The Science of Leds

Total Page:16

File Type:pdf, Size:1020Kb

The Science of Leds Colin Humphreys Department of Materials University of Cambridge The Science of LEDs UK CEUG, NCR-101 and ACEWG 2012 Cambridge, 10 September 2012 LEDs • Light emitting diodes • Made from solids that emit light • LEDs last 100,000 hours (electronics 50,000) • Light bulbs (incandescent) last 1,000 hours • LEDs fail by slow intensity decrease • Light bulbs fail totally and suddenly Efficiency of a Tungsten Light Bulb • 5% • 95% lost as heat – stays near the ceiling • Light bulbs are 95% inefficient • 79% of global lamp sales by volume Efficiency of a fluorescent tube and a compact fluorescent lamp (CFL) • 25% for long tube • 20% for compact fluorescent lamp (CFL) • CFLs are 80% inefficient and contain Hg – CFLs rapidly replacing tungsten light bulbs – Walmart sold 100 million CFLs in 2011 Efficiency of light sources Incandescent light bulb = 5% (15 lm/W) Fluorescent tube (long) = 25% (80 lm/W) Fluorescent lamp (CFL) = 20% (60 lm/W) White LEDs (350 mA) = 30% (100 lm/W) White LEDs (in lab) = 60% (200 lm/W) Sodium lamp (high P) = 40% (130 lm/W) The Potential of LED Lighting • Electricity generation is the main source of energy-related greenhouse gas emissions • Lighting uses one-fifth of its output • LEDs are poised to reduce this figure by 75% • Lighting will then use 5% of all electricity • Save 15% of electricity • Save about 15% CO2 emissions from power stations (d) US DoE Report • By 2025 Solid-State Lighting using GaN-based LEDs could reduce the global amount of electricity used for lighting by 50% • No other consumer of electricity has such a large energy-savings potential as LED lighting Global Impact of LED Lighting • 560 full-size power plants could close –If 40% of worlds lighting was LEDs HOW DO LIGHT EMITTING DIODES (LEDs) WORK? Main light-emitting materials (d) Internal quantum efficiency (IQE) InGaN/GaN quantum-well LED How to make white light High-power LED package Some LED Applications Kitchen with LED luminaires Kitchen lighting requirements: 1. >130 lm m^-2 on work surfaces. 2. Good colour rendering – food looks natural and see when food is cooked or gone bad Requirements for Home and Office Lighting • High efficiency • Excellent colour rendering • Long life • Low cost What limits the efficiency of GaN LEDs? • Dislocations? • Point defects? • Efficiency droop at high power Electron micrographs of GaN LED on sapphire Lattice mismatch 16% for GaN and sapphire. Dislocation density 5x10^9 cm^-2 Threading Dislocation Reduction 2 µm 4th 3rd 2nd 1st WBDF TEM image, g = <11-20>, edge + mixed TDs Scandium nitride interlayer -- Multiple SiN interlayers -- x dislocation density reduced to dislocation density reduced ~ 107 cm-2 from 5 x 109 to 5 x107 cm-2 Efficiency droop Efficiency vs current density (470 nm LED) 0.20 0.15 0.10 Peak Efficiency Efficiency (a.u.) Efficiency Onset of 0.05 Auger-dominated recombination 0.00 0.1 1 10 100 Current density (A/cm2) What effect correlates with the onset of efficiency droop? • Does some change in the localisation of carriers? • Does the onset of Auger-dominated recombination? • Does carrier leakage from the active region? The Key Issues for SSL in Homes and Offices • Cost – 75 W-equivalent LED costs $40 • Efficiency • Thermal management – Higher efficiency helps • Lifetime – Not a problem for the best manufacturers • Colour rendering Cost of LEDs • Current costs for a white GaN LED – 10 cents for cheapest low power – US$3 for the brightest high power – LED replacement light bulb for 40W incandescent has about 8 LEDs, costs US$30, but saves US$200 in electricity over 50,000 hours • Current costs per klm of LED white light – $20 or more – Cost target for widespread adoption: $5 High-efficiency InGaN/GaN LEDs on Large Area Silicon Substrates Why grow GaN on 6-inch Si? • Compatibility with Si processing techniques using a Si foundry – Should give improved automation and yield – Compare with “hand” processing with sapphire • Lower cost substrates • Growing on 6”, 8” and larger substrates will offer increasing cost reductions • Ease of removal of Si substrate • Lower cost LEDs and other devices Processed full LED on 6-inch Si wafer Processed full LED on 6-inch Si wafer Processed full LED on 6-inch Si wafer LEDs grown on large size Si can provide a low-cost manufacturing route for GaN based solid-state lighting. –Cost reduction 5-10 times Commercial Exploitation • CamGaN set up in Cambridge in November 2010 to