Desopxemodg Ni K Tn Al P

Total Page:16

File Type:pdf, Size:1020Kb

Desopxemodg Ni K Tn Al P IENCE C • •S T S E C The killer of Socrates exposed – Coniine in the plant N O H I N kingdom S O I V Dissertation L • O S 135 G Coniine, a piperidine alkaloid, is known from poison hemlock T Y H • R (Conium maculatum L.), twelve Aloe species and Sarracenia flava G I E L VTT SCIEN CE S H E G L. Its biosynthesis is not well understood, although a possible route A I R H C starts with a polyketide formed by a polyketide synthase (PKS). H This study focused on identification and characterization of PKS- 1 3 5 genes involved in coniine formation, induction of callus from plants containing hemlock alkaloids and investigation of the possibility to elicitate the alkaloid pathway in cell culture in order to understand coniine biosynthesis. Plant materials involved in different stages of this study were investigated for their alkaloid content using gas chromatography-mass spectrometry. A novel type of PKS, CPKS5, was identified as the starter candidate for the initiation of coniine biosynthesis by catalysing the synthesis of the carbon backbone from one butyryl-CoA and two malonyl-CoA moieties. When elicitated, poison hemlock cell cultures produced furanocoumarins but no piperidine alkaloids. The hemlock alkaloids are wider distributed than previously has been thought among Sarracenia, and Aloe spp. contain a new alkaloid for the genus. These results together pave the way towards possible utilization of hemlock alkaloids. The killer of Socrates ISBN 978-951-38-8459-8 (Soft back ed.) exposed – Coniine in the T he killer of S o crates exp ose d – C o niine in the plant... ISBN 978-951-38-8458-1 (URL: http://www.vttresearch.com/impact/publications) ISSN-L 2242-119X plant kingdom ISSN 2242-119X (Print) ISSN 2242-1203 (Online) http://urn.fi/URN:ISBN:978-951-38-8458-1 Hannu Hotti VTT SCIENCE 135 The killer of Socrates exposed – Coniine in the plant kingdom Hannu Hotti VTT Technical Research Centre of Finland Ltd Doctoral Programme in Plant Sciences Department of Agricultural Sciences Faculty of Agriculture and Forestry University of Helsinki Thesis for the degree of Doctor of Science (Agriculture and Forestry) to be presented with due permission for public examination and criticism in auditorium 1041 in Biocentre 2 (Viikinkaari 5), at University of Helsinki, on the 14th October 2016 at 12 o'clock. ISBN 978-951-38-8459-8 (Soft back ed.) ISBN 978-951-38-8458-1 (URL: http://www.vttresearch.com/impact/publications) VTT Science 135 ISSN-L 2242-119X ISSN 2242-119X (Print) ISSN 2242-1203 (Online) http://urn.fi/URN:ISBN:978-951-38-8458-1 Copyright © VTT 2016 JULKAISIJA – UTGIVARE – PUBLISHER Teknologian tutkimuskeskus VTT Oy PL 1000 (Tekniikantie 4 A, Espoo) 02044 VTT Puh. 020 722 111, faksi 020 722 7001 Teknologiska forskningscentralen VTT Ab PB 1000 (Teknikvägen 4 A, Esbo) FI-02044 VTT Tfn +358 20 722 111, telefax +358 20 722 7001 VTT Technical Research Centre of Finland Ltd P.O. Box 1000 (Tekniikantie 4 A, Espoo) FI-02044 VTT, Finland Tel. +358 20 722 111, fax +358 20 722 7001 Cover image: Hannu Hotti Juvenes Print, Tampere 2016 Preface This work was carried out as a joint Ph.D. project at VTT Technical Research Centre of Finland Ltd and at the Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki during the years 2009-2016. The Plant Biotech- nology and Metabolomics research team at VTT provided facilities and expertise in plant and cell culture together with possibilities for the chemical analysis of small molecules. I received support from the Gerbera Laboratory of the Department of Agricultural Sciences in cloning and analysing polyketide synthase genes and their products. The management of VTT is acknowledged for providing excellent working