Gulf of Alaska Ocean and Climate Changes

Total Page:16

File Type:pdf, Size:1020Kb

Gulf of Alaska Ocean and Climate Changes Harbo Rick © Gulf of Alaska Changes Climate and Ocean [153] 86587_p153_176.indd 153 12/30/04 4:42:57 PM highlights ■ For decades, the depth of the surface mixed layer sharks, skates, several forage fi sh species, and had become increasingly shallow, reducing nutrient yellow Irish lord have signifi cantly increased in levels. A deepening of the mixed layer from 1999- abundance and/or frequency of occurrence since 2002 temporarily reduced this trend, but the winter 1990. of 2002/03 was the shallowest on record. abundance and recruitment of many salmon stocks ■ Phytoplankton blooms on the shelf were stronger in was above average for much of the 1980/90s, 1999 and 2000 than 1998 and 2001. while catches have decreased slightly over the past decade. Recruitment of all brood years ■ The seasonal peak of Neocalanus copepods at Ocean through at least the mid-1990s was strong. Station P was early in the 1980/90s and returned to the long-term average from 1999 – 2001. in spite of moderate declines in abundance and Ocean below-average recruitment of some commercial ■ After 1976/77, the groundfi sh community had stocks, most groundfi sh, salmon, and herring relatively stable species composition and abundance and fi sheries remained healthy throughout 2002 with of individual species but, several signifi cant changes no indications of overfi shing or “fi shing down the have occurred: Climate food web.” a general decline in walleye pollock biomass over king crab and shrimp stocks have not recovered the past decade, but with strong recruitment from a collapse in the early 1980s. of the 1999 year-class and early indications of Changes strong year-classes in 2001 and 2002. ■ Populations of marine mammals, in particular sea lions and harbour seals, have declined dramatically recruitment of most of the major commercial over the past decades, while seabird populations stocks was below average in the 1990s. have not shown consistent trends. Declining trends in sea lions and harbour seals have slowed in recent years or, in some cases, reversed. [154] 86587_p153_176.indd 154 12/30/04 4:42:58 PM background The region is bounded on the east and north by tall, rugged coastal mountains that are separated by a continental shelf from abyssal depths in excess of 3000 m in the eastern Gulf of Alaska and 5000 m in the Aleutian Trench. The continental shelf has a total area of approximately 370,000 km2 and ranges from 5 to 200 km in width. Islands, banks, ridges, and numerous troughs and gullies cut across the shelf, resulting in a complex topography that promotes an exchange of shelf water with deeper waters. The coastal mountain range receives large amounts of Circulation in the central Gulf of Alaska is dominated precipitation resulting in large volumes of nutrient- by a counterclockwise gyre. The southern limb of the poor freshwater runoff into coastal areas (Figure 105). gyre is formed by the North Pacifi c Current, fl owing The buoyancy of freshwater and local winds drive a eastward from Asia between about 30 and 45°N. When nearshore current, the Alaska Coastal Current, which the North Pacifi c Current reaches the west coast of follows the perimeter of the Gulf of Alaska for 2500 North America it splits to form a southward fl owing km from British Columbia to the Bering Sea.240 In the California Current and a northward fl owing Alaska northern Gulf of Alaska, the Alaska Coastal Current is Current.241 The broad and sluggish (three to six meters separated by a salinity front from the highly variable per minute) Alaska Current brings warm water from mid-shelf region, which is separated by another salinity the south into the northern Gulf of Alaska and plays front from the more nutrient-rich waters of the Alaska an important role in the regional heat budget.240 Current. The region is characterized by pronounced The Alaska Current follows the coasts of northern changes in water properties, chemistry, and species British Columbia and Southeast Alaska before turning composition (phytoplankton, zooplankton, and fi sh) westward along the continental slope off the coast of across the shelf. Superimposed on these cross-shelf central Alaska. It continues as the much swifter (18 gradients is considerable mesoscale variability resulting to 60 m per minute) Alaskan Stream as it follows a from eddies and meanders in the boundary currents.240 southwestward course along the Alaska Peninsula and the Aleutian Archipelago (Figure 105). A portion of the Alaskan Stream turns south and recirculates as part of the North Pacifi c Current, closing the loop to form the Alaska Gyre.241 The position of the North Pacifi c Current and the volume of water transported vary on interannual and decadal time scales, with associated variations in the Alaska Current.242 Variations in ocean circulation are driven by seasonal Alaska and interannual variability in the wind and thermal of regimes over both the shelf and ocean and in freshwater Gulf