INFORMATION to USERS the Most Advanced Technology Has Been

Total Page:16

File Type:pdf, Size:1020Kb

INFORMATION to USERS the Most Advanced Technology Has Been INFORMATION TO USERS The most advanced technology has been used to photo­ graph and reproduce this manuscript from the microfilm master. UMI films the original text directly from the copy submitted. Thus, some dissertation copies are in typewriter face, while others may be from a computer printer. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyrighted material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are re­ produced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each oversize page is available as one exposure on a standard 35 mm slide or as a 17" x 23" black and white photographic print for an additional charge. Photographs included in the original manuscript have been reproduced xerographically in this copy. 35 mm slides or 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. Accessing the World'sUMI Information since 1938 300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA Order Number 8820378 Stereochemical studies in anaerobic metabolism Zydowsky, Lynne Douthit, Ph.D. The Ohio State University, 1988 UMI 300 N. Zeeb Rd. Ann Aibor, M I 48106 PLEASE NOTE: In all cases this material has been filmed in the best possible way from the available copy. Problems encountered with this document have been identified here with a check mark V . 1. Glossy photographs or pages_____ 2. Colored illustrations, paper or print_______ 3. Photographs with dark background_____ 4. Illustrations are poor copy_______ 5. Pages with black marks, not original copy ______ 6. Print shows through as there is text on both sides of page _______ 7. Indistinct, broken or small print on several pages. 8. Print exceeds margin requirements ______ 9. Tightly bound copy with print lost in spine _______ 10. Computer printout pages with indistinct print _______ 11. Page(s)___________ lacking when material received, and not available from school or author. 12. Page(s) seem to be missing in numbering only as text follows. 13. Two pages numbered . Text follows. 14. Curling and wrinkled pages 15. Dissertation contains pages with print at a slant, filmed as received 16. Other UMI STEREOCHEMICAL STUDIES IN ANAEROBIC METABOLISM DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Lynne Douthit Zydowsky, B.S. The Ohio State University 1988 Dissertation Committee: Approved By Heinz G. Floss Michael H. Klapper Robert M. Mayer Adviser Ming-Daw Tsai Department of Chemistry To Tom, Who is both my husband and best friend ii ACKNOWLEDGMENTS I would like to express my sincere appreciation to my research adviser, Dr. Heinz G. Floss, for his support and guidance during my stay in his research group. He gave me the opportunity to join his group even though he knew that my chemical backgound and research skills needed substantial development. I will always be greatly indebted to him for taking this chance with me. I would like thank Dr. John N Reeve for opening his laboratory to me and providing research assistance along the way. I would also like to thank my dissertation committee members; Dr. Michael H. Klapper, Dr. Robert M. Mayer, and Dr. Ming-Daw Tsai for their patience during the final stages of my graduate career. I am indebted to my coworkers in the Floss group. They offered me the scientific assistance and friendship which made my stay at The Ohio State University a rewarding and enjoyable experience. A special thanks goes to Jim Brown and Elizabeth Haas. They offered me not only their sceintific knowledge, but also their home and their hearts at a time when I needed both. Dr. Leroy Salerni, my friend and former professor from Butler University, did not let me settle for second best. He started my graduate career in the right direction by suggesting that I go to Purdue University and work for Dr. Heinz G. Floss. I will always be thankful for his advice and confidence in me. To Tom Zydowsky, my husband and best friend, I owe a very special thanks. His selfless and loving support, both scientific and personal, was invaluable to me. He offered suggestions and comments which helped me scientifically, and gave me the support and encouragement to continue in pursuit of my career. For this I will always love him. iv VITA May 22,1958 ............................................................ Born - Olney, Illinois May, 1 9 8 1................................................................. B.S., Butler University, Indianapolis, Indiana August, 1981 - December, 1982 ...................... Graduate Student PurdueUniversity, West Lafayette, Indiana January, 1983 - January 1987 Graduate Research November 1987 - present Associate in the Department of Chemistry, The Ohio State University Feburary 1987 - November 1987 ....................... Proctor and Gamble Predoctoral Fellowship PUBLICATIONS 1. L.D. Zydowsky, T.M. Zydowsky, E.S. Haas, J.W. Brown, J.N. Reeve and H.G. Floss. "Stereochemical Course of Methyl Transfer from Methanol to Methyl Coenzyme M in Cell-Free Extracts of Methanosarcina barkeri." J. Am. Chem. Soc,. 1987. 109. 7922. 