facilities. This study was funded by a Doctoral Program in Plant Sciences, VTT, the Academy of Finland (project number 138808, PKRed), Oskar Öflunds Stiftelse, Eteläsuomalaisten ylioppilaiden säätiö, Societas pro Fauna et Flora Fennica, Otto A. Malmin lahjoitusrahasto and University of Helsinki. I am grateful to my supervisors, docent Heiko Rischer, docent Kirsi-Marja Oks- man-Caldentey and professor Teemu Teeri. Your commitment, advice, and support through these long years enabled me to complete this project. Especially I thank my main supervisor Heiko Rischer, who always had time and advice for my work. I thank my follow-up committee, whose members alongside my supervisors were Anneli Ritala and Anna Kärkönen. Also, I thank fellow members in the PKRed- project, Suvi Häkkinen, Juha Kontturi and Milla Pietiäinen along with the project leaders, Heiko Rischer, and Teemu Teeri, for monthly meetings to discuss various research topics related to the project. I thank my co-authors Heiko Rischer, Tuulikki Seppänen-Laakso, Gopal Peddinti, Suvi Häkkinen, Philipp Meier, Mikko Arvas and Teemu Teeri. With you, I have learned a lot about academic writing and all that goes with it. I am grateful for all the advice and expertise I received from Jaana Rikkinen, Tuuli Teikari, and Airi Hyrkäs. My gratitude also goes to Kaj-Roger Hurme in the Isotope Laboratory of the Faculty of Agriculture and Forestry for all things related to radioac- tive work. I thank Lieven Sterck from VIB for Conium transcriptome assembly and Kean-Jin Lim from the Gerbera Laboratory for Trinity-assembly. I thank all the cur- rent and past members of the Plant Biotechnology and Metabolomics research group for assistance and friendship. Words cannot express all the gratitude I feel towards my family for what I have in my heart and my soul. Special thanks go to my parents, Anne and Risto Hotti, who 3 supported me throughout all these years and had the patience to listen to my reflec- tions on my research. I also thank my dear grandmother, Pirkko Hotti, my sister Heidi, brother-in-law Antti and niece Emilia Manninen. Finally, I thank my aunt Mar- jaana and uncle Paavo Pelkonen for inspiring me to reach my academic dream. In Helsinki September, 2016 Hannu Hotti 4 To Margaret F. Roberts and Edward E. Leete (1928-1992) for their work on coniine biosynthesis. Vinum poturus rex, memento te bibere sanguinem terra; cicuta hominum venenum est, cicuta vinum. When you are about to drink wine, o King, remember that you are about to drink the blood of earth. Hemlock is a poison to man, wine a poison to hemlock. -Pliny the Elder, 14.5 Quippe videre licet pinguescere saepe cicuta barbigeras pecudes, homini quae est acre venenum. Sooth, as one oft many see the bearded goats batten upon hemlock which to man is violent poison. -Lucretius, De rerum natura, 5.899-900. 5 Academic dissertation Supervisors Docent Heiko Rischer VTT Technical Research Centre of Finland Ltd Espoo, Finland Docent Kirsi-Marja Oksman-Caldentey VTT Technical Research Centre of Finland Ltd Espoo, Finland Professor Teemu Teeri Department of Agricultural Sciences University of Helsinki, Helsinki, Finland Reviewers Professor Riitta Julkunen-Tiitto Department of Biology University of Eastern Finland, Joensuu, Finland Professor Dr. Robert Verpoorte Institute of Biology Leiden University, Leiden, the Netherlands Opponent Professor Dr. Heribert Warzecha Department of Biology Technische Universität Darmstadt, Darmstadt, Germany Custos Professor Teemu Teeri Department of Agricultural Sciences University of Helsinki, Helsinki, Finland 6 List of publications This thesis is based on the following original publications, which are referred to in the text as Articles I–IV. The publications are reproduced with kind permission from the