Assigned to Greater Yellowlegs: -
Survival Rates of Russian Woodcocks
Proceedings of an International Symposium of the Wetlands International Woodcock and Snipe Specialist Group Survival rates of Russian Woodcocks Isabelle Bauthian, Museum national d’histoire naturelle, Centre de recherches sur la biologie des populations d’oiseaux, 55 rue Buffon, 75005 Paris, France. E-mail: [email protected] Ivan Iljinsky, State University of St Petersburg, Russia. E-mail: [email protected] Sergei Fokin, State Informational-Analytical Center of Game Animals and Environment Group. Woodcock, Teterinsky Lane, 18, build. 8, 109004 Moscow, Russia. E-mail: [email protected] Romain Julliard, Museum national d’histoire naturelle, Centre de recherches sur la biologie des populations d’oiseaux, 55 rue Buffon, 75005 Paris, France. E-mail: [email protected] François Gossmann, Office national de la chasse et de la faune sauvage, 53 rue Russeil, 44 000 Nantes, France. E-mail: [email protected] Yves Ferrand, Office national de la chasse et de la faune sauvage, BP 20 - 78612 Le-Perray-en-Yvelines Cedex, France. E-mail: [email protected] We analysed 324 recoveries from 2,817 Russian Woodcocks ringed as adult or yearling in two areas in Russia (Moscow and St Petersburg). We suspected that birds belonging to these two areas may experience different hunting pressure or climatic conditions, and thus exhibit different demographic parameters. To test this hypothesis, we analysed spatial and temporal distribution of recoveries, and performed a ringing-recovery analysis to estimate possible survival differences between these two areas. We used methods developed by Brownie et al. in 1985. We found differences in temporal variations of the age ratio between the two ringing areas. -
Does the Woodcock Bob Or Rock--And Why?
October1982] ShortCommunications 791 ß 1981. Microgeographicvariation in the song tories of North American Cardinals,grosbeaks, of the SageSparrow. Condor 83: 113-119. buntings,towhees, finches, sparrows, and allies row: spatialand random aspects.Wilson Bull. (O. L. Austin, Jr., Ed.). U.S. Natl. Mus. Bull. 92: 425-438. 237, part 2. ROBB•S, C. S. 1970. Recommendationsfor an in- W•E•s, J. A. 1969. An approachto the study of ternational standard for a mapping method in ecologicalrelationships among grassland birds. bird census work. Audubon Field Notes 24: 723- Ornithol. Monogr. 8. 726. Received18 January 1982, accepted 12 April 1982. WAL•CI•SHAW,L. H. 1968. Spizellapusilla pusilla: EasternField Sparrow. Pp. 1217-1235in Life his- Does the Woodcock Bob or Rock--and Why? WILLIAM H. MARSHALL 7248 OakmontDrive, SantaRosa, California 95405 USA Details of the behavior of the American Woodcock worm from the surface,probed deeply to pull out a (Philohelaminor), other than thoseof the mating dis- large worm, or extractedan insectfrom under a leaf. play, are little known. Undisturbedbirds fly only for The head was well forward and held slightly to one brief periods in twilight and are almostalways well side with the tip of the bill 3 cm or less above the concealedwhile on the ground. Woodcockmay be- surface.Sometimes progress was brokenby repeated comeconspicuous, however, when they feed in open rocking in one place, and, lessoften, the bird stood areasduring daylight hours. motionless for several minutes. On two such occasions,I observed the repetitious On 4 April 1974,I watchedanother bird for 45 rain body motionsof undisturbedbirds from a largewin- in the samearea during the middle of the afternoon. -
Behaviour of an Incubating Woodcock G
Behaviour of an incubating Woodcock G. des Forges INTRODUCTION In his well-known paper on the breeding habits of the'Woodcock Scolopax rusticola, Steinfatt (1938) records: 'The brooding female only rarely changes her position during the day; she lies for hours on the nest motionless. There seems to be a sort of rigidity, which overcomes the female. It obviously serves the purpose to reduce smell and so the possibility of being observed. Only twice a day, in morning and evening twilight, the female leaves the nest, in order to find food, for a total time of an hour'. A report on the European Woodcock (Shorten 1974) states that 'Steinfatt's description of behaviour at the nest seems to have been the basis for many subse quent accounts'. Also Vesey-Fitzgerald (1946), writing of his own experience in Surrey, says, 'I do not think that, unless disturbed, a sitting Woodcock leaves the nest during the day'. As circumstantial evidence had led me to believe that a sitting Woodcock did leave the nest and feed by day, I decided to attempt a prolonged watch on an incubating bird. THE NEST SITE The nest was in woodland, about 5 km north of Haywards Heath, West Sussex, on a hill-side sloping down from the main London to Brighton railway line to a stream at the bottom of the valley. The section of the wood concerned had been cleared of undergrowth and mature ash Fraxinus excelsior in 1972/73 leaving only standard oaks Quercus. Re-planting with mixed conifers had taken place in 1973/74 m tne open areas but not immediately round the nest, which was under the canopy of a group of six mature oaks, the lowest branches being 5 or 6 metres from the ground which here carried a thin growth of brambles Rubus fruticosus and bracken Pteridium aquilinum: but around the small conifers were only short grasses and a variety of perennials which had not made much growth by the end of March. -
Guide of Bird Watching Course on Sado Island
Guide of bird watching course on Sado island SPRING Recommended theme: Migratory birds in Washizaki Place: Washizaki cape in northeastern in Sado Birds: Duck, Grebe, Plover, Snipe, Wagtail, etc. -Watch the birds stay and regroup their flocks in Washizaki. List of birds that can be observed on Sado in spring English name Scientific name *Duck etc. Mandarin duck Aix galericulata Gadwall Anas strepera Falcated duck Anas falcata Eurasian Wigeon Anas penelope American Wigeon Anas americana Mallard Anas platyrhynchos Eastern spot-billed duck Anas zonorhyncha Northern shoveler Anas clypeata Northern pintail Anas acuta Garganey Anas querquedula Teal Anas crecca Common pochard Aythya ferina Tufted duck Aythya fuligula Greater scaup Aythya marila Harlequin duck Histrionicus histrionicus Black scoter Melanitta americana Common goldeneye Bucephala clangula Smew Mergellus albellus Common merganser Mergus merganser Red-breasted merganser Mergus serrator *Grebe Little grebe Tachybaptus ruficollis Red-necked grebe Podiceps grisegena Great crested grebe Podiceps cristatus Horned grebe Podiceps auritus Eared grebe Podiceps nigricollis *Plover, Snipe, etc. Northern lapwing Vanellus vanellus Pacific golden-plover Pluvialis fulva Black-bellied plover Pluvialis squatarola Little ringed plover Charadrius dubius 1 Kentish plover Charadrius alexandrinus Lesser sand-plover Charadrius mongolus Black-winged stilt Himantopus himantopus Eurasian woodcock Scolopax rusticola Solitary snipe Gallinago solitaria Latham's snipe Gallinago hardwickii Common snipe Gallinago