Sst Fronts of the Pacific Coastal and Marginal Seas

Total Page:16

File Type:pdf, Size:1020Kb

Sst Fronts of the Pacific Coastal and Marginal Seas SST FRONTS OF THE PACIFIC COASTAL AND MARGINAL SEAS I. Belkin, P. Cornillon Graduate School of Oceanography, University of Rhode Island (URI), USA Email: [email protected] The Pathfinder AVHRR SST data from 1985–1996 are used to survey thermal fronts of the Pacific coastal and marginal seas. The SST fields are declouded and fronts are detected with the Cayula-Cornillon algorithms developed at the URI. In this work we describe newly found, persistent frontal features and their seasonal variability as well as interannual variability. Major climatic fronts are identified and compared with literature data. The ocean-wide frontal pattern consists of several types of fronts. Western boundary currents (Kuroshio, Oyashio, and the East Australian Current) are associated with well-defined fronts. Eastern boundary fronts are also prominent, especially in the North Pacific (California Current System). In the Tasman Sea, a quasi- stationary bifurcation of the Tasman Front is identified at 35°S, 165°E; the Subtropical Front has been traced from south of Tasmania eastward up to the Southland Current off New Zealand. A well-defined double Subtropical Frontal Zone is confirmed east of New Zealand. A new front is observed in the tropical-subtropical Southeast Pacific. Shelf-slope fronts are observed over the shelf break/upper slope almost everywhere. Being strictly controlled by topography, these fronts are quasi-stationary and therefore readily located from satellite data. Inner shelf fronts are observed in the Bering Sea, Eastern China Seas, and South China Sea. Coastal upwelling fronts are observed west of the American continent. These fronts are seasonally dependent, being best seen in winter. Vast frontal zones, apparently associated with coastal upwelling, extend much farther offshore than anticipated, up to O(1000km) into the open ocean. INTRODUCTION by “Western and eastern boundary currents” that details boundary currents of the Northwest Pacific, Ocean fronts are relatively narrow zones that separate Northeast Pacific, Southwest Pacific, and Southeast broader zones with different stratification types and/or Pacific. Fronts of the Pacific marginal seas are described different water masses; the fronts are almost always in “Marginal Seas”. Principal results and conclusions are accompanied by enhanced horizontal gradients of summarized in the last Section. The References section temperature, salinity, density, nutrients and other contains an extensive bibliography; the space properties (Fedorov, 1986; Belkin, 2003). Fronts and limitations, however, forced us to provide only the the associated currents are critically important in heat minimum number of references for each front and and salt transport, ocean-atmosphere interaction and region to serve as starting points for the interested ecosystem functioning. reader. Detailed regional studies of fronts will be Satellite-retrieved sea surface temperature (SST) data published elsewhere, complete with exhaustive have been used to study the Pacific Ocean fronts since bibliographies (e.g. Hickox et al., 2000; Belkin and the 1970s (e.g. Legeckis, 1978). Earlier studies have Cornillon, 2003; Belkin et al., 2004). been focused mainly on fronts associated with western boundary currents such as Kuroshio (Qiu et al., 1990) DATA AND METHOD and East Australian Current (Nilsson and Cresswell, Fronts are high-gradient zones; therefore most 1980). Fronts associated with eastern boundary objective computer-based approaches to front currents and coastal upwellings have been studied in identification are based on gradient computations such areas as the California Current (Strub et al., (Kazmin and Rienecker, 1996; Yuan and Talley, 1991; Strub and James, 1995) and Peru-Chile Current 1996; Nakamura and Kazmin, 2003). Our approach is (Brink et al., 1983; Fonseca, 1989). based on histogram analysis. Since every front The above studies, being very important in elucidating separates two relatively uniform water bodies, physics and geography of regional features, have frequency histograms of any oceanographic utilized different methods; most studies were based on characteristic, e.g. SST, in the vicinity of the front data sets of relatively limited duration. The present work should have two frequency modes that correspond to is based on a unifying approach developed at the URI, the water masses separated by the front, while the consistently applied to a global data set of thoroughly latter corresponds to the frequency minimum between calibrated measurements. We took advantage of and the modes. The front detection and tracking is greatly benefited from availability of (1) advanced performed at three levels: window, image and a algorithms for front detection and cloud screening sequence of overlapping images. An optimum window developed earlier at the URI, and (2) the Pathfinder data size determined experimentally is 32 by 32 pixels set, both briefly described in Section “Data and (Cayula and Cornillon, 1992). The edge (front) Method”. A general