publishers. I Hotti, H., Seppänen-Laakso, T., Arvas, M., Teeri, T.H. & Rischer, H. 2015. Polyketide synthases from poison hemlock ( Conium maculatum L.). FEBS Journal 282, 4141-4156. doi: 10.1111/febs.13410. II Meier, P., Hotti, H. & Rischer, H. 2015. Elicitation of furanocoumarins in poison hemlock ( Conium maculatum L.) cell culture. Plant Cell, Tissue and Organ Culture 123(3), 443-453. doi: 10.1007/s11240-015-0847-7. III Hotti, H., Häkkinen, S.T., Seppänen-Laakso, T. & Rischer, H. 2016. Polyke- tides in Aloe plant and cell cultures. Manuscript. IV Hotti, H., Gopalacharyulu, P., Seppänen-Laakso, T. & Rischer, H. 2016. Metabolite profiling of the carnivorous pitcher plants Darlingtonia and Sar- racenia . Submitted to PLOSONE. Nota bene: The following results have not been published in the aforementioned articles: • Transcriptome sequencing of Conium maculatum • Testing of optimal pH for CPKS1 and CPKS5 7 Author’s contributions I. The author planned the work together with Heiko Rischer and Teemu Teeri. The author carried out the experimental work, except for the phylogenetic tree analysis and analysis of enzyme product structures. The author interpreted the data and had the main responsibility for writ- ing the publication under the supervision of Heiko Rischer and Teemu Teeri. II. The author planned the work together with Philipp Meier and Heiko Rischer. The author carried out the development of the tested cell line. The author co-authored the publication writing with Philipp Meier under the supervision of Heiko Rischer. III. The author planned the work together with Heiko Rischer and Suvi Häkkinen. The author carried out the experimental work, except for analysis of the structure of N-methylconiine. The author interpreted the data with Suvi Häkkinen and had the main responsibility for writing the publication under the supervision of Heiko Rischer. IV. The author planned the work together with Gopal Peddinti, Tuulikki Seppänen-Laakso, and Heiko Rischer. The author carried out the ex- perimental work. The author co-authored the publication,
Recommended publications
  • Floristic Analyses
    CHAPTER 11 FLORISTIC ANALYSES Abstract Eighty plant species of the Sekhukhuneland Centre of Plant Endemism were assessed according to the 2000 IUCN categories of threat. Twenty-six of these taxa met the criteria. This analysis together with the level of endemism supports the listing of the region as an important Centre of Plant Endemism that contains a high diversity of plants requiring conservation attention. A first diviSion of the Centre into sub-centres is presented to aid future conservation actions. Endemic plant species are listed, as well as the near-endemic and disjunct taxa that are shared between the Centre and other centres or floristic regions. Major threats to the floristic diversity of Sekhukhuneland are considered and a probable conservation solution is presented. Approximately 2 000 of the plant taxa occurring in the 4 000 km2 of the Sekhukhuneland Centre of Plant Endemism are listed. Taxa in the checklist are arranged alphabetically by family, with the genera and species listed alphabetically within the families. 11.1 Introduction Locating the world's 'hotspots' of biodiversity has long been advocated as one of the primary tactics in conservation (Wilson 1992). South Africa has a rich vascular plant flora and harbours prominent foci of plant diversity and endemism (Cowling & Hilton-Taylor 1994; Van Wyk & Van Wyk 1997), several of which are recognised internationally (Davis et at. 1994; Myers et al. 2000). What still remains to be done, is to identify smaller, lesser known 'hotspots', some of which are often located within already depleted floristic regions, and to investigate the rare and endemic species they contain.
