Cook Inlet Circulation Model Calculations Final Report to the U.S
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
North Pacific Research Board Project Final Report
NORTH PACIFIC RESEARCH BOARD PROJECT FINAL REPORT Synthesis of Marine Biology and Oceanography of Southeast Alaska NPRB Project 406 Final Report Ginny L. Eckert1, Tom Weingartner2, Lisa Eisner3, Jan Straley4, Gordon Kruse5, and John Piatt6 1 Biology Program, University of Alaska Southeast, and School of Fisheries and Ocean Sciences, University of Alaska Fairbanks, 11120 Glacier Hwy., Juneau, AK 99801, (907) 796-6450, [email protected] 2 Institute of Marine Science, University of Alaska Fairbanks, P.O. Box 757220, Fairbanks, AK 99775-7220, (907) 474-7993, [email protected] 3 Auke Bay Lab, National Oceanic and Atmospheric Administration, 17109 Pt. Lena Loop Rd., Juneau, AK 99801, (907) 789-6602, [email protected] 4 University of Alaska Southeast, 1332 Seward Ave., Sitka, AK 99835, (907) 774-7779, [email protected] 5 School of Fisheries and Ocean Sciences, University of Alaska Fairbanks, 11120 Glacier Hwy., Juneau, AK 99801, (907) 796-2052, [email protected] 6 Alaska Science Center, US Geological Survey, Anchorage, AK, 360-774-0516, [email protected] August 2007 ABSTRACT This project directly responds to NPRB specific project needs, “Bring Southeast Alaska scientific background up to the status of other Alaskan waters by completing a synthesis of biological and oceanographic information”. This project successfully convened a workshop on March 30-31, 2005 at the University of Alaska Southeast to bring together representatives from different marine science disciplines and organizations to synthesize information on the marine biology and oceanography of Southeast Alaska. Thirty-eight individuals participated, including representatives of the University of Alaska and state and national agencies. -
CMI Cook Inlet Surface Current Mapping Final Report
OCS Study MMS 2006-032 Final Report CODAR in Alaska Principal Investigator: Dave Musgrave, PhD Associate Professor School of Fisheries and Ocean Sciences University of Alaska Fairbanks P.O. Box 757220 Fairbanks, AK 99775-7220 (907) 474-7837 [email protected] CoAuthor: Hank Statscewich, MS School of Fisheries and Ocean Sciences University of Alaska Fairbanks P.O. Box 757220 Fairbanks, AK 99775-7220 (907) 474-5720 [email protected] June 2006 Contact information e-mail: [email protected] phone: 907.474.1811 fax: 907.474.1188 postal: Coastal Marine Institute School of Fisheries and Ocean Sciences P.O. Box 757220 University of Alaska Fairbanks Fairbanks, AK 99775-7220 ii Table of Contents List of Tables ................................................................................................................................. iv List of figures................................................................................................................................. iv Abstract........................................................................................................................................... v Introduction..................................................................................................................................... 1 Methods........................................................................................................................................... 2 Results............................................................................................................................................ -
Nos Cook Inlet Operational Forecast System: Model Development and Hindcast Skill Assessment