outline of the Pacific detection algorithm uses all pixel-based SST values coastal/marginal seas’ frontal pattern is given in within each window to compute a SST frequency “General pattern of surface thermal fronts”, followed histogram for the given window. For each window 90 • PAPERS • PHYSICAL OCEANOGRAPHY PACIFIC OCEANOGRAPHY, Vol. 1, No. 2, 2003 SST FRONTS OF THE PACIFIC COASTAL AND MARGINAL SEAS that contains a front, the corresponding SST histogram Australian Current in the South Pacific. The would have a frequency minimum identified with the Kuroshio front south of Japan is best seen in front. winter. The Oyashio front is prominent NNE of Japan year-round. The East Australian Current This basic idea has been implemented by Cayula et al. front is better seen in the austral winter and spring. (1991), Cayula and Cornillon (1992, 1995, 1996) and • Eastern boundary fronts. These fronts are related Ullman and Cornillon (1999, 2000, 2001); the reader to the wind-induced coastal upwelling; they are is referred to these works for pertinent details. The best defined off Washington-Oregon-California fronts were derived from the NOAA/NASA coasts, off Central America gulfs (Tehuantepec, Pathfinder SST fields (Vazquez et al., 1998) for the Papagayo, and Panama), and off Peru-Chile coasts. period 1985–1996. These fields were obtained from • Marginal seas fronts. The semi-enclosed seas east the Advance Very High Resolution Radiometer of Asia (Bering, Okhotsk, Japan, Bohai, Yellow, (AVHRR) Global Area Coverage data stream (two East China, and South China seas) feature 9.28 km resolution fields per day) and are available numerous well-defined fronts located either over the shelf break or within the shelf area. The shelf from the Jet Propulsion Laboratory. SST fronts were break and inner shelf fronts are strongly seasonal. obtained from the cloud-masked SST fields with the The Sea of Japan is also crossed by the multi-image edge detection algorithm (Cayula and westernmost extension of the trans-ocean North Cornillon, 1996; Ullman and Cornillon, 1999, 2000, Pacific Polar Front. 2001). The cloud masking and front detection algorithms were applied to each of the 8364 SST WESTERN AND EASTERN BOUNDARY images in the 12 year data set. The frontal data were CURRENTS aggregated monthly (e.g. 12 Januaries taken together) and seasonally (e.g., the winter climatology is Northwest Pacific. The northernmost western obtained from all Januaries, Februaries, and Marches boundary current of the NW Pacific originates in the taken together). Two basic types of frontal maps are western Bering Sea off the Koryak Coast of Siberia. used in the analysis: long-term frequency maps and After exiting the Bering Sea, the current continues east quasi-synoptic composite maps. The long-term of Kamchatka Peninsula as the East Kamchatka frequency maps show the pixel-based frequency F of Current with the associated East Kamchatka Front fronts normalized on cloudiness: For each pixel, (EKF). The EKF (and the associated current) is likely F = N/C, where N is the number of times the given a major source of the Polar Front; the latter has pixel contained a front, and C is the number of times recently been tracked across the entire North Pacific the pixel was cloud-free. Thus, the frequency maps are (Belkin et al., 2002). Farther downstream, off Kuril best suited for displaying most stable fronts. At the Islands, the Polar Front is associated with the Kuril same time, frontal frequency maps understate some Current, termed the Kuril Front (KurF). Off the fronts associated with time-varying meandering southern Kuril Islands and Hokkaido, the Kuril currents. In such cases quasi-synoptic composite maps Current is alternatively called the Oyashio Current, so are most useful since they present synoptic snapshots the Polar Front there is often called the Oyashio Front of “instant” fronts detected in individual SST images (OF). within a given time frame (e.g. week, month, or The East Kamchatka Front (EKF) is observed along season), without any averaging or smoothing. The the east coast of the Kamchatka Peninsula, south of frontal composite maps thus allow one to detect most 55°N. The front is best defined in late winter–early unstable fronts that are not conspicuous in the frontal spring (March–April). The EKF was observed each frequency maps. March and each April from 1985–1996 except for April 1992. From June through August, the EKF GENERAL PATTERN OF SURFACE visibility is poor mainly because of the maize of SST THERMAL FRONTS fronts typical of the summertime. In late summer– General pattern of surface thermal fronts of the Pacific early fall (September–November), the front is again Ocean is illustrated by two long-term frontal visible most of the time. The multi-annual variability frequency maps, for boreal winter and summer of the EKF is noticeable in late fall–winter (Figures 1–2, p. 101). The color scale emphasizes (December–February). From 1985–1989, the front stable fronts shown in hot colors (red, orange and was only visible 20% of the time, whereas from 1990– yellow). Except for a few open oceans fronts – 1996, the front was present 70% of the time.
