Physical Geology
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Technical Report No. 21
Technical Report No. 21 Climatology of the HOPE-G Global Ocean - Sea Ice General Circulation Model Stephanie Legutke, Deutsches Klimarechenzentrum Ernst Maier-Reimer, Max-Planck-Institut für Meteorologie Bundesstraße 55, D-20146 Hamburg Edited by: Modellberatungsgruppe, DKRZ Hamburg, December 1999 ISSN 0940-9327 ABSTRACT The HOPE-G global ocean general circulation model (OGCM) climatology, obtained in a long-term forced integration is described. HOPE-G is a primitive-equation z-level ocean model which contains a dynamic-thermodynamic sea-ice model. It is formulated on a 2.8o grid with increased resolution in low latitudes in order to better resolve equatorial dynamics. The vertical resolution is 20 layers. The purpose of the integration was both to investigate the models ability to reproduce the observed gen- eral circulation of the world ocean and to obtain an initial state for coupled atmosphere - ocean - sea-ice climate simulations. The model was driven with daily mean data of a 15-year integration of the atmo- sphere general circulation model ECHAM4, the atmospheric component in later coupled runs. Thereby, a maximum of the flux variability that is expected to appear in coupled simulations is included already in the ocean spin-up experiment described here. The model was run for more than 2000 years until a quasi-steady state was achieved. It reproduces the major current systems and the main features of the so-called conveyor belt circulation. The observed distribution of water masses is reproduced reasonably well, although with a saline bias in the intermediate water masses and a warm bias in the deep and bottom water of the Atlantic and Indian Oceans. -
PICES Sci. Rep. No. 2, 1995
TABLE OF CONTENTS Page FOREWORD vii Part 1. GENERAL INTRODUCTION AND RECOMMENDATIONS 1.0 RECOMMENDATIONS FOR INTERNATIONAL COOPERATION IN THE OKHOTSK SEA AND KURIL REGION 3 1.1 Okhotsk Sea water mass modification 3 1.1.1Dense shelf water formation in the northwestern Okhotsk Sea 3 1.1.2Soya Current study 4 1.1.3East Sakhalin Current and anticyclonic Kuril Basin flow 4 1.1.4West Kamchatka Current 5 1.1.5Tides and sea level in the Okhotsk Sea 5 1.2 Influence of Okhotsk Sea waters on the subarctic Pacific and Oyashio 6 1.2.1Kuril Island strait transports (Bussol', Kruzenshtern and shallower straits) 6 1.2.2Kuril region currents: the East Kamchatka Current, the Oyashio and large eddies 7 1.2.3NPIW transport and formation rate in the Mixed Water Region 7 1.3 Sea ice analysis and forecasting 8 2.0 PHYSICAL OCEANOGRAPHIC OBSERVATIONS 9 2.1 Hydrographic observations (bottle and CTD) 9 2.2 Direct current observations in the Okhotsk and Kuril region 11 2.3 Sea level measurements 12 2.4 Sea ice observations 12 2.5 Satellite observations 12 Part 2. REVIEW OF OCEANOGRAPHY OF THE OKHOTSK SEA AND OYASHIO REGION 15 1.0 GEOGRAPHY AND PECULIARITIES OF THE OKHOTSK SEA 16 2.0 SEA ICE IN THE OKHOTSK SEA 17 2.1 Sea ice observations in the Okhotsk Sea 17 2.2 Ease of ice formation in the Okhotsk Sea 17 2.3 Seasonal and interannual variations of sea ice extent 19 2.3.1Gross features of the seasonal variation in the Okhotsk Sea 19 2.3.2Sea ice thickness 19 2.3.3Polynyas and open water 19 2.3.4Interannual variability 20 2.4 Sea ice off the coast of Hokkaido 21 -
Oceanographic Structure in the Bering Sea
Title OCEANOGRAPHIC STRUCTURE IN THE BERING SEA Author(s) OHTANI, Kiyotaka Citation MEMOIRS OF THE FACULTY OF FISHERIES HOKKAIDO UNIVERSITY, 21(1), 65-106 Issue Date 1973-10 Doc URL http://hdl.handle.net/2115/21855 Type bulletin (article) File Information 21(1)_P65-106.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP OCEANOGRAPHIC STRUCTURE IN THE BERING SEA Kiyotaka OHTANI Faculty of Fisherie8, Hokkaido Univer8ity, Hakodate, Japan Contents 1. Introduction ..•••••....•.•.•...•.•••••.....•.••.•.•.•..••......... 65 1. Preface ...................................................... 65 2. Subarctic region ............................................. 66 3. Sources of data . .. 