NOAA Technical Report NOS CS 40 NOS COOK INLET OPERATIONAL FORECAST SYSTEM: MODEL DEVELOPMENT AND HINDCAST SKILL ASSESSMENT Silver Spring, Maryland September 2020 noaa National Oceanic and Atmospheric Administration U.S. DEPARTMENT OF COMMERCE National Ocean Service Coast Survey Development Laboratory Office of Coast Survey National Ocean Service National Oceanic and Atmospheric Administration U.S. Department of Commerce The Office of Coast Survey (OCS) is the Nation’s only official chartmaker. As the oldest United States scientific organization, dating from 1807, this office has a long history. Today it promotes safe navigation by managing the National Oceanic and Atmospheric Administration’s (NOAA) nautical chart and oceanographic data collection and information programs. There are four components of OCS: The Coast Survey Development Laboratory develops new and efficient techniques to accomplish Coast Survey missions and to produce new and improved products and services for the maritime community and other coastal users. The Marine Chart Division acquires marine navigational data to construct and maintain nautical charts, Coast Pilots, and related marine products for the United States. The Hydrographic Surveys Division directs programs for ship and shore-based hydrographic survey units and conducts general hydrographic survey operations. The Navigational Services Division is the focal point for Coast Survey customer service activities, concentrating predominately on charting issues, fast-response hydrographic surveys, and Coast Pilot -
Pacific Ocean: Supplementary Materials
CHAPTER S10 Pacific Ocean: Supplementary Materials FIGURE S10.1 Pacific Ocean: mean surface geostrophic circulation with the current systems described in this text. Mean surface height (cm) relative to a zero global mean height, based on surface drifters, satellite altimetry, and hydrographic data. (NGCUC ¼ New Guinea Coastal Undercurrent and SECC ¼ South Equatorial Countercurrent). Data from Niiler, Maximenko, and McWilliams (2003). 1 2 S10. PACIFIC OCEAN: SUPPLEMENTARY MATERIALS À FIGURE S10.2 Annual mean winds. (a) Wind stress (N/m2) (vectors) and wind-stress curl (Â10 7 N/m3) (color), multiplied by À1 in the Southern Hemisphere. (b) Sverdrup transport (Sv), where blue is clockwise and yellow-red is counterclockwise circulation. Data from NCEP reanalysis (Kalnay et al.,1996). S10. PACIFIC OCEAN: SUPPLEMENTARY MATERIALS 3 (a) STFZ SAFZ PF 0 100 5.5 17 200 18 16 6 5 4 9 4.5 13 12 15 14 Potential 300 11 10 temperature Depth (m) 6.5 400 9 (°C) 8 7 3.5 500 8 Subtropical Domain Transition Zone Subarctic Domain Alaskan STFZ SAFZ Stream (b) 0 35.2 34.6 34 33 32.7 32.8 100 33.7 33.8 200 34.5 34.3 300 34 34.2 33.9 Depth (m) 34.1 400 34 34.1 Salinity 500 (c) 30°N 40°N 50°N 0 100 2 1 4 8 6 200 10 20 12 14 16 44 25 44 30 300 12 14 35 Depth (m) 16 400 20 40 Nitrate (μmol/kg) 500 (d) 30°NLatitude 40°N 50°N 24.0 Sea surface density Nitrate (μmol/kg) 24.5 θ σ 25.0 1 2 25.5 1 10 2 4 12 8 26.0 14 Potential density 10 12 16 16 26.5 20 25 30 40 35 27.0 30°N 40°N 50°N FIGURE S10.3 The subtropical-subarctic transition along 150 W in the central North Pacific (MayeJune, 1984). -
Geology of the Prince William Sound and Kenai Peninsula Region, Alaska
Geology of the Prince William Sound and Kenai Peninsula Region, Alaska Including the Kenai, Seldovia, Seward, Blying Sound, Cordova, and Middleton Island 1:250,000-scale quadrangles By Frederic H. Wilson and Chad P. Hults Pamphlet to accompany Scientific Investigations Map 3110 View looking east down Harriman Fiord at Serpentine Glacier and Mount Gilbert. (photograph by M.L. Miller) 2012 U.S. Department of the Interior U.S. Geological Survey Contents Abstract ..........................................................................................................................................................1 Introduction ....................................................................................................................................................1 Geographic, Physiographic, and Geologic Framework ..........................................................................1 Description of Map Units .............................................................................................................................3 Unconsolidated deposits ....................................................................................................................3 Surficial deposits ........................................................................................................................3 Rock Units West of the Border Ranges Fault System ....................................................................5 Bedded rocks ...............................................................................................................................5 -