discharge along the coast. Winds are strongly related to the strength and position of the Aleutian Low, a low-pressure area resulting from the passage of storms [Figure 105] Major ocean currents in the Gulf of Alaska and 243 average annual precipitation around its margin along the Aleutian storm track. [155] 86587_p153_176.indd 155 12/30/04 4:42:59 PM Strong seasonality in storm intensity and frequency Water density in the Gulf of Alaska is primarily cause strong seasonality in coastal forcing. driven by variations in salinity, hence freshwater During the winter, intense alongshore winds input, along with wind mixing, determines the cause downwelling and increased water transport onset and the strength of stratifi cation in the around the perimeter of the Alaskan Gyre. In the spring and summer with important implications summer, the Eastern Pacifi c High Pressure system for ocean productivity. expands into the Gulf of Alaska and the associated Beginning in 1999 changes in several climate weak and variable winds cause a relaxation in indicators, including the Pacifi c Decadal downwelling, and occasional divergences and Oscillation, coupled with several years of strong La upwelling along the coast, particularly in the Nina conditions, caused some authors to speculate western Gulf of Alaska. Freshwater input varies that we are witnessing a return to conditions that seasonally with maximum discharge in the fall and characterized the Northeast Pacifi c prior to a major minimum discharge in winter, when much of the regime shift in 1976/77. These and other recent precipitation is stored as snow.244 changes are discussed in more detail below. Status and trends Hydrography North Pacific Index (previous Dec-Mar mean) After several years of a relatively weak Aleutian Low and 1 0 cold conditions initiated by the La Niña of 1999, the coastal -1 Gulf of Alaska appears to be returning to conditions similar -2 Southern Oscillation Index (previous May-Apr mean) 2 to those that prevailed throughout much of the 1980s and 1 1990s. Recent climatic and oceanographic conditions, as 0 described below, are characterized by a stronger Aleutian -3 -2 -1 Pacific Decadal Oscillation (previous Dec-Mar mean) Low, enhanced circulation and upwelling, and above normal 2 1 coastal temperatures. However, it is not yet clear whether 0 this trend will persist and some indicators suggest that the Ocean -2 -1 1999 regime shift is persisting or that we are entering a Papa Trajectory Index 1 new and different regime. 0 and -1 -2 Coastal GoA air temperatures (Nov-Mar mean) Climate 10 15 5 0 -10 -5 1960 1970 1980 1990 2000 Changes [Figure 106] Standardized time series of North Pacifi c Index (December–March mean), Southern Oscillation Index (May–April mean), Pacifi c Decadal Oscillation (December–March mean), Papa Trajectory Index (fi nal latitude on February 28 of OSCURS simulated drifter originating at Ocean Station Papa on December 1 of previous year), and winter air temperature (November–March) averaged across 5 coastal stations (Sitka, Yakutat, Cordova, Homer, Kodiak). All series standardized by substracting the 1952-2003 mean and dividing by standard deviation. A LOWESS trend line is shown in red. [156] 86587_p153_176.indd 156 12/30/04 4:43:00 PM Winter SST on central GoA shelf (Oct-Feb mean) Pacifi c Decadal Oscillation (PDO) After an apparent return to below-average values in 1999, the PDO reached its highest -2-1012 values since 1987 in the winter of 2002/2003 (Figure 106), Summer SST on central GoA shelf (May-Sep mean) suggesting a strong pattern of warm coastal SST and cool 012 temperatures in the central Northeast Pacifi c. This pattern, -2-1 which is characteristic of the positive phase of the PDO, is GAK 1 upper layer temperature (annual mean) evident in monthly surface marine observations.247 01 -2 -1 Papa Trajectory Index (PTI) The PTI, which is based on -3 GAK 1 temperature at 250m (annual mean) modeled surface currents for the Gulf of Alaska,248 suggests 01 that surface transport from Ocean Station Papa (OSP at -1 -3-2 50°N, 145°W) during the winter of 2002/2003 (December GAK 1 upper layer salinity (Jan-May mean) – February) has been further to the north than average, 2 1 N/A N/A N/A 0 indicative of enhanced transport in the Alaska Current. -1 1960 1970 1980 1990 2000 There is little evidence that surface circulation patterns have returned to conditions prevalent before the 1976/77 regime shift, when surface transport from OSP was predominantly [Figure 107] Standardized time series of winter SST (October– to the east or south.248 February) and summer SST (May–September) for a 2° lat/long square 245 centered at 58°N 150°W, estimated annual mean upper layer Coastal temperatures Coastal air and sea surface (0-20m) temperature at GAK 1 (59° 50.7’ N 149° 28.0’ W), estimated annual mean bottom temperature (250 m) at GAK 1, and estimated temperatures in the Gulf of Alaska have been consistently late winter upper layer salinity (0-20m, mean of all January – May above normal in the summer of 2002 and the winter of observations) at GAK 1.