Recommended publications
  • PICES Sci. Rep. No. 2, 1995
    TABLE OF CONTENTS Page FOREWORD vii Part 1. GENERAL INTRODUCTION AND RECOMMENDATIONS 1.0 RECOMMENDATIONS FOR INTERNATIONAL COOPERATION IN THE OKHOTSK SEA AND KURIL REGION 3 1.1 Okhotsk Sea water mass modification 3 1.1.1Dense shelf water formation in the northwestern Okhotsk Sea 3 1.1.2Soya Current study 4 1.1.3East Sakhalin Current and anticyclonic Kuril Basin flow 4 1.1.4West Kamchatka Current 5 1.1.5Tides and sea level in the Okhotsk Sea 5 1.2 Influence of Okhotsk Sea waters on the subarctic Pacific and Oyashio 6 1.2.1Kuril Island strait transports (Bussol', Kruzenshtern and shallower straits) 6 1.2.2Kuril region currents: the East Kamchatka Current, the Oyashio and large eddies 7 1.2.3NPIW transport and formation rate in the Mixed Water Region 7 1.3 Sea ice analysis and forecasting 8 2.0 PHYSICAL OCEANOGRAPHIC OBSERVATIONS 9 2.1 Hydrographic observations (bottle and CTD) 9 2.2 Direct current observations in the Okhotsk and Kuril region 11 2.3 Sea level measurements 12 2.4 Sea ice observations 12 2.5 Satellite observations 12 Part 2. REVIEW OF OCEANOGRAPHY OF THE OKHOTSK SEA AND OYASHIO REGION 15 1.0 GEOGRAPHY AND PECULIARITIES OF THE OKHOTSK SEA 16 2.0 SEA ICE IN THE OKHOTSK SEA 17 2.1 Sea ice observations in the Okhotsk Sea 17 2.2 Ease of ice formation in the Okhotsk Sea 17 2.3 Seasonal and interannual variations of sea ice extent 19 2.3.1Gross features of the seasonal variation in the Okhotsk Sea 19 2.3.2Sea ice thickness 19 2.3.3Polynyas and open water 19 2.3.4Interannual variability 20 2.4 Sea ice off the coast of Hokkaido 21
    [Show full text]
  • Oceanographic Structure in the Bering Sea
    Title OCEANOGRAPHIC STRUCTURE IN THE BERING SEA Author(s) OHTANI, Kiyotaka Citation MEMOIRS OF THE FACULTY OF FISHERIES HOKKAIDO UNIVERSITY, 21(1), 65-106 Issue Date 1973-10 Doc URL http://hdl.handle.net/2115/21855 Type bulletin (article) File Information 21(1)_P65-106.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP OCEANOGRAPHIC STRUCTURE IN THE BERING SEA Kiyotaka OHTANI Faculty of Fisherie8, Hokkaido Univer8ity, Hakodate, Japan Contents 1. Introduction ..•••••....•.•.•...•.•••••.....•.••.•.•.•..••......... 65 1. Preface ...................................................... 65 2. Subarctic region ............................................. 66 3. Sources of data . .. 67 4. Bottom configuration ............................................ 68 II. Waters Coming into the Bering Sea from the Pacific Ocean .............. 70 ill. Current Pattern in the Bering Sea . .. 73 IV. Waters in the Bering Sea Basin . .. 76 1. Vertical structure of the basin water ..... .. .. .. .. .. .. .. .. .. ... 76 2. Types of vertical distribution of salinity and temperature .. .. 81 3. Process of formation of various Types .............................. 82 V. Waters on the Continental Shelf ...................................... 85 1. Horizontal distribution of salinity and temperature ............... 85 2. Vertical section ............................................... 91 3. Classification to type of vertical structure ....................... 94 VI. Interaction between the Shelf Waters and the Basin Waters
    [Show full text]
  • Fronts in the World Ocean's Large Marine Ecosystems. ICES CM 2007