67 4. Bottom configuration ............................................ 68 II. Waters Coming into the Bering Sea from the Pacific Ocean .............. 70 ill. Current Pattern in the Bering Sea . .. 73 IV. Waters in the Bering Sea Basin . .. 76 1. Vertical structure of the basin water ..... .. .. .. .. .. .. .. .. .. ... 76 2. Types of vertical distribution of salinity and temperature .. .. 81 3. Process of formation of various Types .............................. 82 V. Waters on the Continental Shelf ...................................... 85 1. Horizontal distribution of salinity and temperature ............... 85 2. Vertical section ............................................... 91 3. Classification to type of vertical structure ....................... 94 VI. Interaction between the Shelf Waters and the Basin Waters -
Fronts in the World Ocean's Large Marine Ecosystems. ICES CM 2007
- 1 - This paper can be freely cited without prior reference to the authors International Council ICES CM 2007/D:21 for the Exploration Theme Session D: Comparative Marine Ecosystem of the Sea (ICES) Structure and Function: Descriptors and Characteristics Fronts in the World Ocean’s Large Marine Ecosystems Igor M. Belkin and Peter C. Cornillon Abstract. Oceanic fronts shape marine ecosystems; therefore front mapping and characterization is one of the most important aspects of physical oceanography. Here we report on the first effort to map and describe all major fronts in the World Ocean’s Large Marine Ecosystems (LMEs). Apart from a geographical review, these fronts are classified according to their origin and physical mechanisms that maintain them. This first-ever zero-order pattern of the LME fronts is based on a unique global frontal data base assembled at the University of Rhode Island. Thermal fronts were automatically derived from 12 years (1985-1996) of twice-daily satellite 9-km resolution global AVHRR SST fields with the Cayula-Cornillon front detection algorithm. These frontal maps serve as guidance in using hydrographic data to explore subsurface thermohaline fronts, whose surface thermal signatures have been mapped from space. Our most recent study of chlorophyll fronts in the Northwest Atlantic from high-resolution 1-km data (Belkin and O’Reilly, 2007) revealed a close spatial association between chlorophyll fronts and SST fronts, suggesting causative links between these two types of fronts. Keywords: Fronts; Large Marine Ecosystems; World Ocean; sea surface temperature. Igor M. Belkin: Graduate School of Oceanography, University of Rhode Island, 215 South Ferry Road, Narragansett, Rhode Island 02882, USA [tel.: +1 401 874 6533, fax: +1 874 6728, email: [email protected]]. -
Lecture Notes in Physical Oceanography
LECTURE NOTES IN PHYSICAL OCEANOGRAPHY ODD HENRIK SÆLEN EYVIND AAS 1976 2012 CONTENTS FOREWORD INTRODUCTION 1 EXTENT OF THE OCEANS AND THEIR DIVISIONS 1.1 Distribution of Water and Land..........................................................................1 1.2 Depth Measurements............................................................................................3 1.3 General Features of the Ocean Floor..................................................................5 2 CHEMICAL PROPERTIES OF SEAWATER 2.1 Chemical Composition..........................................................................................1 2.2 Gases in Seawater..................................................................................................4 3 PHYSICAL PROPERTIES OF SEAWATER 3.1 Density and Freezing Point...................................................................................1 3.2 Temperature..........................................................................................................3 3.3 Compressibility......................................................................................................5 3.4 Specific and Latent Heats.....................................................................................5 3.5 Light in the Sea......................................................................................................6 3.6 Sound in the Sea..................................................................................................11 4 INFLUENCE OF ATMOSPHERE ON THE SEA 4.1 Major Wind -