    [Show full text]
  • Aloe Ferox 117 Table 9: Phytochemical Constituents of Different Extracts of Aloe CIM- Sheetal Leaves 119
    International Journal of Scientific & Engineering Research ISSN 2229-5518 1 Morphological, in vitro, Biochemical and Genetic Diversity Studies in Aloe species THESIS SUBMITTED TO OSMANIA UNIVERSITY FOR THE AWARD OF DOCTOR OF PHILOSOPHY IN GENETICS IJSER By B. CHANDRA SEKHAR SINGH DEPARTMENT OF GENETICS OSMANIA UNIVERSITY HYDERABAD - 500007, INDIA JULY, 2015 IJSER © 2018 http://www.ijser.org International Journal of Scientific & Engineering Research ISSN 2229-5518 2 DECLARATION The investigation incorporated in the thesis entitled “Morphological, in vitro, Biochemical and Genetic Diversity Studies in Aloe species’’ was carried out by me at the Department of Genetics, Osmania University, Hyderabad, India under the supervision of Prof. Anupalli Roja Rani, Osmania University, Hyderabad, India. I hereby declare that the work is original and no part of the thesis has been submitted for the award of any other degree or diploma prior to this date. IJSER Date: (Bhaludra Chandra Sekhar Singh) IJSER © 2018 http://www.ijser.org International Journal of Scientific & Engineering Research ISSN 2229-5518 3 DEDICATION I dedicateIJSER this work to my beloved and beautiful wife B. Ananda Sekhar IJSER © 2018 http://www.ijser.org International Journal of Scientific & Engineering Research ISSN 2229-5518 4 Acknowledgements This dissertation is an outcome of direct and indirect contribution of many people, which supplemented my own humble efforts. I like this opportunity to mention specifically some of them and extend my gratefulness to other well wisher, known and unknown. I feel extremely privileged to express my veneration for my superviosor Dr. Anupalli Roja Rani, Professor and Head, Department of Genetics, Osmania University, Hyderabad. Her whole- hearted co-operation, inspiration and encouragement rendered throughout made this in carrying out the research and writing of this thesis possible.
    [Show full text]
  • Plethora of Plants - Collections of the Botanical Garden, Faculty of Science, University of Zagreb (2): Glasshouse Succulents
    NAT. CROAT. VOL. 27 No 2 407-420* ZAGREB December 31, 2018 professional paper/stručni članak – museum collections/muzejske zbirke DOI 10.20302/NC.2018.27.28 PLETHORA OF PLANTS - COLLECTIONS OF THE BOTANICAL GARDEN, FACULTY OF SCIENCE, UNIVERSITY OF ZAGREB (2): GLASSHOUSE SUCCULENTS Dubravka Sandev, Darko Mihelj & Sanja Kovačić Botanical Garden, Department of Biology, Faculty of Science, University of Zagreb, Marulićev trg 9a, HR-10000 Zagreb, Croatia (e-mail: [email protected]) Sandev, D., Mihelj, D. & Kovačić, S.: Plethora of plants – collections of the Botanical Garden, Faculty of Science, University of Zagreb (2): Glasshouse succulents. Nat. Croat. Vol. 27, No. 2, 407- 420*, 2018, Zagreb. In this paper, the plant lists of glasshouse succulents grown in the Botanical Garden from 1895 to 2017 are studied. Synonymy, nomenclature and origin of plant material were sorted. The lists of species grown in the last 122 years are constructed in such a way as to show that throughout that period at least 1423 taxa of succulent plants from 254 genera and 17 families inhabited the Garden’s cold glass- house collection. Key words: Zagreb Botanical Garden, Faculty of Science, historic plant collections, succulent col- lection Sandev, D., Mihelj, D. & Kovačić, S.: Obilje bilja – zbirke Botaničkoga vrta Prirodoslovno- matematičkog fakulteta Sveučilišta u Zagrebu (2): Stakleničke mesnatice. Nat. Croat. Vol. 27, No. 2, 407-420*, 2018, Zagreb. U ovom članku sastavljeni su popisi stakleničkih mesnatica uzgajanih u Botaničkom vrtu zagrebačkog Prirodoslovno-matematičkog fakulteta između 1895. i 2017. Uređena je sinonimka i no- menklatura te istraženo podrijetlo biljnog materijala. Rezultati pokazuju kako je tijekom 122 godine kroz zbirku mesnatica hladnog staklenika prošlo najmanje 1423 svojti iz 254 rodova i 17 porodica.