2. S. Raybuck, N.R. Bastian, L.D. Zydowsky, K.Kobayashi, H.G. Floss, W.H. Orme-Johnson and C.T. Walsh. "Nickel-Containing CO Dehydrogenase Catalyses Reversible Decarbonylation of Acetyl CoA with Retention of Stereochemistry at the Methyl Group." J. Am. Chem. Soc. 1987. 109. 3171. v 3. H. Lebertz, H. Simon, L.F. Courtney, S.J. Benkovic, L.D. Zydowsky, K. Lee and H.G. Floss. "Stereochemistry of Acetic Acid Formation from 5-Methyl Tetrahydrofolate by Clostridium thermoaceticum." J. Am. Chem. Soc. 1987. 109. 3173. FIELDS OF STUDY Bioorganic Chemistry and Mechanistic Enzymology. TABLE OF CONTENTS PAGE DEDICATION i i ACKNOWLEDGMENTS.......................................................................................... i i i VITA............................................................................................................................. v LIST OF FIGURES.................................................................................................... x i LIST OF ABBREVIATIONS................................................................................... x iv PART I INTRODUCTION..............................................................................................1 RESULTS AND DISCUSSION............................................................................... 10 Preparation of (R)- and (S)-[ 2H i, 3H]Acetyl Coenzyme A ............................................................................................. 1 0 The Carbonylation Reaction with Purified Carbon Monoxide Dehydrogenase (CODH) from Clostridium thermoaceticum ......................................................................................... 11 Stereochemical Analysis of Acetic Acid Formation from (Methyl-R)- and (Methyl-S)-[ 2 H i, 3 H]methyltetra- hydrofolate by a Cell-Free Extract of Clostridium thermoaceticum. 1 3 CONCLUSION........................................................................................................ 16 EXPERIMENTAL..................................................................................................... 20 Materials and Methods ............................................................................ 2 0 Synthesis of (R)- and (S)-[ 2H-| 3H]Acetyl Coenzyme A 21 Carbonylation Exchange with Purified CO Dehydro­ genase (CODH) from Clostridium thermoaceticum with (R)- and (S)-[ 2H-| 3H]Acetyl Coenzyme A ................................ 22 Conversion of (Methyl-R)- and (Methyl-S)- [2H i ,3 H]methyltetrahydrofolate with the Cell-Free Extract From Clostridium thermoaceticum ...................................... 23 PART II INTRODUCTION...................................................................................... 24 Methanogenesis from CO 2 and H 2.................................................... 27 Methanogenesis from Methanol, Methylamine and Acetate ....................................................................................................... 31 RESULTS AND DISCUSSION................................................................................ 3 6 Cultivation of Methanosarcina barkeri on Methanol Methylamine, and Acetate ....................................................................... 3 6 Preparation of an Active Cell-Free Extract from Methanosarcina barkeri ............................................................................ 3 9 Conversion of CD 3OH to CD3H with the Cell-Free Extract of Methanosarcina barkeri ........................................................ 39 Synthesis of (R)- and (SJ-pH-j , 3H]Methanol ..................................... 40 Conversion of (R)- and (S)-[ 2H-| ,3H]Methanol (lk) and (la) to Acetate for Configurational Analysis ........................ 52 Conversion of 14C-Methanol into Methyl Coenzyme M using the Cell-Free Extract of Methanosarcina barkeri and Isolation of Methyl Coenzyme M .................................................... 5 9 Conversion of (R)- and (S)-[ 2H i, 3 H]Methanol into (R)- and (S)-[2H i, 3H]Methyl Coenzyme M with the Cell-Free Extract of Methanosarcina barkeri ....................................................... 60 Degradation of [ 2H-|,3H]Methyl
Recommended publications
  • Recycling of Vitamin B12 and NAD+ Within the Pdu Microcompartment of Salmonella Enterica Shouqiang Cheng Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2010 Recycling of vitamin B12 and NAD+ within the Pdu microcompartment of Salmonella enterica Shouqiang Cheng Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Biochemistry, Biophysics, and Structural Biology Commons Recommended Citation Cheng, Shouqiang, "Recycling of vitamin B12 and NAD+ within the Pdu microcompartment of Salmonella enterica" (2010). Graduate Theses and Dissertations. 11713. https://lib.dr.iastate.edu/etd/11713 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. + Recycling of vitamin B12 and NAD within the Pdu microcompartment of Salmonella enterica by Shouqiang Cheng A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Biochemistry Program of Study Committee: Thomas A. Bobik, Major Professor Alan DiSpirito Basil Nikolau Reuben Peters Gregory J. Phillips Iowa State University Ames, Iowa 2010 Copyright © Shouqiang Cheng, 2010. All rights reserved. ii Table of contents Abstract.............................................................................................................................