North Pacific Research Board Project Final Report
NORTH PACIFIC RESEARCH BOARD PROJECT FINAL REPORT Synthesis of Marine Biology and Oceanography of Southeast Alaska NPRB Project 406 Final Report Ginny L. Eckert1, Tom Weingartner2, Lisa Eisner3, Jan Straley4, Gordon Kruse5, and John Piatt6 1 Biology Program, University of Alaska Southeast, and School of Fisheries and Ocean Sciences, University of Alaska Fairbanks, 11120 Glacier Hwy., Juneau, AK 99801, (907) 796-6450, [email protected] 2 Institute of Marine Science, University of Alaska Fairbanks, P.O. Box 757220, Fairbanks, AK 99775-7220, (907) 474-7993, [email protected] 3 Auke Bay Lab, National Oceanic and Atmospheric Administration, 17109 Pt. Lena Loop Rd., Juneau, AK 99801, (907) 789-6602, [email protected] 4 University of Alaska Southeast, 1332 Seward Ave., Sitka, AK 99835, (907) 774-7779, [email protected] 5 School of Fisheries and Ocean Sciences, University of Alaska Fairbanks, 11120 Glacier Hwy., Juneau, AK 99801, (907) 796-2052, [email protected] 6 Alaska Science Center, US Geological Survey, Anchorage, AK, 360-774-0516, [email protected] August 2007 ABSTRACT This project directly responds to NPRB specific project needs, “Bring Southeast Alaska scientific background up to the status of other Alaskan waters by completing a synthesis of biological and oceanographic information”. This project successfully convened a workshop on March 30-31, 2005 at the University of Alaska Southeast to bring together representatives from different marine science disciplines and organizations to synthesize information on the marine biology and oceanography of Southeast Alaska. Thirty-eight individuals participated, including representatives of the University of Alaska and state and national agencies. -
A Characterisation of the Marine Environment of the North-West Marine Region
A Characterisation of the Marine Environment of the North-west Marine Region A summary of an expert workshop convened in Perth, Western Australia, 5-6 September 2007 Prepared by the North-west Marine Bioregional Planning section, Marine and Biodiversity Division, Department of the Environment, Water, Heritage and the Arts © Commonwealth of Australia 2007. This work is copyright. You may download, display, print and reproduce this material in unaltered form only (retaining this notice) for your personal, non- commercial use or use within your organisation. Apart from any use as permitted under the Copyright Act 1968, all other rights are reserved. Requests and inquiries concerning reproduction and rights should be addressed to Commonwealth Copyright Administration, Attorney General’s Department, Robert Garran Offices, National Circuit, Barton ACT 2600 or posted at http://www.ag.gov.au/cca Disclaimer The views and opinions expressed in this publication are those of the authors and do not necessarily reflect those of the Australian Government or the Minister for the Environment, Heritage and the Arts or the Minister for Climate Change and Water. While reasonable efforts have been made to ensure that the contents of this publication are factually correct, the Commonwealth does not accept responsibility for the accuracy or completeness of the contents, and shall not be liable for any loss or damage that may be occasioned directly or indirectly through the use of, or reliance on, the contents of this publication. 2 Background The Department of the Environment, Water, Heritage and the Arts (DEWHA) is developing a North-west Marine Bioregional Plan under the Environment Protection and Biodiversity Conservation Act 1999 (hereafter referred to as the Act). -
Late Pleistocene and Holocene Paleoenvironments of the North Pacific Coast