exploit GaN on 6” Si LEDs • Plessey Semiconductors acquired CamGaN in February 2012. Hired 3 of my post-docs. • Plessey will manufacture GaN on 6” Si LEDs at their factory in Plymouth: millions of LEDs per week • A UK success story – should reduce the cost of LEDs Global CO2 Emissions from Lighting • Lighting is one of the biggest causes of greenhouse gas emissions • 1,900 Megatonnes of CO2 emissions per year (from power stations for lighting) • 70% of the global CO2 emissions of all cars • 3 times more than emissions from aviation – (International Energy Agency Report, 2006) Title Text The Science of LEDs Colin Humphreys University of Cambridge UK CEUG, NCR-101 and ACEWG 2012 Cambridge, 10 September 2012 Growing value with LEDs in horticulture controlled environments Philips Lighting Horticulture Esther Hogeveen-van Echtelt 10th of September 2012 CEUG 1 We enable health and wellbeing with light “Enrich peoples access to quality plants through timely introduction of meaningful and sustainable innovations in the lighting domain’’ “In horticulture where business complexity is increasing day by day we will take the lead to bring ‘sense and simplicity’ with new lighting solutions and beyond to improve the business of the grower’’ 1 The LED revolution 18% 2011 82% 50% 2015 50% Traditional lighting LED lighting *Source: Philips Lighting global market study 2009, updated for 2010 Oliveira Bridge, Sao Paulo, Brazil Key characteristics LED technology Light Emitted Forward Plastic Lens Sillicone Encapsulent Chip Cathode Lead Solder Connection Gold Wire Reflector Cup Heatsink Slug Heat High power Rebel LEDs High POWER LUXEON LEDs 4 2 No LED is the same Anybody can buy a LED, but can they build a good LED light system? • Every type of LED has his own design rules, disrespect the design rules and the LED system will fail after several hours • Data sheet of a LED for details 5 Key characteristics LED technology The performance of LEDs is determined by: • Heat management • Lifetime (related to light output) • LED type and quality • Binning 6 3 The Philips GreenPowerLED product difference GreenPowerLED Products Enable our HortiLED Solutions. • Best system efficacy • Stable light output, high LED quality • Best in class driver performance * • Long lifetime, clear min. light levels over time • Global Supply Certifications (UL, CSA, CE etc.) • Reliable specification, we set world standards • Cost competitive, Philips LED synergy & volume *High Power factor, low total harmonic distortion Warranty 3 yrs RoHS ISO 9001-2000 ISO 14001 Bio Photo biological safety The value for you X(tra profit) Factors Most effective use of μmol Positive effect LED on other growth factors Value for the grower μmol/W €/m2 Grow light Installation cost efficiency 4 New possibilities with LED Lighting LED adds growing power using less energy AND LED brings additional benefits (X-factors) on top of energy saving vs traditional lighting • better growth as LED light is used more effectively by plants • plant development per crop and growth phase e.g by tuning spectrum • cost savings (temperature, water etc.) because it generates less heat • more plants on less m2 by using layers with light closer to the plants 9 What is a light recipe? A light recipe is an instruction based on knowledge on how to use light to grow a certain crop under certain circumstances to obtain a certain business result Combining: • Lighting aspects: Light level, spectrum, required uniformity level, position and time • Boundary conditions for which the recipe is valid like climate conditions etc. • Results: X-factors besides energy saving found and/or expected 10 5 Finding recipes for plant growth - Step by Step 1st test setup Analyze, adjust Scale-up Fine-tune on and 2nd test best treatment production scale We deliver value with LEDs for growers Vegetables Cut flowers Tuning flowering Potted, Bedding Leafy Vegetables & Plants and Flower Bulbs herbs Perennials 12 Seeds and young Tree Tissue Culture plants nurseries 6 We deliver value with LEDs to research institutes Climate rooms Climate Greenhouse cabinets 13 Our approach: Step by step to your solution Step 1. What is your need? Step 2. Light recipe our know-how and Step 3. Product, installation and application network for your solution Step 4. Business case and Financing Step 5. Agreement, delivery and installation Step 6. Implementation check Step 7. Follow up 14 7 Case: Kreuk- Tulips – multilayer in greenhouse Goal: Increase production capacity Solution: Extra cultivation layer in greenhouse with proven LED recipe. Tulips move in 2 weeks from dark LED daylight LED Benefit: * 3400 m2 cultivation area on 1500 m2 ground area * Improved plant quality (darker green and more elongation) * Lower costs/stem GreenPower LED production module 15 Case: Lutz- Strawberry – control flowering and stem elongation Goal: Induce early flowering and good stem elongation Solution: GreenPower LED flowering lamp Benefit: * Good, reliable elongation of first leaves and trusses and good quality first production * Easy to install * Energy saving (~85%) GreenPower LED flowering lamp 16 8 Case: Delissen- Lettuce young plants