Recommended publications
  • The Exchange of Water Between Prince William Sound and the Gulf of Alaska Recommended
    The exchange of water between Prince William Sound and the Gulf of Alaska Item Type Thesis Authors Schmidt, George Michael Download date 27/09/2021 18:58:15 Link to Item http://hdl.handle.net/11122/5284 THE EXCHANGE OF WATER BETWEEN PRINCE WILLIAM SOUND AND THE GULF OF ALASKA RECOMMENDED: THE EXCHANGE OF WATER BETWEEN PRIMCE WILLIAM SOUND AND THE GULF OF ALASKA A THESIS Presented to the Faculty of the University of Alaska in partial fulfillment of the Requirements for the Degree of MASTER OF SCIENCE by George Michael Schmidt III, B.E.S. Fairbanks, Alaska May 197 7 ABSTRACT Prince William Sound is a complex fjord-type estuarine system bordering the northern Gulf of Alaska. This study is an analysis of exchange between Prince William Sound and the Gulf of Alaska. Warm, high salinity deep water appears outside the Sound during summer and early autumn. Exchange between this ocean water and fjord water is a combination of deep and intermediate advective intrusions plus deep diffusive mixing. Intermediate exchange appears to be an annual phen­ omenon occurring throughout the summer. During this season, medium scale parcels of ocean water centered on temperature and NO maxima appear in the intermediate depth fjord water. Deep advective exchange also occurs as a regular annual event through the late summer and early autumn. Deep diffusive exchange probably occurs throughout the year, being more evident during the winter in the absence of advective intrusions. ACKNOWLEDGMENTS Appreciation is extended to Dr. T. C. Royer, Dr. J. M. Colonell, Dr. R. T. Cooney, Dr. R.
    [Show full text]
  • North Pacific Research Board Project Final Report
    NORTH PACIFIC RESEARCH BOARD PROJECT FINAL REPORT Synthesis of Marine Biology and Oceanography of Southeast Alaska NPRB Project 406 Final Report Ginny L. Eckert1, Tom Weingartner2, Lisa Eisner3, Jan Straley4, Gordon Kruse5, and John Piatt6 1 Biology Program, University of Alaska Southeast, and School of Fisheries and Ocean Sciences, University of Alaska Fairbanks, 11120 Glacier Hwy., Juneau, AK 99801, (907) 796-6450, [email protected] 2 Institute of Marine Science, University of Alaska Fairbanks, P.O. Box 757220, Fairbanks, AK 99775-7220, (907) 474-7993, [email protected] 3 Auke Bay Lab, National Oceanic and Atmospheric Administration, 17109 Pt. Lena Loop Rd., Juneau, AK 99801, (907) 789-6602, [email protected] 4 University of Alaska Southeast, 1332 Seward Ave., Sitka, AK 99835, (907) 774-7779, [email protected] 5 School of Fisheries and Ocean Sciences, University of Alaska Fairbanks, 11120 Glacier Hwy., Juneau, AK 99801, (907) 796-2052, [email protected] 6 Alaska Science Center, US Geological Survey, Anchorage, AK, 360-774-0516, [email protected] August 2007 ABSTRACT This project directly responds to NPRB specific project needs, “Bring Southeast Alaska scientific background up to the status of other Alaskan waters by completing a synthesis of biological and oceanographic information”. This project successfully convened a workshop on March 30-31, 2005 at the University of Alaska Southeast to bring together representatives from different marine science disciplines and organizations to synthesize information on the marine biology and oceanography of Southeast Alaska. Thirty-eight individuals participated, including representatives of the University of Alaska and state and national agencies.