On the Movement of Beluga Whales in Cook Inlet, Alaska
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Old Dominion University Old Dominion University ODU Digital Commons CCPO Publications Center for Coastal Physical Oceanography 12-2008 On the Movement of Beluga Whales in Cook Inlet, Alaska: Simulations of Tidal and Environmental Impacts Using a Hydrodynamic Inundation Model Tal Ezer Old Dominion University, [email protected] Roderick Hobbs Lie-Yauw Oey Follow this and additional works at: https://digitalcommons.odu.edu/ccpo_pubs Part of the Environmental Indicators and Impact Assessment Commons, Environmental Monitoring Commons, Marine Biology Commons, and the Oceanography Commons Repository Citation Ezer, Tal; Hobbs, Roderick; and Oey, Lie-Yauw, "On the Movement of Beluga Whales in Cook Inlet, Alaska: Simulations of Tidal and Environmental Impacts Using a Hydrodynamic Inundation Model" (2008). CCPO Publications. 117. https://digitalcommons.odu.edu/ccpo_pubs/117 Original Publication Citation Ezer, T., Hobbs, R., & Oey, L.Y. (2008). On the movement of beluga whales in Cook Inlet, Alaska: Simulations of tidal and environmental impacts using a hydrodynamic inundation model. Oceanography, 21(4), 186-195. doi: 10.5670/oceanog.2008.17 This Article is brought to you for free and open access by the Center for Coastal Physical Oceanography at ODU Digital Commons. It has been accepted for inclusion in CCPO Publications by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. or collective redistirbution of any portion of this article by photocopy machine, reposting, or other means is permitted only with the approval of The Oceanography Society. Send all correspondence to: [email protected] ofor Th e The to: [email protected] Oceanography approval Oceanography correspondence POall Box 1931, portionthe Send Society. -
Alaska M7.0 Earthquake Response
2018 M7.0 Anchorage, Alaska, Earthquake RESPONSE Date and Time: November 30, 2018, 8:29:29 am Location: N 61.323°, W 149.923° (7 miles north of Anchorage) Area of Effect: Strong to very strong shaking felt from northern Kenai Peninsula to Matanuska-Susitna Valley; light to moderate shaking felt throughout southcentral and interior Alaska. Initial earthquake followed 6 minutes later by M5.7 aftershock. Fatalities: 0 Damage: Power outages and gas leaks; damage to roads, railroads, and buildings; and closures of schools, businesses, and government offices throughout Anchorage bowl and Mat-Su Valley. Tsunami: Tsunami warnings were sent out within minutes of the earthquake. No tsunami waves Lateral spreading disrupted Vine Road near Wasilla. Many reported. failures of engineered materials occurred on or adjacent to water-saturated lowlands. (Photo credit: U.S. Geological Survey) Alaska Seismic Hazard Safety Commission Alaska Earthquake Center 2018 Cook Inlet Earthquake 1 Points to Ponder Proximity matters The Anchorage earthquake occurred 7 miles north of Anchorage and caused extensive damage, while the 2002 M7.9 Denali earthquake, which occurred about 170 miles north of Anchorage, caused no damage in the area. Anchorage population is approximately 325,00, Mat-Su 104,000 & Kenai Borough 50,000= 479,000 Entire state population is 710,000 Earthquake-resilient construction saves lives The population affected by the Anchorage earthquake generally reside in structures built in accordance with seismic building codes or using construction techniques that are resistant to earthquake shaking, and no lives were lost. Areas where codes were not enforced saw higher damage as a result Infrastructure is vulnerable to earthquake damage Construction codes for roads and embankments are not as successful as building codes for structures. -
INTERANNUAL VARIATIONS in ZOOPLANKTON BIOMASS in the GULF of ALASKA, and COVARIATION with CALIFORNIA CURRENT ZOOPLANKTON BIOMASS Iiichaiw I)
