Coupling of Extratropical Mesoscale Eddies in the Ocean to Westerly Winds in the Atmospheric Boundary Layer

Total Page:16

File Type:pdf, Size:1020Kb

Coupling of Extratropical Mesoscale Eddies in the Ocean to Westerly Winds in the Atmospheric Boundary Layer MAY 2003 WHITE AND ANNIS 1095 Coupling of Extratropical Mesoscale Eddies in the Ocean to Westerly Winds in the Atmospheric Boundary Layer WARREN B. WHITE AND JEFFREY L. ANNIS Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California (Manuscript received 19 December 2001, in ®nal form 8 November 2002) ABSTRACT The sea surface temperature (SST) signature in mesoscale eddies in the western boundary current extensions around the globe and in the Antarctic Circumpolar Current are found to alter the surface stress associated with background westerly winds, producing wind stress curl (WSC) residuals of eddy scale that are capable of modifying the eddy dynamics. This is revealed by examining satellite-derived mesoscale sea level height (SLH), SST, and neutrally stable zonal surface wind (ZSW) residuals together for 18 months. In the presence of background westerly winds on basin scales, warm mesoscale eddies reduce the stability of the marine atmospheric boundary layer, increasing the zonal air±sea momentum ¯ux measured by satellite scatterometry. Warm SST residuals of ;0.88C are capable of producing westerly ZSW residuals of ;1.2 m s21 under background westerly winds of ;6ms21. Alternatively, this means increasing the otherwise neutrally stable drag coef®cient by ;40%, consistent with in situ measurements. The resulting feedback from atmosphere to ocean through the resulting mesoscale WSC residuals (;5.0 3 1027 Nm23) produces residual Ekman pumping that can be on the same order as the residual SLH tendency in the eddy ®eld. Moreover, the spatial phasing of the mesoscale WSC residuals acts, on average, to displace the mesoscale eddies equatorward with meridional coupling phase speeds of ;0.01 m s21 while suppressing their amplitude. 1. Introduction radiometry (Hughes 1996; Hughes et al. 1998; Hill et Mesoscale eddies achieve their largest magnitude in al. 2000). the western boundary current extensions in each ocean These mesoscale eddies are associated with sea sur- basin and in the Antarctic Circumpolar Current (ACC) face temperature (SST) signatures that alter the stability in the Southern Ocean (Fig. 1). Initially, the mesoscale of the marine atmospheric boundary layer above them eddy ®eld in the midlatitude North Paci®c Ocean was and have the potential for affecting the surface wind studied extensively using in situ upper-ocean tempera- stresses associated with the background winds. Work on ture measurements collected from volunteer observing this subject began in the eastern Paci®c Ocean, when ships (White and Bernstein 1979). The mesoscale eddy Greenhut (1982) found SST discontinuities altering the ®eld in the Kuroshio±Oyashio current extension was surface ¯uxes and associated drag coef®cients accom- found to be dominated by zonal wavelengths ranging panying the background wind. From aircraft observa- from 400 to 1200 km and by periods ranging from 6 to tions taken during the Joint Air±Sea Interaction (JASIN) 18 months (Bernstein and White 1977; Talley and White experiment, Guymer et al. (1983) found mesoscale var- 1987). The source of mesoscale eddy activity in the iability in SST producing similar results. From aircraft Kuroshio±Oyashio extension was observed to be mixed measurements taken during the Frontal Air±Sea Inter- baroclinic±barotropic shear instability (Bernstein and action Experiment (FASINEX), Friehe et al. (1991) fo- White 1982; Bennett and White 1986; Tai and White cused on background winds directed across an SST 1990), with mesoscale eddy activity governed largely front, ®nding larger surface wind