    [Show full text]
  • Aloe Scientific Primer International Aloe Science Council
    The International Aloe Science Council Presents an Aloe Scientific Primer International Aloe Science Council Commonly Traded Aloe Species The plant Aloe spp. has long been utilized in a variety of ways throughout history, which has been well documented elsewhere and need not be recounted in detail here, particularly as the purpose of this document is to discuss current and commonly traded aloe species. Aloe, in its various species, can presently and in the recent past be found in use as a decorative element in homes and gardens, in the creation of pharmaceuticals, in wound care products such as burn ointment, sunburn protectant and similar applications, in cosmetics, and as a food, dietary supplements and other health and nutrition related items. Recently, various species of the plant have even been used to weave into clothing and in mattresses. Those species of Aloe commonly used in commerce today can be divided into three primary categories: those used primarily in the production of crude drugs, those used primarily for decorative purposes, and those used in health, nutritional and related products. For reference purposes, this paper will outline the primary species and their uses, but will focus on the species most widely used in commerce for health, nutritional, cosmetic and supplement products, such as aloe vera. Components of aloe vera currently used in commerce The Aloe plant, and in particular aloe vera, has three distinct raw material components that are processed and found in manufactured goods: leaf juice; inner leaf juice; and aloe latex. A great deal of confusion regarding the terminology of this botanical and its components has been identified, mostly because of a lack of clear definitions, marketing, and other factors.
    [Show full text]
  • Haworthia ×Subattenuata 'Kinjoh' by Mr Shinnosuke Matsuzawa and Published in the Catalogue of Yokohama-Ueki 1925
    Haworthia ×subattenuata ‘Kinjoh’ Contents Some Observations on Roots. Harry Mays, UK. ................................................................................................. 2-5 Aloe mossurilensis Ellert, sp. nov. Anthon Ellert, USA ........................................................................................ 6 Cultivar publication dates ........................................................................................................................................ 6 Haworthia ×subattenuata ‘Kinjoh’. Mays-Hayashi, Japan ............................................................... Front cover,6 Bruce Bayer’s Haworthia. Update 5 ........................................................................................................................ 7 White Widows and their Common-Law Hubbies. Steven A. Hammer, USA .................................................. 8-9 Rick Nowakowski - Natures Curiosity Shop. ....................................................................................................... 10 Repertorium Plantarum Succulentarum (The Rep), offer David Hunt, UK ..................................................... 10 Two Japanese Cultivars Distributed by Rick Nowakowski. ................................................................................ 11 ×Gasteraloe ‘Green Ice’. David Cumming ........................................................................................ Back cover,11 Index of plant names Volume 9 (2009) ............................................................................................................
    [Show full text]
  • Rare Succulent Plants: Winter 2015 Sales List - Unusual Succulents for the Collector and Novice
    Rare Succulent Plants: Winter 2015 Sales List - unusual succulents for the collector and novice Payment details: Please ask for a quote on postage/packing (small orders up to $50 are usually $10). Many items are in small number or short supply so enquire for availability before sending order. Payment options are Paypal, Direct Deposit or via postal money orders payable to P.I.Forster. Send your completed order form to Paul Forster, P.O. Box 2171, Ashgrove West, Qld 4060 or via email: [email protected] Please order with the provided order form using the names/numbers listed in the first column. Mail order sales only. No orders can be sent to Northern Territory or Tasmania to AQIS/Agriculture Dept. quarantine regulations. Orders can be sent to Western Australia with an import permit (enquire for details). No foreign orders . If you have email, then send me your address and I can indicate when the order is to be filled. The collection is diverse, so it does not hurt to make enquiries for desired plants. Substitutes can be listed if desired (especially for items listed as being in limited or very limited supply), or state whether a refund is required for items that are out of stock. If ordering from email, please print out your order form including a mailing address and attach with payment. New versions of this list are automatically sent to those with email quarterly and are also available on the webpage of the Cactus & Succulent Society of NSW at Buy Stuff Please indicate if you wish to be included on the mailing list.