    [Show full text]
  • Bathymetry and Geomorphology of Shelikof Strait and the Western Gulf of Alaska
    geosciences Article Bathymetry and Geomorphology of Shelikof Strait and the Western Gulf of Alaska Mark Zimmermann 1,* , Megan M. Prescott 2 and Peter J. Haeussler 3 1 National Marine Fisheries Service, Alaska Fisheries Science Center, National Oceanic and Atmospheric Administration (NOAA), Seattle, WA 98115, USA 2 Lynker Technologies, Under contract to Alaska Fisheries Science Center, Seattle, WA 98115, USA; [email protected] 3 U.S. Geological Survey, 4210 University Dr., Anchorage, AK 99058, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-206-526-4119 Received: 22 May 2019; Accepted: 19 September 2019; Published: 21 September 2019 Abstract: We defined the bathymetry of Shelikof Strait and the western Gulf of Alaska (WGOA) from the edges of the land masses down to about 7000 m deep in the Aleutian Trench. This map was produced by combining soundings from historical National Ocean Service (NOS) smooth sheets (2.7 million soundings); shallow multibeam and LIDAR (light detection and ranging) data sets from the NOS and others (subsampled to 2.6 million soundings); and deep multibeam (subsampled to 3.3 million soundings), single-beam, and underway files from fisheries research cruises (9.1 million soundings). These legacy smooth sheet data, some over a century old, were the best descriptor of much of the shallower and inshore areas, but they are superseded by the newer multibeam and LIDAR, where available. Much of the offshore area is only mapped by non-hydrographic single-beam and underway files. We combined these disparate data sets by proofing them against their source files, where possible, in an attempt to preserve seafloor features for research purposes.
    [Show full text]
  • Alaska OCS Socioeconomic Studies Program
    Technical Report Number 36 Alaska OCS Socioeconomic Studies Program Sponsor: Bureau of Land Management Alaska Outer Northern Gulf of Alaska Petroleum Development Scenarios Sociocultural Impacts The United States Department of the Interior was designated by the Outer Continental Shelf (OCS) Lands Act of 1953 to carry out the majority of the Act’s provisions for administering the mineral leasing and develop- ment of offshore areas of the United States under federal jurisdiction. Within the Department, the Bureau of Land Management (BLM) has the responsibility to meet requirements of the National Environmental Policy Act of 1969 (NEPA) as well as other legislation and regulations dealing with the effects of offshore development. In Alaska, unique cultural differences and climatic conditions create a need for developing addi- tional socioeconomic and environmental information to improve OCS deci- sion making at all governmental levels. In fulfillment of its federal responsibilities and with an awareness of these additional information needs, the BLM has initiated several investigative programs, one of which is the Alaska OCS Socioeconomic Studies Program (SESP). The Alaska OCS Socioeconomic Studies Program is a multi-year research effort which attempts to predict and evaluate the effects of Alaska OCS Petroleum Development upon the physical, social, and economic environ- ments within the state. The overall methodology is divided into three broad research components. The first component identifies an alterna- tive set of assumptions regarding the location, the nature, and the timing of future petroleum events and related activities. In this component, the program takes into account the particular needs of the petroleum industry and projects the human, technological, economic, and environmental offshore and onshore development requirements of the regional petroleum industry.
    [Show full text]
  • Spanning the Bering Strait
    National Park service shared beringian heritage Program U.s. Department of the interior Spanning the Bering Strait 20 years of collaborative research s U b s i s t e N c e h UN t e r i N c h UK o t K a , r U s s i a i N t r o DU c t i o N cean Arctic O N O R T H E L A Chu a e S T kchi Se n R A LASKA a SIBERIA er U C h v u B R i k R S otk S a e i a P v I A en r e m in i n USA r y s M l u l g o a a S K S ew la c ard Peninsu r k t e e r Riv n a n z uko i i Y e t R i v e r ering Sea la B u s n i CANADA n e P la u a ns k ni t Pe a ka N h las c A lf of Alaska m u a G K W E 0 250 500 Pacific Ocean miles S USA The Shared Beringian Heritage Program has been fortunate enough to have had a sustained source of funds to support 3 community based projects and research since its creation in 1991. Presidents George H.W. Bush and Mikhail Gorbachev expanded their cooperation in the field of environmental protection and the study of global change to create the Shared Beringian Heritage Program.