Recommended publications
  • An In-Situ Photometric and Energy Analysis of a Sulfur Lamp Lighting System
    LBL-37006 L-200 Presented at the Illuminating Engineering Society of North America Annual Conference, New York, NY, July 29- August 3, 1995, and published in the Proceedings. An In-Situ Photometric and Energy Analysis of a Sulfur Lamp Lighting System Doug Crawford, Carl Gould, Michael Packer, Francis Rubinstein, and Michael Siminovitch Lighting Research Group Environmental Energy Technologies Division Ernest Orlando Lawrence Berkeley National Laboratory University of California 1 Cyclotron Road Berkeley, California 94720 June 1995 This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building Technologies, Office of Building Equipment of the U.S. Department of Energy under Contract No. DE- AC03-76SF00098. An In-Situ Photometric and Energy Analysis of a Sulfur Lamp Lighting System Doug Crawford, Carl Gould, Michael Packer, Francis Rubinstein and Michael Siminovitch Lighting Research Group Lawrence Berkeley Laboratory University of California Berkeley, California 94720 Abstract This paper describes the results of a photometric and energy analysis that was conducted on a new light guide and sulfur lamp system recently installed at the U.S. Department of Energy's Forrestal Building. This novel system couples two high lumen output, high efficiency sulfur lamps to a single 73 m (240 ft.) hollow light guide lined with a reflective prismatic film. The system lights a large roadway and plaza area that lies beneath a section of the building. It has been designed to completely replace the grid of 280 mercury vapor lamps formerly used to light the space. This paper details the results of a field study that characterizes the significant energy savings and increased illumination levels that have been achieved.
    [Show full text]
  • Technology Brief: Light Emitting Plasma
    Energy Research & Development presents… Technology Brief: Light Emitting Plasma December 21, 2011 Report # ET11SMUD1018 Introduction • Emitter: the plasma lamp is housed within an aluminum By now, I’m certain most people in the lighting industry assembly specifically designed are familiar with LEDs – especially for outdoor lighting. to concentrate radio frequency But have you heard of Light Emitting Plasma? SMUD energy within the lamp. has been working with LUXIM Lighting and our customers to test this cutting edge technology. • Radio frequency (RF) Source: Luxim driver: connected to the Light Emitting Plasma (LEP) is a very intense, energy emitter via a coax cable and produces the efficient, white light source that could be used in a radio frequency energy needed to ignite and variety of outdoor lighting applications. operate the plasma lamp. What is Light Emitting Plasma? • AC/ DC power supply: converts incoming line voltage to DC and supplies power to the radio The Light Emitting Plasma system consists of the frequency driver. components listed below. These components are housed within a light fixture (a.k.a. luminaire). The Potential Benefits of Light Emitting Plasma luminaire also includes an optical assembly to distribute the light produced by the lamp. Light Emitting Plasma offers the following advantages over conventional high intensity discharge lamps: • Better reliability: conventional metal halide lamps require electrodes within the arc tube. These electrodes are usually made of tungsten and require a mechanical seal - which can lead to premature lamp failure. As the tungsten degrades, it darkens the walls of the lamp and reduces the light output. • Rapid start: 45 seconds to reach 80% of full brightness LEP System Components Source: LUXIM • Faster re-strike: when the power is turned off to high • Lamp: consists of a very small intensity discharge lamps Source: LUXIM quartz tube (3/4” long), which (e.g.