    [Show full text]
  • Characterisation, Classification and Conformational Variability Of
    Characterisation, Classification and Conformational Variability of Organic Enzyme Cofactors Julia D. Fischer European Bioinformatics Institute Clare Hall College University of Cambridge A thesis submitted for the degree of Doctor of Philosophy 11 April 2011 This dissertation is the result of my own work and includes nothing which is the outcome of work done in collaboration except where specifically indicated in the text. This dissertation does not exceed the word limit of 60,000 words. Acknowledgements I would like to thank all the members of the Thornton research group for their constant interest in my work, their continuous willingness to answer my academic questions, and for their company during my time at the EBI. This includes Saumya Kumar, Sergio Martinez Cuesta, Matthias Ziehm, Dr. Daniela Wieser, Dr. Xun Li, Dr. Irene Pa- patheodorou, Dr. Pedro Ballester, Dr. Abdullah Kahraman, Dr. Rafael Najmanovich, Dr. Tjaart de Beer, Dr. Syed Asad Rahman, Dr. Nicholas Furnham, Dr. Roman Laskowski and Dr. Gemma Holli- day. Special thanks to Asad for allowing me to use early development versions of his SMSD software and for help and advice with the KEGG API installation, to Roman for knowing where to find all kinds of data, to Dani for help with R scripts, to Nick for letting me use his E.C. tree program, to Tjaart for python advice and especially to Gemma for her constant advice and feedback on my work in all aspects, in particular the chemistry side. Most importantly, I would like to thank Prof. Janet Thornton for giving me the chance to work on this project, for all the time she spent in meetings with me and reading my work, for sharing her seemingly limitless knowledge and enthusiasm about the fascinating world of enzymes, and for being such an experienced and motivational advisor.
    [Show full text]
  • Carbon Compounds and Cells Are Very Large and Complex
    7/21/2009 How are the ingredients for life put together? • Most molecules that make up living things Carbon Compounds and Cells are very large and complex. • Now let’s learn abou t their s tru ctur e an d All living organisms are composed function. of cells, from just one to many trillions. Carbon compounds Carbon is unique among the elements. • Life as we know it is carbon based. • A carbon atom can • This means that most of the compounds form chemical bonds with other carbon you are made of contain the element atoms in long chains carbon. or rings. • Some carbon compounds contain several thousand carbon atoms. You use carbon compounds every day. The carbon compounds in living things are classified into four groups: • Carbon compounds are not only found in living things. 1. carbohydrates, • Plastic, rubber, and gasoline are carbon compounds. 2. lipids, • In fact, there are over 12 3. proteins, and million known carbon 4. nucleic acids. compounds! 1 7/21/2009 Compounds in a Person CARBOHYDRATES Is water a carbon compound? Plants and animals use carbohydrates. Carbohydrates are energy-rich compounds made from carbon, • Cells use carbohydrates to get and hyygdrogen, and oxyg en. store energy. • Plants conta in ce llu lose, a carbohydrate, which gives them a rigid structure. Glucose Carbohydrates are classified as sugars and starches. • Glucose is a simple sugar made of 6 • Sugars are simple carbon, 12 hydrogen, molecules which are and 6 oxygen atoms. smaller than starches. 2 7/21/2009 The sugar you use to sweeten food is called sucrose.