Quaternary Science Reviews, Vol. 14, pp. 449-47 1, 1995. Pergamon Copyright 0 1995 Elsevier Science Ltd. Printed in Great Britain. All rights reserved. 0277-3791l95 $29.00 0277-3791(9S)ooo&X LATE PLEISTOCENE AND HOLOCENE PALEOENVIRONMENTS OF THE NORTH PACIFIC COAST DANIEL H. MANN* and THOMAS D. HAMILTON? *Alaska Quaternary Center; University of Alaska Museum, 907 Yukon Drive, Fairbanks, AK 99775, U.S.A. I-US. Geological Survey, 4200 University Drive, Anchorage, AK 99508, U.S.A. Abstract - Unlike the North Atlantic, the North Pacific Ocean probably remained free of sea ice during the last glacial maximum (LGM), 22,000 to 17,000 BP. Following a eustatic low in sea level of ca. -120 m at 19,000 BP, a marine transgression had flooded the Bering and Chukchi shelves by 10,000 BP. Post-glacial sea-level history varied widely in other parts of the North QSR Pacific coastline according to the magnitude and timing of local tectonism and glacio-isostatic rebound. Glaciers covered much of the continental shelf between the Alaska Peninsula and British Columbia during the LGM. Maximum glacier extent during the LGM was out of phase between southern Alaska and southern British Columbia with northern glaciers reaching their outer limits earlier, between 23,000 and 16,000 BP, compared to 15,00&14,000 BP in the south. Glacier retreat was also time-transgressive, with glaciers retreating from the continental shelf of southern Alaska before 16,000 BP but not until 14,000-13,000 BP in southwestern British Columbia. Major climat- ic transitions occurred in the North Pacific at 24,000-22,000, 15,000-13,000 and 11,OOO-9000 BP. -
New Record of Dust Input and Provenance During Glacial Periods in Western Australia Shelf (IODP Expedition 356, Site U1461) from the Middle to Late Pleistocene
atmosphere Article New Record of Dust Input and Provenance during Glacial Periods in Western Australia Shelf (IODP Expedition 356, Site U1461) from the Middle to Late Pleistocene Margot Courtillat 1,2,* , Maximilian Hallenberger 3 , Maria-Angela Bassetti 1,2, Dominique Aubert 1,2 , Catherine Jeandel 4, Lars Reuning 5 , Chelsea Korpanty 6 , Pierre Moissette 7,8 , Stéphanie Mounic 9 and Mariem Saavedra-Pellitero 10,11 1 Centre de Formation et de Recherche sur les Environnements Méditerranéens, Université de Perpignan Via Domitia, UMR 5110, 52 Avenue Paul Alduy, CEDEX, F-66860 Perpignan, France; [email protected] (M.-A.B.); [email protected] (D.A.) 2 CNRS, Centre de Formation et de Recherche sur les Environnements Méditerranéens, UMR 5110, 52 Avenue Paul Alduy, CEDEX, F-66860 Perpignan, France 3 Energy & Mineral Resources Group, Geological Institute Wüllnerstr. 2, RWTH Aachen University, 52052 Aachen, Germany; [email protected] 4 Observatoire Midi-Pyrénées, LEGOS (Université de Toulouse, CNRS/CNES/IRD/UPS), 14 Avenue Edouard Belin, 31400 Toulouse, France; [email protected] 5 Institute of Geosciences, CAU Kiel, Ludewig-Meyn-Straße 10, 24118 Kiel, Germany; [email protected] 6 MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Str. 8, 28359 Bremen, Germany; [email protected] 7 Department of Historical Geology & Palaeontology, Faculty of Geology and Geoenvironment, National and Kapodistrian University of Athens, 15784 Athens, Greece; [email protected] -
Pacific Ocean: Supplementary Materials
CHAPTER S10 Pacific Ocean: Supplementary Materials FIGURE S10.1 Pacific Ocean: mean surface geostrophic circulation with the current systems described in this text. Mean surface height (cm) relative to a zero global mean height, based on surface drifters, satellite altimetry, and hydrographic data. (NGCUC ¼ New Guinea Coastal Undercurrent and SECC ¼ South Equatorial Countercurrent). Data from Niiler, Maximenko, and McWilliams (2003). 1 2 S10. PACIFIC OCEAN: SUPPLEMENTARY MATERIALS À FIGURE S10.2 Annual mean winds. (a) Wind stress (N/m2) (vectors) and wind-stress curl (Â10 7 N/m3) (color), multiplied by À1 in the Southern Hemisphere. (b) Sverdrup transport (Sv), where blue is clockwise and yellow-red is counterclockwise circulation. Data from NCEP reanalysis (Kalnay et al.,1996). S10. PACIFIC OCEAN: SUPPLEMENTARY MATERIALS 3 (a) STFZ SAFZ PF 0 100 5.5 17 200 18 16 6 5 4 9 4.5 13 12 15 14 Potential 300 11 10 temperature Depth (m) 6.5 400 9 (°C) 8 7 3.5 500 8 Subtropical Domain Transition Zone Subarctic Domain Alaskan STFZ SAFZ Stream (b) 0 35.2 34.6 34 33 32.7 32.8 100 33.7 33.8 200 34.5 34.3 300 34 34.2 33.9 Depth (m) 34.1 400 34 34.1 Salinity 500 (c) 30°N 40°N 50°N 0 100 2 1 4 8 6 200 10 20 12 14 16 44 25 44 30 300 12 14 35 Depth (m) 16 400 20 40 Nitrate (μmol/kg) 500 (d) 30°NLatitude 40°N 50°N 24.0 Sea surface density Nitrate (μmol/kg) 24.5 θ σ 25.0 1 2 25.5 1 10 2 4 12 8 26.0 14 Potential density 10 12 16 16 26.5 20 25 30 40 35 27.0 30°N 40°N 50°N FIGURE S10.3 The subtropical-subarctic transition along 150 W in the central North Pacific (MayeJune, 1984). -