stresses and lesser by Rossby wave dynamics, propagating eastward or buoyant stability in the marine atmospheric boundary westward depending on the background absolute vor- layer over the warm side of the front than on the cold ticity gradient (Mizuno and White 1983; Qiu et al. side, with surface wind stress magnitudes increasing by 1991). Similar results have been obtained for the me- a factor of ;2. From these measurements, they com- soscale eddies in the ACC using satellite altimetry and puted 10-m drag coef®cients on both sides of the front, ®nding nearly a 100% increase when passing from the cold side to the warm side. Friehe et al. (1991) proposed Corresponding author address: Dr. Warren B. White, Scripps In- stitution of Oceanography, University of California, San Diego, La that this rather extraordinary increase in surface wind Jolla, CA 92093-0230. stress across the front could produce a feedback to the E-mail: [email protected] ocean, thereby altering the dynamics of the front. q 2003 American Meteorological Society Unauthenticated | Downloaded 10/02/21 05:00 AM UTC 1096 JOURNAL OF PHYSICAL OCEANOGRAPHY VOLUME 33 FIG. 1. (a) The Northern Hemisphere geographical distribution of the rms of mesoscale SLH, SST, and ZSW residuals in extratropical mesoscale eddy ®eld, ®ltered for zonal wavelengths of 400±1200 km and for periods .1 month, observed over the 18-month record for Jul 1999±Dec 2000. (b) As in (a) but for the Southern Hemisphere. Contour levels are 0.02 m, 0.088C, and 0.05 m s21. Shading is for effect. Black boxes indicate regions where the mesoscale eddy ®elds are examined in detail. Unauthenticated | Downloaded 10/02/21 05:00 AM UTC MAY 2003 WHITE AND ANNIS 1097 In the present study, we ®nd mesoscale eddies in the MSW, and WSC residuals, while the spatial ®lter allows western boundary current extensions and in the ACC us to isolate the dominant signal in the mesoscale eddy associated with SST residuals that alter the surface wind spectrum (e.g., Bernstein and White 1977; Hughes stresses accompanying the background westerly wind 1995). ®eld. We ®nd warm (cool) SST residuals in these me- Since we observe only two to three cycles of me- soscale eddies associated with positive (negative) neu- soscale variability at each grid point over the 18-month trally stable zonal surface wind (ZSW) residuals at 10- record, we obtain statistical con®dence in the results by m height derived from satellite scatterometry by the conducting comparisons over latitude±longitude do- SeaWinds QuikScat project (Weiss 2000). These ZSW mains (158 lat by 608 lon) that encompass 12±16 me- residuals are an artifact of the method of producing soscale eddies. We do this for four independent domains, neutrally stable winds for a marine atmospheric bound- focusing on mesoscale eddies in the Kuroshio±Oyashio ary layer that is not neutrally stable. Their presence in current extension, the Gulf Stream current extension, these satellite winds indicates that the background west- the Brazil current extension, and the ACC south of Af- erly wind imparts greater stress to the ocean over warm rica. This allows us to examine the association between eddies than over cold eddies. So, we estimate the cor- mesoscale SLH, SST, ZSW, and WSC residuals over responding change in the drag coef®cient for the back- 48±64 independent eddies, yielding equivalent numbers ground westerly winds of basin scale that are directed of effective degrees of freedom (Emery and Thomson over warm and cold mesoscale eddies. This yields re- 2001). sults consistent with those of Friehe et al.; that is, a background westerly wind of basin scale is associated 3. Geographical distribution of the rms of with a surface wind stress ®eld of mesoscale. Here, we mesoscale SLH, SST, and ZSW residuals ®nd the corresponding wind stress curl (WSC) residuals