    [Show full text]
  • A High-Efficiency Indirect Lighting System Utilizing the Solar 1000 Sulfur Lamp
    LBNL-40506 L-205 Proceedings of the Right Light 4 Conference, November 19-21, 1997, in Copenhagen, Denmark. A High-Efficiency Indirect Lighting System Utilizing the Solar 1000 Sulfur Lamp Michael Siminovitch, Carl Gould, and Erik Page Lighting Systems Research Group Building Technologies Program Environmental Energy Technologies Division Lawrence Berkeley National Laboratory University of California Berkeley, CA 94720 June 1997 This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building Technology, State and Community Programs, Office of Building Equipment of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. A High-Efficiency Indirect Lighting System Utilizing the Solar 1000 Sulfur Lamp Michael Siminovitch, Carl Gould, and Erik Page Lighting Systems Research Group Lawrence Berkeley National Laboratory Berkeley, CA 94720 USA ABSTRACT High-lumen light sources represent unique challenges and opportunities for the design of practical and efficient interior lighting systems. High-output sources require a means of large-scale distribution and avoidance of high-luminance glare while providing efficient delivery. An indirect lighting system has been developed for use with a 1000 Watt sulfur lamp that efficiently utilizes the high-output source to provide quality interior lighting. This paper briefly describes the design and initial testing of this new system. INTRODUCTION Currently the lighting market is seeing the evolution and emergence of sources producing high-lumen output, high-efficacy, and good color rendering quality. These sources, specifically the sulfur lamp and high-wattage metal halides, offer significant advantages in terms of efficacy, color rendering quality, and lamp life. The emergence of efficient high-lumen output lamps offers the potential for both reduced energy use and reductions in building costs associated with reducing the number of fixtures required to maintain a specific illuminance level.
    [Show full text]
  • PLS(Plasma Lighting System)
    Outdoor Floodlight, Indoor Light, Light Pipe, Image Pole can be applied for each usage. PLS Products Plasma Lighting System Flood Lighting PSF 1032A Indoor Lighting PSH 0731B Another natural light, the PLS The ideal lamp for the next generation, the PLS, with LG digital technology giving you a supreme lighting environment. P l a s m a L i g h t i n g S y s t e m Providing light from a non-electrode plasma lamp, the PLS! Almost like sunlight, with the full spectrum of natural white light, good for eyesight preservation without fluorescent substances, and comfortable and eco-friendly in any location with minimized Ultraviolet and Infrared radiation. Enjoy the finest natural lighting with the PLS. Why choose the PLS? Plasma Lighting System More Natural, More More Environmentally-Friendly Light Source Another Sun! The artificial light that can imitate sunlight the best provides the most pleasant lighting. Long lasting! Non-electrode technology makes it possible to preserve the light's initial brightness, for a longer product lifetime. High efficiency! Reduction in energy consumption and cost, with high luminous flux and lumen maintenance Optimal for Human Visual Sensitivity! Helps improve recognition of contrast and motion in the dark Eco-friendly! Contains no mercury, for a better environment and your better health PLS is... The PLS (Plasma Lighting System) is a new concept of lighting utilizing the principle of plasma light emission through microwaves. Its core aim is to provide a lighting sensation worldwide, using the new and different technology of the light source. LG Electronics have successfully paved the way to the commercialization of this PLS through their previous accomplishments with microwave-applied technology and persistent research.
    [Show full text]
  • A High-Power Source of Optical Radiation with Microwave Excitation
    ISBN: 978-84-9048-719-8 DOI: http://dx.doi.org/10.4995/Ampere2019.2019.9761 A HIGH-POWER SOURCE OF OPTICAL RADIATION WITH MICROWAVE EXCITATION G. Churyumov1, 2, A. Denisov1, T. Frolova2, N. Wang1, J. Qiu1 11Harbin Institute of Technology, 92, West Dazhi Street, Nan Gang District, Harbin, China 2 Kharkiv National University of Radio Electronics, 14, Nauky Ave., 61166, Kharkiv, Ukraine [email protected] Keywords: microwave heating, magnetron, electrodeless sulfur lamp, plasma, microwave excitation 1. Introduction For more than 50 years, interest to the microwave heating technology has not weakened. In addition to the traditional areas of its application, which described in detail in [1], recently there has been an expansion of technological possibilities for the use of microwave energy associated with the impact of electromagnetic waves of the microwave range on various materials (sintering of metal and ceramic powders) and media, including plasma [2]. One such new direction is the creation of high-power and environmentally friendly sources of optical radiation on the basis of the electrodeless sulfur lamp with microwave excitation [2, 3]. As it is known, Michael Ury and his associates at Fusion Systems invented this radically new lamp in 1990, but the lamp was not ideal because of the complexity of its design [4]. Therefore, it was not put into production. However, every year the scientific interest was growing. An analysis of scientific publications shows that every 5 years a new country is joined to this issue. Now more than in 10 countries of all would including USA, Great Britain, South Korea, Netherlands, Germany, Russia, and so on where there are research teams that are carried out an investigation concerning the electrodeless lamps with microwave excitation.