    - 1 - This paper can be freely cited without prior reference to the authors International Council ICES CM 2007/D:21 for the Exploration Theme Session D: Comparative Marine Ecosystem of the Sea (ICES) Structure and Function: Descriptors and Characteristics Fronts in the World Ocean’s Large Marine Ecosystems Igor M. Belkin and Peter C. Cornillon Abstract. Oceanic fronts shape marine ecosystems; therefore front mapping and characterization is one of the most important aspects of physical oceanography. Here we report on the first effort to map and describe all major fronts in the World Ocean’s Large Marine Ecosystems (LMEs). Apart from a geographical review, these fronts are classified according to their origin and physical mechanisms that maintain them. This first-ever zero-order pattern of the LME fronts is based on a unique global frontal data base assembled at the University of Rhode Island. Thermal fronts were automatically derived from 12 years (1985-1996) of twice-daily satellite 9-km resolution global AVHRR SST fields with the Cayula-Cornillon front detection algorithm. These frontal maps serve as guidance in using hydrographic data to explore subsurface thermohaline fronts, whose surface thermal signatures have been mapped from space. Our most recent study of chlorophyll fronts in the Northwest Atlantic from high-resolution 1-km data (Belkin and O’Reilly, 2007) revealed a close spatial association between chlorophyll fronts and SST fronts, suggesting causative links between these two types of fronts. Keywords: Fronts; Large Marine Ecosystems; World Ocean; sea surface temperature. Igor M. Belkin: Graduate School of Oceanography, University of Rhode Island, 215 South Ferry Road, Narragansett, Rhode Island 02882, USA [tel.: +1 401 874 6533, fax: +1 874 6728, email: [email protected]].
    [Show full text]
  • Late Pleistocene and Holocene Paleoenvironments of the North Pacific Coast
    Quaternary Science Reviews, Vol. 14, pp. 449-47 1, 1995. Pergamon Copyright 0 1995 Elsevier Science Ltd. Printed in Great Britain. All rights reserved. 0277-3791l95 $29.00 0277-3791(9S)ooo&X LATE PLEISTOCENE AND HOLOCENE PALEOENVIRONMENTS OF THE NORTH PACIFIC COAST DANIEL H. MANN* and THOMAS D. HAMILTON? *Alaska Quaternary Center; University of Alaska Museum, 907 Yukon Drive, Fairbanks, AK 99775, U.S.A. I-US. Geological Survey, 4200 University Drive, Anchorage, AK 99508, U.S.A. Abstract - Unlike the North Atlantic, the North Pacific Ocean probably remained free of sea ice during the last glacial maximum (LGM), 22,000 to 17,000 BP. Following a eustatic low in sea level of ca. -120 m at 19,000 BP, a marine transgression had flooded the Bering and Chukchi shelves by 10,000 BP. Post-glacial sea-level history varied widely in other parts of the North QSR Pacific coastline according to the magnitude and timing of local tectonism and glacio-isostatic rebound. Glaciers covered much of the continental shelf between the Alaska Peninsula and British Columbia during the LGM. Maximum glacier extent during the LGM was out of phase between southern Alaska and southern British Columbia with northern glaciers reaching their outer limits earlier, between 23,000 and 16,000 BP, compared to 15,00&14,000 BP in the south. Glacier retreat was also time-transgressive, with glaciers retreating from the continental shelf of southern Alaska before 16,000 BP but not until 14,000-13,000 BP in southwestern British Columbia. Major climat- ic transitions occurred in the North Pacific at 24,000-22,000, 15,000-13,000 and 11,OOO-9000 BP.