exerting a signi®cant feedback on the dynamics of these The geographical distributions of the root-mean- mesoscale eddies, producing an Ekman pumping that square (rms) of mesoscale SLH, SST, and ZSW residuals signi®cantly alters the observed sea level height (SLH) in the extratropical Northern Hemisphere (Fig. 1a) and tendency in the eddy ®eld, capable of modifying not Southern Hemisphere (Fig. 1b) display largest estimates only their propagation characteristics but their stability in the western boundary current extensions in each as well. ocean basin and along the ACC in the Southern Ocean, achieving maximum rms estimates of 0.10 m, 0.68C, and 0.3 m s21. Mesoscale eddy activity in SLH, SST, 2. Data and methods and ZSW residuals can also be seen to be relatively We examine SLH from TOPEX/Poseidon and ERS- intense off the east and west coasts of southern Australia 1/2 altimetry (Ducet et al. 2000; Le Traon et al. 2001), and along the South Paci®c convergence zone (SPCZ). SST from multichannel advanced very-high resolution In the ACC, the mesoscale eddy activity is most intense radiometry (Smith et al. 1996), and neutrally stable zon- south and east of Africa, and south of Tasmania and al and meridional winds at 10-m height zonal surface New Zealand, with weaker eddy activity over the rest winds from the SeaWinds QuikScat project (Weiss of the ACC. The nominal correspondence in global dis- 2000) for 18 months from July 1999 through December tributions of the rms of mesoscale SLH, SST, and ZSW 2000. The ZSW and meridional surface winds (MSW) residuals in the strong current regions (delineated by are available on a daily basis, while SLH and SST are rectangular boxes, Fig. 1), where mesoscale eddies arise available every 10 days. We compute the surface wind principally from shear instability in the mean ¯ow, in- stresses and wind stress curl estimates from daily ZSW dicates that covarying SLH and SST residuals in¯uence and MSW estimates using a bulk formula with a wind- ZSW variability in the overlying marine atmospheric dependent drag coef®cient under neutrally stable con- boundary layer. ditions, increasing with wind speed but independent of air±sea temperature differences (Large and Pond 1981). 4. Phase relationships among mesoscale SLH, SST, We average the daily ZSW and MSW estimates, and the ZSW, and WSC residuals corresponding WSC estimates, onto the same 10-day grid as SLH and SST estimates, interpolating all ®ve To demonstrate that covarying SLH and SST resid- variables onto a common 0.258 latitude±longitude grid.
Recommended publications
  • PICES Sci. Rep. No. 2, 1995
    TABLE OF CONTENTS Page FOREWORD vii Part 1. GENERAL INTRODUCTION AND RECOMMENDATIONS 1.0 RECOMMENDATIONS FOR INTERNATIONAL COOPERATION IN THE OKHOTSK SEA AND KURIL REGION 3 1.1 Okhotsk Sea water mass modification 3 1.1.1Dense shelf water formation in the northwestern Okhotsk Sea 3 1.1.2Soya Current study 4 1.1.3East Sakhalin Current and anticyclonic Kuril Basin flow 4 1.1.4West Kamchatka Current 5 1.1.5Tides and sea level in the Okhotsk Sea 5 1.2 Influence of Okhotsk Sea waters on the subarctic Pacific and Oyashio 6 1.2.1Kuril Island strait transports (Bussol', Kruzenshtern and shallower straits) 6 1.2.2Kuril region currents: the East Kamchatka Current, the Oyashio and large eddies 7 1.2.3NPIW transport and formation rate in the Mixed Water Region 7 1.3 Sea ice analysis and forecasting 8 2.0 PHYSICAL OCEANOGRAPHIC OBSERVATIONS 9 2.1 Hydrographic observations (bottle and CTD) 9 2.2 Direct current observations in the Okhotsk and Kuril region 11 2.3 Sea level measurements 12 2.4 Sea ice observations 12 2.5 Satellite observations 12 Part 2. REVIEW OF OCEANOGRAPHY OF THE OKHOTSK SEA AND OYASHIO REGION 15 1.0 GEOGRAPHY AND PECULIARITIES OF THE OKHOTSK SEA 16 2.0 SEA ICE IN THE OKHOTSK SEA 17 2.1 Sea ice observations in the Okhotsk Sea 17 2.2 Ease of ice formation in the Okhotsk Sea 17 2.3 Seasonal and interannual variations of sea ice extent 19 2.3.1Gross features of the seasonal variation in the Okhotsk Sea 19 2.3.2Sea ice thickness 19 2.3.3Polynyas and open water 19 2.3.4Interannual variability 20 2.4 Sea ice off the coast of Hokkaido 21