    [Show full text]
  • Aloes of Ethiopia: a Review on Bule Hora University, Bule Hora, Ethiopia, Tel: +251 91 2922336; P.O
    Central International Journal of Plant Biology & Research Bringing Excellence in Open Access Review Article *Corresponding author Baressa Anbessa Erena, Department of Biology, Faculty of Natural and Computational Sciences, Aloes of Ethiopia: A Review on Bule Hora University, Bule Hora, Ethiopia, Tel: +251 91 2922336; P.O. Box: 144, Email: Uses and Importance of Aloes Submitted: 03 February 2017 Accepted: 20 February 2017 Published: 22 February 2017 in Ethiopia ISSN: 2333-6668 Bula Kere Oda and Baressa Anbessa Erena* Copyright © 2017 Erena et al. Department of Biology, Faculty of Natural and Computational Sciences, Bule Hora University, Ethiopia OPEN ACCESS Keywords Abstract • Aloes This review work tries to address on ethno botanical knowledge of Aloe plants • Importance in Ethiopia. There are 46 species of Aloe in Ethiopia in which about 66% of these • Diversity Aloe species are endemic to the country. They are distributed in all floristic regions. Aloes are very important source of traditional medicine in Ethiopian communities to treat different ailments. In addition Aloes are used in soap production, jute sacks production, anti-microbial activities in cotton fabric, as thickening agent, degraded land rehabilitation and source of food for animals. Although there have been some attempts to conduct researches on Ethiopian Aloe species, the available information especially on commercial use, industrial use, propagation, germination and farming are insignificant and overlooked. As their distribution indicate Aloes are important component of Ethiopian dry-land ecosystem including pastoralist and agro-pastoralist area in which the amount of rain is low. In this area introducing Aloe farm system could be better alternative of poverty reduction and income generation.
    [Show full text]
  • Contributions to the Systematics and Biocultural Value of Aloe L
    SUMMARY Contributions to the systematics and biocultural value of Aloe L. (Asphodelaceae) Olwen Megan Grace Submitted in partial fulfilment of the requirements for the degree PHILOSOPHIAE DOCTOR in the Faculty of Natural and Agricultural Sciences (Department of Plant Science) University of Pretoria March 2009 Supervisor: Prof. Dr. A. E. van Wyk Co-Supervisor: Prof. Dr. G. F. Smith This thesis focuses on the biocultural value of Aloe L. (Asphodelaceae), the influence of utility on taxonomic complexity and conservation concern, and the systematics and phylogeny of section Pictae, the spotted or maculate group. The first comprehensive ethnobotanical study of Aloe (excluding the cultivated A. vera) was undertaken using the literature as a surrogate for data gathered by interview methods. Over 1400 use records representing 173 species were gathered, the majority (74%) of which described medicinal uses, including species used for natural products such as A. ferox Mill. and A. perryi Baker. In southern Africa, 53% of approximately 120 Aloe species in the region are used for health and wellbeing. Homogeneity in the literature was quantified using consensus analysis; consensus ratios showed that, overall, uses of Aloe spp. for medicine and invertebrate pest control are of the greatest biocultural importance. The rich ethnobotanical history and contemporary value of Aloe substantiate the need for conservation to mitigate the risks of exploitation and habitat loss. A systematic evaluation of the problematic maculate species complex, section Pictae Salm-Dyck, was undertaken. In a phylogenetic study, new sequences were acquired of the nuclear ribosomal internal transcribed spacer (ITS), chloroplast trnL intron, trnL–F spacer 131 and matK gene in 29 maculate species of Aloe .