    [Show full text]
  • Modeling Methanogenesis with a Genome-Scale Metabolic Reconstruction of Methanosarcina Barkeri
    2006.0004 Molecular Systems Biology (2006) doi:10.1038/msb4100046 & 2006 EMBO and Nature Publishing Group All rights reserved 1744-4292/06 www.molecularsystemsbiology.com Modeling methanogenesis with a genome-scale metabolic reconstruction of Methanosarcina barkeri Adam M Feist1,*, Johannes CM Scholten2,*, Bernhard Ø Palsson1, Fred J Brockman2 and Trey Ideker1 1 Department of Bioengineering, University of California—San Diego, La Jolla, CA, USA and 2 Pacific Northwest National Laboratory, Environmental Microbiology Group, Richland, WA, USA * Corresponding authors: AM Feist, Department of Bioengineering, University of California—San Diego, 9500 Gilman Drive 0412, La Jolla, CA 92092-0412, USA. Tel.: þ 1 858 822 3181; Fax: þ 1 858 822 3120; E-mail: [email protected] or JCM Scholten, Environmental Microbiology Group, Pacific Northwest National Laboratory, 900 Battelle Blvd, Richland, WA 99352, USA. Tel.: þ 1 509 376 1939; Fax: þ 1 509 372 1632; E-mail: [email protected] Received 5.8.05; accepted 8.12.05 We present a genome-scale metabolic model for the archaeal methanogen Methanosarcina barkeri. We characterize the metabolic network and compare it to reconstructions from the prokaryotic, eukaryotic and archaeal domains. Using the model in conjunction with constraint-based methods, we simulate the metabolic fluxes and resulting phenotypes induced by different environmental and genetic conditions. This represents the first large-scale simulation of either a methanogen or an archaeal species. Model predictions are validated by comparison to experimental growth measurements and phenotypes of M. barkeri on different substrates. The predicted growth phenotypes for wild type and mutants of the methanogenic pathway have a high level of agreement with experimental findings.
    [Show full text]
  • Post-Translational Thioamidation of Methyl-Coenzyme M Reductase, a Key Enzyme in Methanogenic and Methanotrophic Archaea
    bioRxiv preprint doi: https://doi.org/10.1101/121111; this version posted March 27, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Post-translational thioamidation of methyl-coenzyme M reductase, a key 2 enzyme in methanogenic and methanotrophic Archaea 3 Dipti D. Nayaka, Nilkamal Mahantab, Douglas A. Mitchella,b,c, William W. Metcalfa,c 4 5 Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois, USAa; 6 Department of Chemistry, University of Illinois, Urbana, Illinois, USAb; Department of 7 Microbiology, University of Illinois, Urbana, Illinois, USAc 8 9 Running Head: Thioglycine modification of methyl-coenzyme M reductase 10 11 Address correspondence to: 12 William W. Metcalf ([email protected]), Department of Microbiology, 601 S. Goodwin 13 Avenue, University of Illinois, IL 61801 Tel: 217-244-1943 14 Douglas A. Mitchell ([email protected]), Department of Chemistry, 505 S. Matthews 15 Avenue, University of Illinois, IL 61801 Tel: 217-333-0508 bioRxiv preprint doi: https://doi.org/10.1101/121111; this version posted March 27, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 16 Abstract 17 The enzyme methyl-coenzyme M reductase (MCR), found in strictly anaerobic 18 methanogenic and methanotrophic archaea, catalyzes a reversible reaction involved in the 19 production and consumption of the potent greenhouse gas methane.