    [Show full text]
  • Flow of Pacific Water in the Western Chukchi
    Deep-Sea Research I 105 (2015) 53–73 Contents lists available at ScienceDirect Deep-Sea Research I journal homepage: www.elsevier.com/locate/dsri Flow of pacific water in the western Chukchi Sea: Results from the 2009 RUSALCA expedition Maria N. Pisareva a,n, Robert S. Pickart b, M.A. Spall b, C. Nobre b, D.J. Torres b, G.W.K. Moore c, Terry E. Whitledge d a P.P. Shirshov Institute of Oceanology, 36, Nakhimovski Prospect, Moscow 117997, Russia b Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA 02543, USA c Department of Physics, University of Toronto, 60 St. George Street, Toronto, Ontario M5S 1A7, Canada d University of Alaska Fairbanks, 505 South Chandalar Drive, Fairbanks, AK 99775, USA article info abstract Article history: The distribution of water masses and their circulation on the western Chukchi Sea shelf are investigated Received 10 March 2015 using shipboard data from the 2009 Russian-American Long Term Census of the Arctic (RUSALCA) pro- Received in revised form gram. Eleven hydrographic/velocity transects were occupied during September of that year, including a 25 August 2015 number of sections in the vicinity of Wrangel Island and Herald canyon, an area with historically few Accepted 25 August 2015 measurements. We focus on four water masses: Alaskan coastal water (ACW), summer Bering Sea water Available online 31 August 2015 (BSW), Siberian coastal water (SCW), and remnant Pacific winter water (RWW). In some respects the Keywords: spatial distributions of these water masses were similar to the patterns found in the historical World Arctic Ocean Ocean Database, but there were significant differences.
    [Show full text]
  • Pacific Ocean: Supplementary Materials
    CHAPTER S10 Pacific Ocean: Supplementary Materials FIGURE S10.1 Pacific Ocean: mean surface geostrophic circulation with the current systems described in this text. Mean surface height (cm) relative to a zero global mean height, based on surface drifters, satellite altimetry, and hydrographic data. (NGCUC ¼ New Guinea Coastal Undercurrent and SECC ¼ South Equatorial Countercurrent). Data from Niiler, Maximenko, and McWilliams (2003). 1 2 S10. PACIFIC OCEAN: SUPPLEMENTARY MATERIALS À FIGURE S10.2 Annual mean winds. (a) Wind stress (N/m2) (vectors) and wind-stress curl (Â10 7 N/m3) (color), multiplied by À1 in the Southern Hemisphere. (b) Sverdrup transport (Sv), where blue is clockwise and yellow-red is counterclockwise circulation. Data from NCEP reanalysis (Kalnay et al.,1996). S10. PACIFIC OCEAN: SUPPLEMENTARY MATERIALS 3 (a) STFZ SAFZ PF 0 100 5.5 17 200 18 16 6 5 4 9 4.5 13 12 15 14 Potential 300 11 10 temperature Depth (m) 6.5 400 9 (°C) 8 7 3.5 500 8 Subtropical Domain Transition Zone Subarctic Domain Alaskan STFZ SAFZ Stream (b) 0 35.2 34.6 34 33 32.7 32.8 100 33.7 33.8 200 34.5 34.3 300 34 34.2 33.9 Depth (m) 34.1 400 34 34.1 Salinity 500 (c) 30°N 40°N 50°N 0 100 2 1 4 8 6 200 10 20 12 14 16 44 25 44 30 300 12 14 35 Depth (m) 16 400 20 40 Nitrate (μmol/kg) 500 (d) 30°NLatitude 40°N 50°N 24.0 Sea surface density Nitrate (μmol/kg) 24.5 θ σ 25.0 1 2 25.5 1 10 2 4 12 8 26.0 14 Potential density 10 12 16 16 26.5 20 25 30 40 35 27.0 30°N 40°N 50°N FIGURE S10.3 The subtropical-subarctic transition along 150 W in the central North Pacific (MayeJune, 1984).