    [Show full text]
  • A Guide to the Types of Succulents Id Cards © 2020 © Succulents Llc Sunshine, and Rights All Reserved
    A GUIDE TO THE TYPES OF SUCCULENTS ID CARDS © 2020 SUCCULENTS AND SUNSHINE, LLC ALL RIGHTS RESERVED ALL RIGHTS LLC AND SUNSHINE, SUCCULENTS © 2020 IDEAL LIGHT Full Sun: This means the plant likes a lot of light and can handle some direct sunlight. This does not mean it can handle heat -- that varies from succulent to succulent. Generally keep succulents shaded in the afternoon when temperatures are hottest. If you are growing succulents indoors, “full sun” succulents will need a grow light running several hours per day in order to prevent stretching and maintain color. Partial Sun: These succulents like quite a bit of sun, but don’t generally want direct sun all day. Still protect them from heat and avoid late afternoon light. Morning light is ideal. Indoors, you’ll want to use a grow light a few hours a day to prevent stretching and maintain color. FOR MORE DETAILS PLEASE VISIT: SUCCULENTSANDSUNSHINE.COM/TOSLIGHT © 2020 SUCCULENTS AND SUNSHINE, LLC ALL RIGHTS RESERVED ALL RIGHTS LLC AND SUNSHINE, SUCCULENTS © 2020 IDEAL LIGHT Shade: Avoid giving these succulents direct sunlight. Morning sun may be ok, but not for very long. Indoors, you may want to supplement with a grow light for a couple hours a day to maintain really compact shape. Indoor: While all succulents can technically be grown indoors, succulents with this icon will grow well without a grow light. You may notice a little stretching, but not as much as a full sun succulent. If you don’t have grow lights, consider getting a succulent with this icon for your indoor garden.
    [Show full text]
  • Aloe Vossii Aloe Desertii Johnsonia Pubescens Aloe Peglerae Pasithea
    outgroup Xanthorrhoea resinosa 1 Pasithea caerulea 0.79 0.99 Phormium tenax 1 Dianella ensifolia 1 0.92 Dianella javanica Stypandra glauca 1 Hemerocallis littorea 1 Simethis planifolia 1 Tricoryne elatior 1 Corynotheca micrantha 1 Hensmania chapmanii Johnsonia pubescens 1 Asphodeline lutea Asphodelus aestivus 1 Eremurus himalaicus 0.81 Eremurus stenophyllus Trachyandra involucrata 1 0.83 Bulbinella nana 0.73 1 Kniphofia praecox 1 Kniphofia uvaria 1 Kniphofia thomsonii 0.69 0.87 Kniphofia galpinii Kniphofia triangularis 1 Bulbine succulenta 0.5 Bulbine frutescens Jodrellia migiurtina Aloidendron barberae 0.99 0.86 0.95 Aloidendron pillansii 0.65 Aloidendron dichotomum Aloidendron ramosissimum 0.94 Aloiampelos juddii Kumara plicatilis 0.67 Haworthiopsis coarctata 1 0.64 Haworthia cooperi Haworthia decipiens 0.84 Aloiampelos commixta 0.55 Aloiampelos gracilis 0.71 Aloiampelos striatula Astroloba bullulata 0.64 Aloiampelosciliaris Aloiampelos tenuior 0.92 Haworthiopsis attenuata 1 Gasteria carinata 0.97 Gasteria glauca 0.5 1 Gasteria rawlinsonii 1 Gasteria acinacifolia Gasteria baylissiana Aristaloe aristata Gonialoe variegata 0.56 0.54 Astroloba rubriflora 0.55 Haworthiaopsis koelmaniorum Astroloba foliolosa 0.67 0.99 Haworthia pumila 0.87 Astroloba spiralis Tulista kingiana Aloe comptonii 1 Aloe melanacantha 1 Aloe pearsonii 0.83 Aloe arenicola 1 Aloe distans Aloe perfoliata Aloe aageodonta 0.54 Aloe dewinteri Aloe reynoldsii 1 Aloe striata 0.77 Aloe buhrii 0.88 Aloe komaggasensis 0.85 Aloe lateritia 0.97 Aloe greenii 1 Aloe mudenensis
    [Show full text]