    [Show full text]
  • Oceanographic Structure in the Bering Sea
    Title OCEANOGRAPHIC STRUCTURE IN THE BERING SEA Author(s) OHTANI, Kiyotaka Citation MEMOIRS OF THE FACULTY OF FISHERIES HOKKAIDO UNIVERSITY, 21(1), 65-106 Issue Date 1973-10 Doc URL http://hdl.handle.net/2115/21855 Type bulletin (article) File Information 21(1)_P65-106.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP OCEANOGRAPHIC STRUCTURE IN THE BERING SEA Kiyotaka OHTANI Faculty of Fisherie8, Hokkaido Univer8ity, Hakodate, Japan Contents 1. Introduction ..•••••....•.•.•...•.•••••.....•.••.•.•.•..••......... 65 1. Preface ...................................................... 65 2. Subarctic region ............................................. 66 3. Sources of data . .. 67 4. Bottom configuration ............................................ 68 II. Waters Coming into the Bering Sea from the Pacific Ocean .............. 70 ill. Current Pattern in the Bering Sea . .. 73 IV. Waters in the Bering Sea Basin . .. 76 1. Vertical structure of the basin water ..... .. .. .. .. .. .. .. .. .. ... 76 2. Types of vertical distribution of salinity and temperature .. .. 81 3. Process of formation of various Types .............................. 82 V. Waters on the Continental Shelf ...................................... 85 1. Horizontal distribution of salinity and temperature ............... 85 2. Vertical section ............................................... 91 3. Classification to type of vertical structure ....................... 94 VI. Interaction between the Shelf Waters and the Basin Waters
    [Show full text]
  • Fronts in the World Ocean's Large Marine Ecosystems. ICES CM 2007
    - 1 - This paper can be freely cited without prior reference to the authors International Council ICES CM 2007/D:21 for the Exploration Theme Session D: Comparative Marine Ecosystem of the Sea (ICES) Structure and Function: Descriptors and Characteristics Fronts in the World Ocean’s Large Marine Ecosystems Igor M. Belkin and Peter C. Cornillon Abstract. Oceanic fronts shape marine ecosystems; therefore front mapping and characterization is one of the most important aspects of physical oceanography. Here we report on the first effort to map and describe all major fronts in the World Ocean’s Large Marine Ecosystems (LMEs). Apart from a geographical review, these fronts are classified according to their origin and physical mechanisms that maintain them. This first-ever zero-order pattern of the LME fronts is based on a unique global frontal data base assembled at the University of Rhode Island. Thermal fronts were automatically derived from 12 years (1985-1996) of twice-daily satellite 9-km resolution global AVHRR SST fields with the Cayula-Cornillon front detection algorithm. These frontal maps serve as guidance in using hydrographic data to explore subsurface thermohaline fronts, whose surface thermal signatures have been mapped from space. Our most recent study of chlorophyll fronts in the Northwest Atlantic from high-resolution 1-km data (Belkin and O’Reilly, 2007) revealed a close spatial association between chlorophyll fronts and SST fronts, suggesting causative links between these two types of fronts. Keywords: Fronts; Large Marine Ecosystems; World Ocean; sea surface temperature. Igor M. Belkin: Graduate School of Oceanography, University of Rhode Island, 215 South Ferry Road, Narragansett, Rhode Island 02882, USA [tel.: +1 401 874 6533, fax: +1 874 6728, email: [email protected]].