    [Show full text]
  • Methanogens: Pushing the Boundaries of Biology
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Biochemistry -- Faculty Publications Biochemistry, Department of 12-14-2018 Methanogens: pushing the boundaries of biology Nicole R. Buan Follow this and additional works at: https://digitalcommons.unl.edu/biochemfacpub Part of the Biochemistry Commons, Biotechnology Commons, and the Other Biochemistry, Biophysics, and Structural Biology Commons This Article is brought to you for free and open access by the Biochemistry, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Biochemistry -- Faculty Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Emerging Topics in Life Sciences (2018) 2 629–646 https://doi.org/10.1042/ETLS20180031 Review Article Methanogens: pushing the boundaries of biology Nicole R. Buan Department of Biochemistry, University of Nebraska-Lincoln, 1901 Vine St., Lincoln, NE 68588-0664, U.S.A. Correspondence: Nicole R. Buan ([email protected]) Downloaded from https://portlandpress.com/emergtoplifesci/article-pdf/2/4/629/484198/etls-2018-0031c.pdf by University of Nebraska Libraries user on 11 February 2020 Methanogens are anaerobic archaea that grow by producing methane gas. These microbes and their exotic metabolism have inspired decades of microbial physiology research that continues to push the boundary of what we know about how microbes conserve energy to grow. The study of methanogens has helped to elucidate the thermodynamic and bioener- getics basis of life, contributed our understanding of evolution and biodiversity, and has garnered an appreciation for the societal utility of studying trophic interactions between environmental microbes, as methanogens are important in microbial conversion of biogenic carbon into methane, a high-energy fuel.
    [Show full text]
  • University of Groningen Exploring the Cofactor-Binding and Biocatalytic
    University of Groningen Exploring the cofactor-binding and biocatalytic properties of flavin-containing enzymes Kopacz, Malgorzata IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2014 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Kopacz, M. (2014). Exploring the cofactor-binding and biocatalytic properties of flavin-containing enzymes. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 29-09-2021 Exploring the cofactor-binding and biocatalytic properties of flavin-containing enzymes Małgorzata M. Kopacz The research described in this thesis was carried out in the research group Molecular Enzymology of the Groningen Biomolecular Sciences and Biotechnology Institute (GBB), according to the requirements of the Graduate School of Science, Faculty of Mathematics and Natural Sciences.
    [Show full text]
  • Macromolecules
    Lesson Overview Carbon Compounds Lesson Overview 2.3 Carbon Compounds Lesson Overview Carbon Compounds THINK ABOUT IT In the early 1800s, many chemists called the compounds created by organisms “organic,” believing they were fundamentally different from compounds in nonliving things. We now understand that the principles governing the chemistry of living and nonliving things are the same, but the term “organic chemistry” is still around. Today, organic chemistry means the study of compounds that contain bonds between carbon atoms, while inorganic chemistry is the study of all other compounds. Lesson Overview Carbon Compounds The Chemistry of Carbon Carbon atoms have four valence electrons, allowing them to form strong covalent bonds with many other elements (including hydrogen, oxygen, phosphorus, sulfur, and nitrogen). Carbon atoms can also bond to each other (this gives carbon the ability to form millions of different large and complex structures). Living organisms are made up of molecules that consist of carbon and these other elements. Lesson Overview Carbon Compounds The Chemistry of Carbon Carbon-carbon bonds can be single , double , or triple covalent bonds. METHANE BUTADIENE ACETYLENE Lesson Overview Carbon Compounds The Chemistry of Carbon Chains of carbon atoms can be straight , branched , or even close up on themselves to form rings . BUTANE ISOOCTANE BENZENE Lesson Overview Carbon Compounds Macromolecules Many of the organic compounds in living cells are macromolecules. Macromolecule means “giant molecule” Macromolecules are made from thousands or even hundreds of thousands of smaller molecules. Lesson Overview Carbon Compounds Macromolecules Most macromolecules are formed by a process known as polymerization , in which large compounds are built by joining smaller ones together.