    [Show full text]
  • Effect of Pleistocene Glaciation Upon Oceanographic Characteristics of the North Pacific Ocean and Bering Sea
    Deep-Sea Research, Vol. 30, No. 8A, pp. 851 to 869, 1983. 0198-0149/83 $3.00 + 0.00 Printed in Great Britain. (c) 1983 Pergamon Press Ltd. Effect of Pleistocene glaciation upon oceanographic characteristics of the North Pacific Ocean and Bering Sea CONSTANCE SANCETTA* (Received 23 October 1982; in revisedform 28 January 1983; accepted 28 April 1983) Abstract--During intervals of Pleistocene glaciation, insolation of the high-latitude northern hemisphere was lower than today, particularly during summer. Growth of continental ice sheets resulted in a lowering of sea level by more than 100 m in the Bering Sea. As a result, the Bering Strait was closed and most of the Bering continental shelf exposed. A proposed model predicts that (1) sea-ice formation would occur along the (modern) outer continental shelf, (2)advection would transport the sea ice over the deep basin, and (3) brine would flow into the basin at some inter- mediate depth to enhance the halocline. The result would be a low-salinity surface layer with a cold, thick halocline and reduced vertical mixing. Diatom microfossils and lithologic changes in sediment cores from the North Pacific Ocean and Bering Sea support the model and suggest that the proposed oceanographic conditions extended into the North Pacific, where the cold low-salinity laycr was enhanced by meltwater from continentally derived icebergs. INTRODUCTION IN THE last decade, marine geologists have begun to make observations and interpretations bearing on the physical oceanography and climate of the earth in the past (e.g., CLIMAP, 1976; Coauss, 1979; KEIGWIN, BENDER and KENNETT, 1979).
    [Show full text]
  • Future Changes to the Upper Ocean Western Boundary Currents Across Two Generations of Climate Models Alex Sen Gupta1,2,3*, Annette Stellema1,2,3, Gabriel M
    www.nature.com/scientificreports OPEN Future changes to the upper ocean Western Boundary Currents across two generations of climate models Alex Sen Gupta1,2,3*, Annette Stellema1,2,3, Gabriel M. Pontes4, Andréa S. Taschetto1,2, Adriana Vergés3,5 & Vincent Rossi6 Western Boundary Currents (WBCs) are important for the oceanic transport of heat, dissolved gases and nutrients. They can afect regional climate and strongly infuence the dispersion and distribution of marine species. Using state-of-the-art climate models from the latest and previous Climate Model Intercomparison Projects, we evaluate upper ocean circulation and examine future projections, focusing on subtropical and low-latitude WBCs. Despite their coarse resolution, climate models successfully reproduce most large-scale circulation features with ensemble mean transports typically within the range of observational uncertainty, although there is often a large spread across the models and some currents are systematically too strong or weak. Despite considerable diferences in model structure, resolution and parameterisations, many currents show highly consistent projected changes across the models. For example, the East Australian Current, Brazil Current and Agulhas Current extensions are projected to intensify, while the Gulf Stream, Indonesian Throughfow and Agulhas Current are projected to weaken. Intermodel diferences in most future circulation changes can be explained in part by projected changes in the large-scale surface winds. In moving to the latest model generation, despite structural model advancements, we fnd little systematic improvement in the simulation of ocean transports nor major diferences in the projected changes. Anthropogenic climate change manifests as increases in surface temperature and sea level, rainfall distribution changes and increasing frequency and intensity of certain extreme events1.
    [Show full text]
  • South Tasman Sea Alkenone Palaeothermometry Over the Last Four Glacial/Interglacial Cycles ⁎ C
    Marine Geology 230 (2006) 73–86 www.elsevier.com/locate/margeo South Tasman Sea alkenone palaeothermometry over the last four glacial/interglacial cycles ⁎ C. Pelejero a,b,c, , E. Calvo a,b,c, T.T. Barrows d, G.A. Logan b, P. De Deckker e a Research School of Earth Sciences, The Australian National University, Canberra, ACT 0200, Australia b Petroleum and Marine Division, Geoscience Australia, GPO Box 378, Canberra, ACT 2601, Australia c Institut de Ciències del Mar, CMIMA-CSIC, Pg. Marítim de la Barceloneta, 37-49, 08003 Barcelona, Catalonia, Spain d Research School of Physical Sciences and Engineering, The Australian National University, Canberra, ACT, 0200 Australia e Department of Earth and Marine Sciences, The Australian National University, Canberra ACT 0200, Australia Received 1 June 2005; received in revised form 24 February 2006; accepted 9 April 2006 Abstract Alkenone palaeothermometry has demonstrated a wide spatial and temporal applicability for the reconstruction of sea-surface K' temperatures (SST). Some oceanic realms, however, remain poorly studied. We document U37 index data for two sediment cores retrieved from the South Tasman Sea, one west of New Zealand (SO136-GC3) and the other southeast of Tasmania (FR1/94-GC3), extending back 280 kyr BP for the former and 460 kyr BP for the latter. High climatic sensitivity on orbital time scales is observed at both locations, particularly west of New Zealand, where typical glacial/interglacial SST amplitudes always span more than 7 °C. Southeast of Tasmania, SST amplitudes are lower in amplitude (4.3 to 6.9 °C) with the exception of Termination IV, which involved a SST change over 8 °C.