    [Show full text]
  • Late Pleistocene and Holocene Paleoenvironments of the North Pacific Coast
    Quaternary Science Reviews, Vol. 14, pp. 449-47 1, 1995. Pergamon Copyright 0 1995 Elsevier Science Ltd. Printed in Great Britain. All rights reserved. 0277-3791l95 $29.00 0277-3791(9S)ooo&X LATE PLEISTOCENE AND HOLOCENE PALEOENVIRONMENTS OF THE NORTH PACIFIC COAST DANIEL H. MANN* and THOMAS D. HAMILTON? *Alaska Quaternary Center; University of Alaska Museum, 907 Yukon Drive, Fairbanks, AK 99775, U.S.A. I-US. Geological Survey, 4200 University Drive, Anchorage, AK 99508, U.S.A. Abstract - Unlike the North Atlantic, the North Pacific Ocean probably remained free of sea ice during the last glacial maximum (LGM), 22,000 to 17,000 BP. Following a eustatic low in sea level of ca. -120 m at 19,000 BP, a marine transgression had flooded the Bering and Chukchi shelves by 10,000 BP. Post-glacial sea-level history varied widely in other parts of the North QSR Pacific coastline according to the magnitude and timing of local tectonism and glacio-isostatic rebound. Glaciers covered much of the continental shelf between the Alaska Peninsula and British Columbia during the LGM. Maximum glacier extent during the LGM was out of phase between southern Alaska and southern British Columbia with northern glaciers reaching their outer limits earlier, between 23,000 and 16,000 BP, compared to 15,00&14,000 BP in the south. Glacier retreat was also time-transgressive, with glaciers retreating from the continental shelf of southern Alaska before 16,000 BP but not until 14,000-13,000 BP in southwestern British Columbia. Major climat- ic transitions occurred in the North Pacific at 24,000-22,000, 15,000-13,000 and 11,OOO-9000 BP.
    [Show full text]
  • Effect of Pleistocene Glaciation Upon Oceanographic Characteristics of the North Pacific Ocean and Bering Sea
    Deep-Sea Research, Vol. 30, No. 8A, pp. 851 to 869, 1983. 0198-0149/83 $3.00 + 0.00 Printed in Great Britain. (c) 1983 Pergamon Press Ltd. Effect of Pleistocene glaciation upon oceanographic characteristics of the North Pacific Ocean and Bering Sea CONSTANCE SANCETTA* (Received 23 October 1982; in revisedform 28 January 1983; accepted 28 April 1983) Abstract--During intervals of Pleistocene glaciation, insolation of the high-latitude northern hemisphere was lower than today, particularly during summer. Growth of continental ice sheets resulted in a lowering of sea level by more than 100 m in the Bering Sea. As a result, the Bering Strait was closed and most of the Bering continental shelf exposed. A proposed model predicts that (1) sea-ice formation would occur along the (modern) outer continental shelf, (2)advection would transport the sea ice over the deep basin, and (3) brine would flow into the basin at some inter- mediate depth to enhance the halocline. The result would be a low-salinity surface layer with a cold, thick halocline and reduced vertical mixing. Diatom microfossils and lithologic changes in sediment cores from the North Pacific Ocean and Bering Sea support the model and suggest that the proposed oceanographic conditions extended into the North Pacific, where the cold low-salinity laycr was enhanced by meltwater from continentally derived icebergs. INTRODUCTION IN THE last decade, marine geologists have begun to make observations and interpretations bearing on the physical oceanography and climate of the earth in the past (e.g., CLIMAP, 1976; Coauss, 1979; KEIGWIN, BENDER and KENNETT, 1979).