    [Show full text]
  • The Genome Sequence of Methanohalophilus Mahii SLPT
    Hindawi Publishing Corporation Archaea Volume 2010, Article ID 690737, 16 pages doi:10.1155/2010/690737 Research Article TheGenomeSequenceofMethanohalophilus mahii SLPT Reveals Differences in the Energy Metabolism among Members of the Methanosarcinaceae Inhabiting Freshwater and Saline Environments Stefan Spring,1 Carmen Scheuner,1 Alla Lapidus,2 Susan Lucas,2 Tijana Glavina Del Rio,2 Hope Tice,2 Alex Copeland,2 Jan-Fang Cheng,2 Feng Chen,2 Matt Nolan,2 Elizabeth Saunders,2, 3 Sam Pitluck,2 Konstantinos Liolios,2 Natalia Ivanova,2 Konstantinos Mavromatis,2 Athanasios Lykidis,2 Amrita Pati,2 Amy Chen,4 Krishna Palaniappan,4 Miriam Land,2, 5 Loren Hauser,2, 5 Yun-Juan Chang,2, 5 Cynthia D. Jeffries,2, 5 Lynne Goodwin,2, 3 John C. Detter,3 Thomas Brettin,3 Manfred Rohde,6 Markus Goker,¨ 1 Tanja Woyke, 2 Jim Bristow,2 Jonathan A. Eisen,2, 7 Victor Markowitz,4 Philip Hugenholtz,2 Nikos C. Kyrpides,2 and Hans-Peter Klenk1 1 DSMZ—German Collection of Microorganisms and Cell Cultures GmbH, 38124 Braunschweig, Germany 2 DOE Joint Genome Institute, Walnut Creek, CA 94598-1632, USA 3 Los Alamos National Laboratory, Bioscience Division, Los Alamos, NM 87545-001, USA 4 Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA 5 Oak Ridge National Laboratory, Oak Ridge, TN 37830-8026, USA 6 HZI—Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany 7 Davis Genome Center, University of California, Davis, CA 95817, USA Correspondence should be addressed to Stefan Spring, [email protected] and Hans-Peter Klenk, [email protected] Received 24 August 2010; Accepted 9 November 2010 Academic Editor: Valerie´ de Crecy-Lagard´ Copyright © 2010 Stefan Spring et al.
    [Show full text]
  • Bioenergetics and Anaerobic Respiratory Chains of Aceticlastic Methanogens☆
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biochimica et Biophysica Acta 1837 (2014) 1130–1147 Contents lists available at ScienceDirect Biochimica et Biophysica Acta journal homepage: www.elsevier.com/locate/bbabio Review Bioenergetics and anaerobic respiratory chains of aceticlastic methanogens☆ Cornelia Welte a,b, Uwe Deppenmeier a,⁎ a Institute of Microbiology and Biotechnology, University of Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany b Department of Microbiology, IWWR, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands article info abstract Article history: Methane-forming archaea are strictly anaerobic microbes and are essential for global carbon fluxes since they Received 28 October 2013 perform the terminal step in breakdown of organic matter in the absence of oxygen. Major part of methane Received in revised form 2 December 2013 produced in nature derives from the methyl group of acetate. Only members of the genera Methanosarcina and Accepted 5 December 2013 Methanosaeta are able to use this substrate for methane formation and growth. Since the free energy change Available online 12 December 2013 coupled to methanogenesis from acetate is only −36 kJ/mol CH4, aceticlastic methanogens developed efficient energy-conserving systems to handle this thermodynamic limitation. The membrane bound electron transport Keywords: Methanogenesis system of aceticlastic methanogens is a complex branched respiratory chain that can accept electrons from Methane hydrogen, reduced coenzyme F420 or reduced ferredoxin. The terminal electron acceptor of this anaerobic Energy conservation respiration is a mixed disulfide composed of coenzyme M and coenzyme B. Reduced ferredoxin has an important Ion translocation function under aceticlastic growth conditions and novel and well-established membrane complexes oxidizing Anaerobic respiration ferredoxin will be discussed in depth.