BRODEUR ET AL.: VARIABILITY IN ZOOPLANKTON BIOMASS CalCOFl Rep., Vol. 37, 1996 INTERANNUAL VARIATIONS IN ZOOPLANKTON BIOMASS IN THE GULF OF ALASKA, AND COVARIATION WITH CALIFORNIA CURRENT ZOOPLANKTON BIOMASS IiICHAIW I). Ul1OIlEUK UliUCE W. FllOST STEVEN R.HAKE Alaska Fihrirs Science Criicrr, NOAA Sc.hool of Ocranograpliy Intcriintioii~l1'~ciiic tfhbiit <:omtiiii\ion 7600 Sand Point Wq NE 1301 357WJ V.0. Box 95009 Sr'lttle, W.lshlllgton '181 15 Uiii\ cr\ii). of W.i\hingtmi ScJttlr, W'lstlltl~t~~n981 45 Se'lttlr. Washln~on981 95 ABSTRACT tinguish their relative contributions (Wickett 1967; Large-scale atmospheric and oceanographic condi- Chelton et al. 1982; Roessler aiid Chelton 1987). tions affect the productivity of oceanic ecosystems both It has become increasingly apparent that atmospheric locally and at some distance froin the forcing mecha- and oceanic conditions are likely to change due to a nism. Recent studies have suggested that both the buildup of greenhouse gases in the atmosphere (Graham Subarctic Domain of the North Pacific Ocean and the 1995). Although there has been much interest in pre- California Current have undergone dramatic changes in dicting the effects of climate change, especially on fish- zooplankton biomass that appear to be inversely related eries resources (e.g., see papers in Beaniish 1995), dif- to each other. Using time series and correlation analy- ferent scenarios exist for future trends in basic physical ses, we characterized the historical nature of zooplank- processes such as upwelling (Bakun 1990; Hsieh and ton biomass at Ocean Station P (50"N,145"W) and froiii Boer 1992). Biological processes are niore laborious to offshore stations in the CalCOFI region. -
Downloaded 09/28/21 07:00 PM UTC
AUGUST 2005 C A P OTONDI ET AL. 1403 Low-Frequency Pycnocline Variability in the Northeast Pacific ANTONIETTA CAPOTONDI AND MICHAEL A. ALEXANDER NOAA/CIRES Climate Diagnostics Center, Boulder, Colorado CLARA DESER National Center for Atmospheric Research,* Boulder, Colorado ARTHUR J. MILLER Scripps Institution of Oceanography, La Jolla, California (Manuscript received 14 January 2004, in final form 23 November 2004) ABSTRACT The output from an ocean general circulation model (OGCM) driven by observed surface forcing is used in conjunction with simpler dynamical models to examine the physical mechanisms responsible for inter- annual to interdecadal pycnocline variability in the northeast Pacific Ocean during 1958–97, a period that includes the 1976–77 climate shift. After 1977 the pycnocline deepened in a broad band along the coast and shoaled in the central part of the Gulf of Alaska. The changes in pycnocline depth diagnosed from the model are in agreement with the pycnocline depth changes observed at two ocean stations in different areas of the Gulf of Alaska. A simple Ekman pumping model with linear damping explains a large fraction of pycnocline variability in the OGCM. The fit of the simple model to the OGCM is maximized in the central part of the Gulf of Alaska, where the pycnocline variability produced by the simple model can account for ϳ70%–90% of the pycnocline depth variance in the OGCM. Evidence of westward-propagating Rossby waves is found in the OGCM, but they are not the dominant signal. On the contrary, large-scale pycnocline depth anomalies have primarily a standing character, thus explaining the success of the local Ekman pumping model. -
The Alaskan Stream
1 THE ALASKAN STREAM by Felix Favorite Biological Laboratory, Bureau of Commercial Fisheries Seattle, Washington, June 1965 ABSTRACT Relative currents . 11 The general oceanographic features and continuity of the Dynamic topography, 0/300 m . II Alaskan Stream are discussed using data obtained during May Dynamic topography, 300/1,000 m. ........... .. ... 12 through August 1959. The Alaskan Stream is defined as the Dynamic topography, 0/1,000 m . ... .. ... ... .... 12 extension of the Alaska Current which flows westward along the TRANSPORT • • • • • • • • • • • • • • • • • • • • • . • • • • • • • • • • • • • • • • • • • 12 south side of the Aleutian Islands. It is continuous as far west Relative transport . • . 12 ward as long. I 70°E where it divides sending one branch north Transport, 0 to 1,000 m . 14 ward into the Bering Sea and one southwestward to rejoin the Wind-driven transport . 14 eastward flowing Subarctic Current. Sea level pressure and wind stress................... 15 Observed westward velocities near Atka and Adak Islands were Ekman transport .. 