  • Aloe Names Book
    S T R E L I T Z I A 28 the aloe names book Olwen M. Grace, Ronell R. Klopper, Estrela Figueiredo & Gideon F. Smith SOUTH AFRICAN national biodiversity institute SANBI Pretoria 2011 S T R E L I T Z I A This series has replaced Memoirs of the Botanical Survey of South Africa and Annals of the Kirstenbosch Botanic Gardens which SANBI inherited from its predecessor organisations. The plant genus Strelitzia occurs naturally in the eastern parts of southern Africa. It comprises three arborescent species, known as wild bananas, and two acaulescent species, known as crane flowers or bird-of-paradise flowers. The logo of the South African National Biodiversity Institute is based on the striking inflorescence of Strelitzia reginae, a native of the Eastern Cape and KwaZulu-Natal that has become a garden favourite worldwide. It symbol- ises the commitment of the Institute to champion the exploration, conservation, sustainable use, appreciation and enjoyment of South Africa’s exceptionally rich biodiversity for all people. TECHNICAL EDITOR: S. Whitehead, Royal Botanic Gardens, Kew DESIGN & LAYOUT: E. Fouché, SANBI COVER DESIGN: E. Fouché, SANBI FRONT COVER: Aloe khamiesensis (flower) and A. microstigma (leaf) (Photographer: A.W. Klopper) ENDPAPERS & SPINE: Aloe microstigma (Photographer: A.W. Klopper) Citing this publication GRACE, O.M., KLOPPER, R.R., FIGUEIREDO, E. & SMITH. G.F. 2011. The aloe names book. Strelitzia 28. South African National Biodiversity Institute, Pretoria and the Royal Botanic Gardens, Kew. Citing a contribution to this publication CROUCH, N.R. 2011. Selected Zulu and other common names of aloes from South Africa and Zimbabwe.
    [Show full text]
  • Flora of Southern Africa, Which Deals with the Territories of South
    FLORA OF SOUTHERN AFRICA VOLUME 5 Editor G. Germishuizen Part 1 Fascicle 1: Aloaceae (First part): Aloe by H.F. Glen and D.S. Hardy Digitized by the Internet Archive in 2016 https://archive.org/details/floraofsoutherna511 unse FLORA OF SOUTHERN AFRICA which deals with the territories of SOUTH AFRICA, LESOTHO, SWAZILAND, NAMIBIA AND BOTSWANA VOLUME 5 PART 1 FASCICLE 1: ALOACEAE (FIRST PART): ALOE by H.F. Glen and D.S. Hardy Scientific editor: G. Germishuizen Technical editor: E. du Plessis NATIONAL Botanical Pretoria 2000 1 Editorial Board B.J. Huntley National Botanical Institute, Cape Town, RSA R.B. Nordenstam Swedish Museum of Natural History, Stockholm, Sweden W. Greuter Botanischer Garten und Botanisches Museum Berlin- Dahlem, Berlin, Germany Cover illustration: The South African 10-cent piece in use from 1965 to 1989 had a depiction of Aloe aculeata on the reverse. Cythna Letty made the original painting from which the coin was designed. The illustration on the cover is derived (by removal of the figures of value) from a digital photograph of this coin by John Bothma, first published in Hem (1999, Hem’s handbook on South author, African coins & patterns , published by the Randburg). Reproduced by kind permission of J. Bothma. Typesetting and page layout by S.S. Brink, NBI, Pretoria Reproduction by 4 Images. P.O. Box 34059, Glenstantia, 0010 Pretoria Printed by Afriscot Printers, P.O. Box 75353, 0042 Lynnwood Ridge © published by and obtainable from the National Botanical Institute, Private Bag X101, Pretoria, 0001 South Africa Tel.
    [Show full text]