    [Show full text]
  • Numerical Study on the Oyashio Water Pathways in the Kuroshio±Oyashio Con¯Uence*
    1174 JOURNAL OF PHYSICAL OCEANOGRAPHY VOLUME 34 Numerical Study on the Oyashio Water Pathways in the Kuroshio±Oyashio Con¯uence* HUMIO MITSUDERA,1,11 BUNMEI TAGUCHI,# YASUSHI YOSHIKAWA,@ HIROHIKO NAKAMURA,& TAKUJI WASEDA,1 AND TANGDONG QU** 1FRSGC, Yokohama, Japan, and IPRC, SOEST, University of Hawaii, Honolulu, Hawaii #Department of Meteorology, SOEST, University of Hawaii, Honolulu, Hawaii @Japan Marine Science and Technology Center, Yokosuka, Japan &Fisheries Department, Kagoshima University, Kagoshima, Japan **IPRC, SOEST, University of Hawaii, Honolulu, Hawaii 11ILTS, Hokkaido University, Sapporo, Japan (Manuscript received 21 October 2002, in ®nal form 3 September 2003) ABSTRACT In this paper, results of a high-resolution regional model of the Kuroshio±Oyashio con¯uence, where the mixed water region (MWR) forms off the northeastern coast of Japan, are discussed. The model simulates major characteristics of the Kuroshio and the Oyashio system well, such as the separation of the Kuroshio Extension from the Japanese coast and southward intrusion of the Oyashio. Further, potential temperature and salinity structures in the intermediate layer su 5 27.0 resemble those obtained from historical data. Upon the success of this simulation, the authors focus on the diagnosis of the Oyashio water pathways intruding into the subtropics. It is found that the pathways of the Oyashio water form in the vicinity of the Japanese coast, where warm core rings and the Oyashio intrusion are active. These pathways are shown to be primarily eddy driven. Of particular interest is the water that originates in the Sea of Okhotsk, characterized by low potential vorticity (PV). Impacts of the Okhotsk water are identi®ed by conducting an experiment in which the exchange of waters between the Paci®c Ocean and the Sea of Okhotsk is blocked.
    [Show full text]
  • Late Quaternary Changes in Intermediate Water Oxygenation And
    PALEOCEANOGRAPHY, VOL. 22, PA3213, doi:10.1029/2005PA001234, 2007 Late Quaternary changes in intermediate water oxygenation and oxygen minimum zone, northern Japan: A benthic foraminiferal perspective Akihiko Shibahara,1 Ken’ichi Ohkushi,2 James P. Kennett,3 and Ken Ikehara4 Received 20 October 2005; revised 20 May 2007; accepted 8 June 2007; published 24 August 2007. [1] A strong oxygen minimum zone (OMZ) currently exists at upper intermediate water depths on the northern Japanese margin, NW Pacific. The OMZ results largely from a combination of high surface water productivity and poor ventilation of upper intermediate waters. We investigated late Quaternary history (last 34 kyr) of ocean floor oxygenation and the OMZ using quantitative changes in benthic foraminiferal assemblages in three sediment cores taken from the continental slope off Shimokita Peninsula and Tokachi, northern Japan, at water depths between 975 and 1363 m. These cores are well located within the present-day OMZ, a region of high surface water productivity, and in close proximity to the source region of North Pacific Intermediate Water. Late Quaternary benthic foraminiferal assemblages experienced major changes in response to changes in dissolved oxygen concentration in ocean floor sediments. Foraminiferal assemblages are interpreted to represent three main groups representing oxic, suboxic, and dysoxic conditions. Assemblage changes in all three cores and hence in bottom water oxygenation coincided with late Quaternary climatic episodes, similar to that known for the southern California margin. These episodes, in turn, are correlated with orbital and millennial climate episodes in the Greenland ice core including the last glacial episode, Bølling-A˚ llerød (B/A), Younger Dryas, Preboreal (earliest Holocene), early Holocene, and late Holocene.
    [Show full text]
  • Alaska Exclusive Economic Zone: Ocean Exploration and Research Bibliography
    Alaska Exclusive Economic Zone: Ocean Exploration and Research Bibliography Hope Shinn, Librarian, NOAA Central Library Jamie Roberts, Librarian, NOAA Central Library NCRL subject guide 2020-08 doi: 10.25923/k182-6s39 September 2020 U.S. Department of Commerce National Oceanic and Atmospheric Administration Office of Oceanic and Atmospheric Research NOAA Central Library – Silver Spring, Maryland Table of Contents Background ............................................................................................................................................... 3 Scope ......................................................................................................................................................... 3 Sources Reviewed ..................................................................................................................................... 7 Acknowledgements ................................................................................................................................... 7 Section I: Aleutian Islands ......................................................................................................................... 8 Section II: Aleutian Islands, Beaufort Sea, Bering Sea, Chukchi Sea, Gulf of Alaska ............................... 26 Section III: Aleutian Islands, Bering Sea, Gulf of Alaska .......................................................................... 27 Section IV: Aleutian Islands, Central Gulf of Alaska ...............................................................................