    [Show full text]
  • Chapter 36D. South Pacific Ocean
    Chapter 36D. South Pacific Ocean Contributors: Karen Evans (lead author), Nic Bax (convener), Patricio Bernal (Lead member), Marilú Bouchon Corrales, Martin Cryer, Günter Försterra, Carlos F. Gaymer, Vreni Häussermann, and Jake Rice (Co-Lead member and Editor Part VI Biodiversity) 1. Introduction The Pacific Ocean is the Earth’s largest ocean, covering one-third of the world’s surface. This huge expanse of ocean supports the most extensive and diverse coral reefs in the world (Burke et al., 2011), the largest commercial fishery (FAO, 2014), the most and deepest oceanic trenches (General Bathymetric Chart of the Oceans, available at www.gebco.net), the largest upwelling system (Spalding et al., 2012), the healthiest and, in some cases, largest remaining populations of many globally rare and threatened species, including marine mammals, seabirds and marine reptiles (Tittensor et al., 2010). The South Pacific Ocean surrounds and is bordered by 23 countries and territories (for the purpose of this chapter, countries west of Papua New Guinea are not considered to be part of the South Pacific), which range in size from small atolls (e.g., Nauru) to continents (South America, Australia). Associated populations of each of the countries and territories range from less than 10,000 (Tokelau, Nauru, Tuvalu) to nearly 30.5 million (Peru; Population Estimates and Projections, World Bank Group, accessed at http://data.worldbank.org/data-catalog/population-projection-tables, August 2014). Most of the tropical and sub-tropical western and central South Pacific Ocean is contained within exclusive economic zones (EEZs), whereas vast expanses of temperate waters are associated with high seas areas (Figure 1).
    [Show full text]
  • Decadal Changes in the East Australian Current System – the Relationship to Changes in the South Pacific Gyre
    Decadal Changes in the East Australian Current system – the relationship to changes in the South Pacific Gyre. Ken R. Ridgway1 and Katy L. Hill2 1 Centre for Australian Weather and Climate Research, CSIRO Marine and Atmospheric Research, GPO Box 1538, Hobart 7001, Tasmania, Australia 2 Integrated Marine Observing System, University of Tasmania, Private Bag 1538, Hobart 7001, Tasmania, Australia. E-mail: [email protected] The Tasman Box sections are used to determine a 20-year time series of the volume transport associated with each of the main inflows and outflows within the South Pacific boundary current system. Three eddy-resolving XBT sections enclosing the Tasman Sea make up the Tasman Box. Each of the sections has been regularly sampled at eddy-resolving scales on precisely repeating locations in order to separate temporal from spatial variability of properties. The quarterly sampling of the XBT transects is supplemented by estimates of the geostrophic transport from satellite altimetry. The method is validated by comparison with independent CTD sections. The transport time series (relative to a 2000-m level) resolve the full suite of temporal signals from eddy scale, seasonal, interannnual to decadal and are used to investigate the nature and mechanism of decadal variability in the East Australian Current (EAC) system and south Pacific subtropical gyre. The main EAC flow separates into an eastward component (Tasman Front) and a poleward flow (EAC Extension) just north of Sydney. At decadal timescales these components are anti-correlated. This decadal variation confirms the EAC response to a spin-up of the South Pacific circulation forced by changes in the basin-wide winds and matches the changes in oceanic properties observed in the Tasman Sea.