17 in excess of 100 em/sec, but maximum geostrophic velocities Total transport . 17 (referred to 1000-m level) of only 30 em/sec were obtained from Comparison of theoretical and relative transports. 18 station data. Volume transport, computed from geostrophic CoNCLUSIONS........ ... .. .. .... .. .............. 18 currents, was approximately 6 X 108 m8/sec. LITERATURE CITED •• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 19 Evidence is presented that the Alaskan Stream is driven pri marily by the action of wind stress. The observed narrowness of ACKNOWLEDGMENTS the stream and continuity of transport also support the view that I am indebted to Dr. W. B. McAlister, Bureau of it is a western boundary current related to the general distribution of wind stress. -
Gulf of Alaska Ocean and Climate Changes
Harbo Rick © Gulf of Alaska Changes Climate and Ocean [153] 86587_p153_176.indd 153 12/30/04 4:42:57 PM highlights ■ For decades, the depth of the surface mixed layer sharks, skates, several forage fi sh species, and had become increasingly shallow, reducing nutrient yellow Irish lord have signifi cantly increased in levels. A deepening of the mixed layer from 1999- abundance and/or frequency of occurrence since 2002 temporarily reduced this trend, but the winter 1990. of 2002/03 was the shallowest on record. abundance and recruitment of many salmon stocks ■ Phytoplankton blooms on the shelf were stronger in was above average for much of the 1980/90s, 1999 and 2000 than 1998 and 2001. while catches have decreased slightly over the past decade. Recruitment of all brood years ■ The seasonal peak of Neocalanus copepods at Ocean through at least the mid-1990s was strong. Station P was early in the 1980/90s and returned to the long-term average from 1999 – 2001. in spite of moderate declines in abundance and Ocean below-average recruitment of some commercial ■ After 1976/77, the groundfi sh community had stocks, most groundfi sh, salmon, and herring relatively stable species composition and abundance and fi sheries remained healthy throughout 2002 with of individual species but, several signifi cant changes no indications of overfi shing or “fi shing down the have occurred: Climate food web.” a general decline in walleye pollock biomass over king crab and shrimp stocks have not recovered the past decade, but with strong recruitment from a collapse in the early 1980s. -
The 1964 Prince William Sound Earthquake Subduction Zone Steven C
Adv. Geophys. ms. Last saved: 2/12/2003 6:lO:OO PM 1 Crustal Deformation in Southcentral Alaska: The 1964 Prince William Sound Earthquake Subduction Zone Steven C. Cohen Geodynamics Branch, Goddard Space Flight Center, Greenbelt, MD 2077 1 email: Steven.C.Cohen @ .nasa.gov; phone: 301-6 14-6466 Jeffrey T. Freymueller Geophysical Institute, University of Alaska, Fairbanks, AK 99775 Outline: 1. Introduction 2. Tectonic, Geologic, and Seismologic Setting 3. Observed Crustal Motion 3.1 Coseismic Crustal Motion 3.2 Preseismic and Interseismic (pre-1964) Crustal Motion 3.3 Postseismic and Interseismic (post-1964) Crustal Motion 4. Models of Southcentral Alaska Preseismic and Postseismic Crustal Deformation 5. Conclusions 6. References Adv. Geophys. ms. Last saved: a1 a2003 6:lO:OO PM 2 1. Introduction The M, = 9.2 Prince William Sound (PWS) that struck southcentral Alaska on March 28, 1964, is one of the important earthquakes in history. The importance of this Great Alaska Earthquake lies more in its scientific than societal impact. While the human losses in the PWS earthquake were certainly tragic, the sociological impact of the earthquake was less than that of is earthquakes that have struck heavily populated locales. By contrast Earth science, particularly tectonophysics, seismology, and geodesy, has benefited enormously from studies of this massive earthquake. The early 1960s was a particularly important time for both seismology and tectonophysics. Seismic instrumentation and analysis techniques were undergoing considerable modernization. For example, the VELA UNIFORM program for nuclear test detection resulted in the deployment of the World Wide Standard Seismographic Network in the late 1950s and early 1960s (Lay and Wallace, 1995).