    [Show full text]
  • Characteristics of Mesoscale Eddies in the Kuroshio–Oyashio Extension Region Detected from the Distribution of the Sea Surface Height Anomaly
    1018 JOURNAL OF PHYSICAL OCEANOGRAPHY VOLUME 40 Characteristics of Mesoscale Eddies in the Kuroshio–Oyashio Extension Region Detected from the Distribution of the Sea Surface Height Anomaly SACHIHIKO ITOH AND ICHIRO YASUDA Ocean Research Institute, University of Tokyo, Tokyo, Japan (Manuscript received 2 April 2009, in final form 28 September 2009) ABSTRACT This study investigates the distribution of the sea surface height anomaly (SSHA) with the aim of quan- tifying the characteristics of mesoscale eddies in the Kuroshio–Oyashio extension region (KOER), where intense mesoscale eddies are commonly observed during hydrographic surveys. Dense distributions of both anticyclonic eddies (AEs) and cyclonic eddies (CEs) are detected for the first time in KOER with sufficient temporal and spatial coverage, using the Okubo–Weiss parameter without smoothing. Their contribution to the total SSHA variance is estimated to be about 50%. The zones of highest amplitudes are located north and south of the axis of the Kuroshio Extension (KE) for AEs and CEs, which represent warm-core and cold-core rings, respectively; the areas extend poleward along the Japan and Kuril–Kamchatka Trenches, especially for AEs. Eddies of both polarities and with moderate amplitudes are also recognized along the Subarctic Front (SAF). Eddies in areas north and south of the KE generally propagate westward, at a mean rate of 1–5 cm s21; those along the trenches south of 468N and along the SAF propagate poleward at mean rates of 1–2 and 0.5–1 cm s21, respectively. Because of the asymmetric distribution of the AEs and CEs in the areas north and south of the KE, and the asymmetric amplitude of them along the Japan and Kuril–Kamchatka Trenches, there exist significant eddy fluxes of vorticity, heat, and salinity in these areas.
    [Show full text]
  • Component 2, Part 1 Centripetal Forces in Japan: the Physical Setting the Japanese Archipelago Consists of Four Major Islands and Numerous Smaller Islands
    Component 2, Part 1 Centripetal Forces in Japan: The Physical Setting The Japanese archipelago consists of four major islands and numerous smaller islands. The archipelago is separated from the Asian mainland by the Sea of Okhorsk, the Sea of Japan, and the East China Sea (Figure 1). Japan is the "Land of the Rising Sun" as depicted on the Japanese flag (Figure 2). Because this is an island nation there have historically been strong physical barriers to migration. Not only are there three seas to the west, but there is the expanse of the Pacific Ocean to the east. The strong, warm Kuroshio Ocean current travels northward along the east coast of Japan. The cold Oyashio current flows south along the coast of Asia. The Oyashio meets the Kuroshio off the east coast and fogs develop along the boundary between the currents. The cold, foggy condition known as yamase can occur from June to mid-August in northern Japan adding localized climatic barriers. Japan's Neolithic people, the Jomon Culture (ca. 10,000 BCE - ca. 300 BCE) used the marine and coastal resources (Karan, 2005). Japan extends across 24 degrees of latitude, which would be similar to going from Boston to Mexico City in North America. This expanse, plus the climatic variations and the insular and ocean current factors limiting access, accounted for some of the isolation and separate development. It was during the Yayoi Period (ca. 300 BCE - ca. 300 CE) that Mongoloid immigrants crossed the Strait of Tsushima separating Japan from the Korean Peninsula in significant numbers bringing the knowledge of rice paddy cultivation, weaving, and smelting of iron.