    [Show full text]
  • Numerical Study on the Oyashio Water Pathways in the Kuroshio±Oyashio Con¯Uence*
    1174 JOURNAL OF PHYSICAL OCEANOGRAPHY VOLUME 34 Numerical Study on the Oyashio Water Pathways in the Kuroshio±Oyashio Con¯uence* HUMIO MITSUDERA,1,11 BUNMEI TAGUCHI,# YASUSHI YOSHIKAWA,@ HIROHIKO NAKAMURA,& TAKUJI WASEDA,1 AND TANGDONG QU** 1FRSGC, Yokohama, Japan, and IPRC, SOEST, University of Hawaii, Honolulu, Hawaii #Department of Meteorology, SOEST, University of Hawaii, Honolulu, Hawaii @Japan Marine Science and Technology Center, Yokosuka, Japan &Fisheries Department, Kagoshima University, Kagoshima, Japan **IPRC, SOEST, University of Hawaii, Honolulu, Hawaii 11ILTS, Hokkaido University, Sapporo, Japan (Manuscript received 21 October 2002, in ®nal form 3 September 2003) ABSTRACT In this paper, results of a high-resolution regional model of the Kuroshio±Oyashio con¯uence, where the mixed water region (MWR) forms off the northeastern coast of Japan, are discussed. The model simulates major characteristics of the Kuroshio and the Oyashio system well, such as the separation of the Kuroshio Extension from the Japanese coast and southward intrusion of the Oyashio. Further, potential temperature and salinity structures in the intermediate layer su 5 27.0 resemble those obtained from historical data. Upon the success of this simulation, the authors focus on the diagnosis of the Oyashio water pathways intruding into the subtropics. It is found that the pathways of the Oyashio water form in the vicinity of the Japanese coast, where warm core rings and the Oyashio intrusion are active. These pathways are shown to be primarily eddy driven. Of particular interest is the water that originates in the Sea of Okhotsk, characterized by low potential vorticity (PV). Impacts of the Okhotsk water are identi®ed by conducting an experiment in which the exchange of waters between the Paci®c Ocean and the Sea of Okhotsk is blocked.
    [Show full text]
  • Late Quaternary Changes in Intermediate Water Oxygenation And
    PALEOCEANOGRAPHY, VOL. 22, PA3213, doi:10.1029/2005PA001234, 2007 Late Quaternary changes in intermediate water oxygenation and oxygen minimum zone, northern Japan: A benthic foraminiferal perspective Akihiko Shibahara,1 Ken’ichi Ohkushi,2 James P. Kennett,3 and Ken Ikehara4 Received 20 October 2005; revised 20 May 2007; accepted 8 June 2007; published 24 August 2007. [1] A strong oxygen minimum zone (OMZ) currently exists at upper intermediate water depths on the northern Japanese margin, NW Pacific. The OMZ results largely from a combination of high surface water productivity and poor ventilation of upper intermediate waters. We investigated late Quaternary history (last 34 kyr) of ocean floor oxygenation and the OMZ using quantitative changes in benthic foraminiferal assemblages in three sediment cores taken from the continental slope off Shimokita Peninsula and Tokachi, northern Japan, at water depths between 975 and 1363 m. These cores are well located within the present-day OMZ, a region of high surface water productivity, and in close proximity to the source region of North Pacific Intermediate Water. Late Quaternary benthic foraminiferal assemblages experienced major changes in response to changes in dissolved oxygen concentration in ocean floor sediments. Foraminiferal assemblages are interpreted to represent three main groups representing oxic, suboxic, and dysoxic conditions. Assemblage changes in all three cores and hence in bottom water oxygenation coincided with late Quaternary climatic episodes, similar to that known for the southern California margin. These episodes, in turn, are correlated with orbital and millennial climate episodes in the Greenland ice core including the last glacial episode, Bølling-A˚ llerød (B/A), Younger Dryas, Preboreal (earliest Holocene), early Holocene, and late Holocene.
    [Show full text]
  • Alaska Exclusive Economic Zone: Ocean Exploration and Research Bibliography
    Alaska Exclusive Economic Zone: Ocean Exploration and Research Bibliography Hope Shinn, Librarian, NOAA Central Library Jamie Roberts, Librarian, NOAA Central Library NCRL subject guide 2020-08 doi: 10.25923/k182-6s39 September 2020 U.S. Department of Commerce National Oceanic and Atmospheric Administration Office of Oceanic and Atmospheric Research NOAA Central Library – Silver Spring, Maryland Table of Contents Background ............................................................................................................................................... 3 Scope ......................................................................................................................................................... 3 Sources Reviewed ..................................................................................................................................... 7 Acknowledgements ................................................................................................................................... 7 Section I: Aleutian Islands ......................................................................................................................... 8 Section II: Aleutian Islands, Beaufort Sea, Bering Sea, Chukchi Sea, Gulf of Alaska ............................... 26 Section III: Aleutian Islands, Bering Sea, Gulf of Alaska .......................................................................... 27 Section IV: Aleutian Islands, Central Gulf of Alaska ...............................................................................
    [Show full text]