    [Show full text]
  • Identification and Mitigation of Geologic Hazards
    AIPGprofessional geologists in all specialties of the science Identification and Mitigation of Geologic Hazards An important and practical application of and because earthquakes geology is identifying hazardous natural are of such a scale that phenomena and isolating their causes in they can affect several order to safeguard communities. According communities si-multane- to the USGS, the average economic toll ously, the risk to human life from natural hazards in the United States is is obvious.2 The largest approximately $52 billion per year, while recorded earthquake to hit the average annual death toll is approxi- the North American conti- mately 200.1 The primary causes are nent had a magnitude of earthquakes, landslides, and flooding, but 9.2, which occurred on other events, such as subsidence, volcanic March 27, 1964 in eruptions, and exposure to radon or asbes- Anchorage, Alaska. It dev- tos, also pose considerable danger. astated the town and sur- Awareness of the potential hazards that rounding area, and could persist in areas under consideration for be felt over an area of half Figure 2. Volcano Zones both private and community development a million square miles.2 is critical, and so geological consultants Land-slides caused most of the average global temperature by 2 and engineers are called in to survey land the damage, while a 30-foot high tsunami degrees Fahrenheit for 2 years.3 development sites and assist building con- generated by an underwater quake leveled tractors in designing structures that will coastal villages around the Gulf of Alaska, The role of geologists in mitigating such stand the test of time.
    [Show full text]
  • Historical Timeline for Alaska Maritime National Wildlife Refuge
    Historical Timeline Alaska Maritime National Wildlife Refuge Much of the refuge has been protected as a national wildlife refuge for over a century, and we recognize that refuge lands are the ancestral homelands of Alaska Native people. Development of sophisticated tools and the abundance of coastal and marine wildlife have made it possible for people to thrive here for thousands of years. So many facets of Alaska’s history happened on the lands and waters of the Alaska Maritime Refuge that the Refuge seems like a time-capsule story of the state and the conservation of island wildlife: • Pre 1800s – The first people come to the islands, the Russian voyages of discovery, the beginnings of the fur trade, first rats and fox introduced to islands, Steller sea cow goes extinct. • 1800s – Whaling, America buys Alaska, growth of the fox fur industry, beginnings of the refuge. • 1900 to 1945 – Wildlife Refuge System is born and more land put in the refuge, wildlife protection increases through treaties and legislation, World War II rolls over the refuge, rats and foxes spread to more islands. The Aleutian Islands WWII National Monument designation recognizes some of these significant events and places. • 1945 to the present – Cold War bases built on refuge, nuclear bombs on Amchitka, refuge expands and protections increase, Aleutian goose brought back from near extinction, marine mammals in trouble. Refuge History - Pre - 1800 A World without People Volcanoes push up from the sea. Ocean levels fluctuate. Animals arrive and adapt to dynamic marine conditions as they find niches along the forming continent’s miles of coastline.
    [Show full text]
  • Northern Gulf of Alaska LTER
    Northern Gulf of Alaska LTER Photo credit: Ana Anguilar-Islas The Northern Gulf of Alaska (NGA) LTER is based in the coastal Gulf of Alaska and mobilizes field expeditions from the Seward Marine Center of the University of Alaska, Fairbanks. The program seeks to understand how this subarctic shelf system generates the high productivity that sustains one of the world’s largest commercial fisheries, as well as iconic seabird and marine mammal species. Ocean physics in the Gulf of Alaska have been monitored for nearly 50 years, and chemistry and biology have been recorded for the last 20 years. Together, this provides At present: foundational information about the structure and function of this subarctic ecosystem. investigators Scientists in the region have developed a solid understanding of annual 15 cycles and are beginning to appreciate the scales and drivers of observed institutions interannual variability (i.e. ENSO, marine heat waves). Through sustained represented measurements, NGA LTER aims to determine how resiliency arises, how 6 emergent properties provide community level structure, and whether graduate longer term environmental changes will impact this resiliency. Findings students will inform biological resource management in the Gulf of Alaska. 9 Principal Investigator: Est. 2017 NSF Program: Russ Hopcroft Funding Cycle: Geosciences / Division of Ocean Sciences University of Alaska, Fairbanks LTER I Marine Key Findings Stratification is changing. The coastal Gulf of Anomalous warming in 2015-16 led to Alaska water column is becoming progressively profound reorganization of lower trophic more stratified — the entire water column levels. Reductions in primary producer average is warming, but more rapidly at the surface cell size and biomass followed than near the seafloor, while near surface the 2015-2016 warming, waters are becoming fresher.