    [Show full text]
  • Influences of the Kuroshio/Oyashio Extensions on Air–Sea Heat
    6536 JOURNAL OF CLIMATE VOLUME 22 Influences of the Kuroshio/Oyashio Extensions on Air–Sea Heat Exchanges and Storm-Track Activity as Revealed in Regional Atmospheric Model Simulations for the 2003/04 Cold Season* BUNMEI TAGUCHI Earth Simulator Center, JAMSTEC, Yokohama, Japan HISASHI NAKAMURA Department of Earth and Planetary Science, University of Tokyo, Tokyo, and Research Institute for Global Change, JAMSTEC, Yokohama, Japan MASAMI NONAKA Research Institute for Global Change, JAMSTEC, Yokohama, Japan SHANG-PING XIE IPRC, and Department of Meteorology, SOEST, University of Hawaii at Manoa, Honolulu, Hawaii (Manuscript received 30 October 2008, in final form 8 July 2009) ABSTRACT Influences of oceanic fronts in the Kuroshio and Oyashio Extension (KOE) region on the overlying at- mosphere are investigated by comparing a pair of atmospheric regional model hindcast experiments for the 2003/04 cold season, one with the observed finescale frontal structures in sea surface temperature (SST) prescribed at the model lower boundary and the other with an artificially smoothed SST distribution. The comparison reveals the locally enhanced meridional gradient of turbulent fluxes of heat and moisture and surface air temperature (SAT) across the oceanic frontal zone, which favors the storm-track development both in winter and spring. Distinct seasonal dependency is found, however, in how dominantly the storm-track activity influences the time-mean distribution of the heat and moisture supply from the ocean. In spring the mean surface sensible heat flux (SHF) is upward (downward) on the warmer (cooler) side of the subarctic SST front. This sharp cross-frontal contrast is a manifestation of intermittent heat release (cooling) induced by cool northerlies (warm southerlies) on the warmer (cooler) side of the front in associ- ation with migratory cyclones and anticyclones.
    [Show full text]
  • Book 31 Oyashio Current.Indb
    (MPCBM*OUFSOBUJPOBM 8BUFST"TTFTTNFOU 0ZBTIJP$VSSFOU (*8"3FHJPOBMBTTFTTNFOU "MFLTFFW "7 ,ISBQDIFOLPW '' #BLMBOPW 1+ #MJOPW :( ,BDIVS "/ .FEWFEFWB *" .JOBLJS 1"BOE(%5JUPWB Global International Waters Assessment Regional assessments Other reports in this series: Russian Arctic – GIWA Regional assessment 1a Caribbean Sea/Small Islands – GIWA Regional assessment 3a Caribbean Islands – GIWA Regional assessment 4 Barents Sea – GIWA Regional assessment 11 Baltic Sea – GIWA Regional assessment 17 Caspian Sea – GIWA Regional assessment 23 Aral Sea – GIWA Regional assessment 24 Gulf of California/Colorado River Basin – GIWA Regional assessment 27 Yellow Sea – GIWA Regional assessment 34 East China Sea – GIWA Regional assessment 36 Patagonian Shelf – GIWA Regional assessment 38 Brazil Current – GIWA Regional assessment 39 Amazon Basin – GIWA Regional assessment 40b Canary Current – GIWA Regional assessment 41 Guinea Current – GIWA Regional assessment 42 Lake Chad Basin – GIWA Regional assessment 43 Benguela Current – GIWA Regional assessment 44 Indian Ocean Islands – GIWA Regional assessment 45b East African Rift Valley Lakes – GIWA Regional assessment 47 South China Sea – GIWA Regional assessment 54 Mekong River – GIWA Regional assessment 55 Sulu-Celebes (Sulawesi) Sea – GIWA Regional assessment 56 Indonesian Seas – GIWA Regional assessment 57 Pacifi c Islands – GIWA Regional assessment 62 Humboldt Current – GIWA Regional assessment 64 Global International Waters Assessment Regional assessment 31 Oyashio Current GIWA report production Series editor:
    [Show full text]