Effect of Pleistocene Glaciation Upon Oceanographic Characteristics of the North Pacific Ocean and Bering Sea
Deep-Sea Research, Vol. 30, No. 8A, pp. 851 to 869, 1983. 0198-0149/83 $3.00 + 0.00 Printed in Great Britain. (c) 1983 Pergamon Press Ltd. Effect of Pleistocene glaciation upon oceanographic characteristics of the North Pacific Ocean and Bering Sea CONSTANCE SANCETTA* (Received 23 October 1982; in revisedform 28 January 1983; accepted 28 April 1983) Abstract--During intervals of Pleistocene glaciation, insolation of the high-latitude northern hemisphere was lower than today, particularly during summer. Growth of continental ice sheets resulted in a lowering of sea level by more than 100 m in the Bering Sea. As a result, the Bering Strait was closed and most of the Bering continental shelf exposed. A proposed model predicts that (1) sea-ice formation would occur along the (modern) outer continental shelf, (2)advection would transport the sea ice over the deep basin, and (3) brine would flow into the basin at some inter- mediate depth to enhance the halocline. The result would be a low-salinity surface layer with a cold, thick halocline and reduced vertical mixing. Diatom microfossils and lithologic changes in sediment cores from the North Pacific Ocean and Bering Sea support the model and suggest that the proposed oceanographic conditions extended into the North Pacific, where the cold low-salinity laycr was enhanced by meltwater from continentally derived icebergs. INTRODUCTION IN THE last decade, marine geologists have begun to make observations and interpretations bearing on the physical oceanography and climate of the earth in the past (e.g., CLIMAP, 1976; Coauss, 1979; KEIGWIN, BENDER and KENNETT, 1979). -
Characteristics of Intermediate Water Flow in the Benguela Current As
Deep-Sea Research II 50 (2003) 87–118 Characteristics of intermediate water flow in the Benguela current as measured with RAFOS floats P.L. Richardsona,*, S.L. Garzolib a Department of Physical Oceanography, Woods Hole Oceanographic Institution, 360 Woods Hole Road, Woods Hole, MA 02543, 3 Water Street, P.O. Box 721, USA b Atlantic Oceanographic and Meteorological Laboratory, NOAA, 4301 Rickenbacker Causeway, Miami, FL 33149, USA Received 28 September 2001; accepted 26 July 2002 Abstract Seven floats (not launched in rings) crossed over the mid-Atlantic Ridge in the Benguela extension with a mean westward velocity of around 2 cm=s between 22S and 35S. Two Agulhas rings crossed over the mid-Atlantic Ridge with a mean velocity of 5:7cm=s toward 2851: This implies they translated at around 3:8cm=s through the background velocity field near 750 m: The boundaries of the Benguela Current extension were clearly defined from the observations. At 750 m the Benguela extension was bounded on the south by 35S and the north by an eastward current located between 18S and 21S. Other recent float measurements suggest that this eastward current originates near the Trindade Ridge close to the western boundary and extends across most of the South Atlantic, limiting the Benguela extension from flowing north of around 20S. The westward transport of the Benguela extension was estimated to be 15 Sv by integrating the mean westward velocities from 22S to 35S and multiplying by the 500 m estimated thickness of intermediate water. Roughly 1.5 Sv of this are transported by the B3 Agulhas rings that cross the mid-Atlantic Ridge each year (as observed with altimetry).