    [Show full text]
  • INTERANNUAL VARIATIONS in ZOOPLANKTON BIOMASS in the GULF of ALASKA, and COVARIATION with CALIFORNIA CURRENT ZOOPLANKTON BIOMASS Iiichaiw I)
    BRODEUR ET AL.: VARIABILITY IN ZOOPLANKTON BIOMASS CalCOFl Rep., Vol. 37, 1996 INTERANNUAL VARIATIONS IN ZOOPLANKTON BIOMASS IN THE GULF OF ALASKA, AND COVARIATION WITH CALIFORNIA CURRENT ZOOPLANKTON BIOMASS IiICHAIW I). Ul1OIlEUK UliUCE W. FllOST STEVEN R.HAKE Alaska Fihrirs Science Criicrr, NOAA Sc.hool of Ocranograpliy Intcriintioii~l1'~ciiic tfhbiit <:omtiiii\ion 7600 Sand Point Wq NE 1301 357WJ V.0. Box 95009 Sr'lttle, W.lshlllgton '181 15 Uiii\ cr\ii). of W.i\hingtmi ScJttlr, W'lstlltl~t~~n981 45 Se'lttlr. Washln~on981 95 ABSTRACT tinguish their relative contributions (Wickett 1967; Large-scale atmospheric and oceanographic condi- Chelton et al. 1982; Roessler aiid Chelton 1987). tions affect the productivity of oceanic ecosystems both It has become increasingly apparent that atmospheric locally and at some distance froin the forcing mecha- and oceanic conditions are likely to change due to a nism. Recent studies have suggested that both the buildup of greenhouse gases in the atmosphere (Graham Subarctic Domain of the North Pacific Ocean and the 1995). Although there has been much interest in pre- California Current have undergone dramatic changes in dicting the effects of climate change, especially on fish- zooplankton biomass that appear to be inversely related eries resources (e.g., see papers in Beaniish 1995), dif- to each other. Using time series and correlation analy- ferent scenarios exist for future trends in basic physical ses, we characterized the historical nature of zooplank- processes such as upwelling (Bakun 1990; Hsieh and ton biomass at Ocean Station P (50"N,145"W) and froiii Boer 1992). Biological processes are niore laborious to offshore stations in the CalCOFI region.
    [Show full text]
  • Downloaded 09/28/21 07:00 PM UTC
    AUGUST 2005 C A P OTONDI ET AL. 1403 Low-Frequency Pycnocline Variability in the Northeast Pacific ANTONIETTA CAPOTONDI AND MICHAEL A. ALEXANDER NOAA/CIRES Climate Diagnostics Center, Boulder, Colorado CLARA DESER National Center for Atmospheric Research,* Boulder, Colorado ARTHUR J. MILLER Scripps Institution of Oceanography, La Jolla, California (Manuscript received 14 January 2004, in final form 23 November 2004) ABSTRACT The output from an ocean general circulation model (OGCM) driven by observed surface forcing is used in conjunction with simpler dynamical models to examine the physical mechanisms responsible for inter- annual to interdecadal pycnocline variability in the northeast Pacific Ocean during 1958–97, a period that includes the 1976–77 climate shift. After 1977 the pycnocline deepened in a broad band along the coast and shoaled in the central part of the Gulf of Alaska. The changes in pycnocline depth diagnosed from the model are in agreement with the pycnocline depth changes observed at two ocean stations in different areas of the Gulf of Alaska. A simple Ekman pumping model with linear damping explains a large fraction of pycnocline variability in the OGCM. The fit of the simple model to the OGCM is maximized in the central part of the Gulf of Alaska, where the pycnocline variability produced by the simple model can account for ϳ70%–90% of the pycnocline depth variance in the OGCM. Evidence of westward-propagating Rossby waves is found in the OGCM, but they are not the dominant signal. On the contrary, large-scale pycnocline depth anomalies have primarily a standing character, thus explaining the success of the local Ekman pumping model.
    [Show full text]