    [Show full text]
  • Article Is Available Online Standing That Under the Correct Conditions, Microbes Can Pro- At
    Biogeosciences, 15, 1733–1747, 2018 https://doi.org/10.5194/bg-15-1733-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Molecular characterization of organic matter mobilized from Bangladeshi aquifer sediment: tracking carbon compositional change during microbial utilization Lara E. Pracht1, Malak M. Tfaily2, Robert J. Ardissono1, and Rebecca B. Neumann1 1Department of Civil and Environmental Engineering, University of Washington, Seattle, 98195, USA 2Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, 99354, USA Correspondence: Rebecca B. Neumann ([email protected]) Received: 29 June 2017 – Discussion started: 11 July 2017 Revised: 1 March 2018 – Accepted: 2 March 2018 – Published: 26 March 2018 Abstract. Bioavailable organic carbon in aquifer recharge In anaerobic environments, energy yields from redox reac- waters and sediments can fuel microbial reactions with im- tions are small and the amount of energy required to re- plications for groundwater quality. A previous incubation move electrons from highly reduced carbon substrates during experiment showed that sedimentary organic carbon (SOC) oxidation decreases the thermodynamic favorability of de- mobilized off sandy sediment collected from an arsenic- grading compounds with a low NOSC. While all compound contaminated and methanogenic aquifer in Bangladesh was types were eventually degraded during incubation, NOSC bioavailable; it was transformed into methane. We used and compound size controlled the rates of carbon transforma- high-resolution mass spectrometry to molecularly character- tion. Large, more thermodynamically favorable compounds ize this mobilized SOC, reference its composition against (e.g., aromatics with a high NOSC) were targeted first, while dissolved organic carbon (DOC) in surface recharge water, small, less thermodynamically favorable compounds (e.g., track compositional changes during incubation, and advance alkanes and olefinics with a low NOSC) were used last.
    [Show full text]
  • The Elements.Pdf
    A Periodic Table of the Elements at Los Alamos National Laboratory Los Alamos National Laboratory's Chemistry Division Presents Periodic Table of the Elements A Resource for Elementary, Middle School, and High School Students Click an element for more information: Group** Period 1 18 IA VIIIA 1A 8A 1 2 13 14 15 16 17 2 1 H IIA IIIA IVA VA VIAVIIA He 1.008 2A 3A 4A 5A 6A 7A 4.003 3 4 5 6 7 8 9 10 2 Li Be B C N O F Ne 6.941 9.012 10.81 12.01 14.01 16.00 19.00 20.18 11 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 3 Na Mg IIIB IVB VB VIB VIIB ------- VIII IB IIB Al Si P S Cl Ar 22.99 24.31 3B 4B 5B 6B 7B ------- 1B 2B 26.98 28.09 30.97 32.07 35.45 39.95 ------- 8 ------- 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 39.10 40.08 44.96 47.88 50.94 52.00 54.94 55.85 58.47 58.69 63.55 65.39 69.72 72.59 74.92 78.96 79.90 83.80 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 5 Rb Sr Y Zr NbMo Tc Ru Rh PdAgCd In Sn Sb Te I Xe 85.47 87.62 88.91 91.22 92.91 95.94 (98) 101.1 102.9 106.4 107.9 112.4 114.8 118.7 121.8 127.6 126.9 131.3 55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 6 Cs Ba La* Hf Ta W Re Os Ir Pt AuHg Tl Pb Bi Po At Rn 132.9 137.3 138.9 178.5 180.9 183.9 186.2 190.2 190.2 195.1 197.0 200.5 204.4 207.2 209.0 (210) (210) (222) 87 88 89 104 105 106 107 108 109 110 111 112 114 116 118 7 Fr Ra Ac~RfDb Sg Bh Hs Mt --- --- --- --- --- --- (223) (226) (227) (257) (260) (263) (262) (265) (266) () () () () () () http://pearl1.lanl.gov/periodic/ (1 of 3) [5/17/2001 4:06:20 PM] A Periodic Table of the Elements at Los Alamos National Laboratory 58 59 60 61 62 63 64 65 66 67 68 69 70 71 Lanthanide Series* Ce Pr NdPmSm Eu Gd TbDyHo Er TmYbLu 140.1 140.9 144.2 (147) 150.4 152.0 157.3 158.9 162.5 164.9 167.3 168.9 173.0 175.0 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Actinide Series~ Th Pa U Np Pu AmCmBk Cf Es FmMdNo Lr 232.0 (231) (238) (237) (242) (243) (247) (247) (249) (254) (253) (256) (254) (257) ** Groups are noted by 3 notation conventions.
    [Show full text]