    [Show full text]
  • Energy Efficient Landscape Lighting
    energy efficient landscape lighting OPTIONS FOR COMMERCIAL & RESIDENTIAL SITES June 2008. Casey Gates energy efficient landscape lighting OPTIONS FOR COMMERCIAL & RESIDENTIAL SITES June 2008. A Senior Project Presented to the Faculty of the Landscape Architecture Department University of California, Davis in Partial Fulfillment of the Requirement for the Degree of Bachelors of Science of Landscape Architecture Accepted and Approved by: __________________________ Faculty Committee Member, Byron McCulley _____________________________ Committee Member, Bart van der Zeeuw _____________________________ Committee Member, Jocelyn Brodeur _____________________________ Faculty Senior Project Advisor, Rob Thayer Casey Gates Acknowledgements THANK YOU Committee Members: Byron McCulley, Jocelyn Brodeur, Bart Van der zeeuw, Rob Thayer Thank you for guiding me through this process. You were so helpful in making sense of my ideas and putting it all together. You are great mentors. Family: Mom, Dad, Kelley, Rusty You inspire me every day. One of my LDA projects 2007 One of my LDA projects 2007, Walker Hall The family Acknowledgements Abstract ENERGY EFFICIENT LANDSCAPE LIGHTING IN COMMERCIAL AND LARGE SCALE RESIDENTIAL SITES Summary Landscape lighting in commercial and large scale residential sites is an important component to the landscape architecture industry. It is a concept that is not commonly covered in university courses but has a significant impact on the success of a site. This project examines the concepts of landscape lighting and suggests ideas to improve design standards while maintaining energy efficiency. This project will discuss methods and ideas of landscape lighting to improve energy efficiency. Designers should know lighting techniques and their energy efficient alternatives. This project demonstrates how design does not have to be compromised for the sake of energy efficiency.
    [Show full text]
  • Lifetime and Reliability of Polymer Solar Cells A
    LIFETIME AND RELIABILITY OF POLYMER SOLAR CELLS A DISSERTATION SUBMITTED TO THE DEPARTMENT OF MATERIALS SCIENCE AND ENGINEERING AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Craig Homer Peters November 2011 © 2011 by Craig H Peters. All Rights Reserved. Re-distributed by Stanford University under license with the author. This dissertation is online at: http://purl.stanford.edu/fs540ky3123 ii I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Michael McGehee, Primary Adviser I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Reinhold Dauskardt I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Alan Sellinger Approved for the Stanford University Committee on Graduate Studies. Patricia J. Gumport, Vice Provost Graduate Education This signature page was generated electronically upon submission of this dissertation in electronic format. An original signed hard copy of the signature page is on file in University Archives. iii Abstract The power conversion efficiency of organic photovoltaic (OPV) cells has increased from 4-5% in 2005 to 8.3% in 2010. The goal of a 10% single junction OPV device seems attainable making the commercialization of OPV more realistic.
    [Show full text]
  • Worldwide Light Sources and Fluorescent Light Market
    Presentation on Worldwide Light sources and Fluorescent light Presented by: M. M. Ahtashom market Contents • Introduction • Classification of light source • Lighting efficiency comparison • Fluorescent lamp • History background • How light produced • Types of Fluorescent lamp • About Ballast • Operating Charecteristic • Applications • Advantages and Disadvantages • Commercial Prospect • CFL Recycling project • Reference Introduction A typical "light source" emits electromagnetic radiation in the visible spectrum. The list is oriented towards visible light: nearly everything emits photons through blackbody radiation. Classification of Light sources 1. Combustion 2. Natural 2.1 Celestial and atmospheric light 2.2 Terrestrial 3. Direct Chemical 4. Electric Powered 4.1 Electron simulated 4.2 Incandescent lamp 4.3 Electroluminescent (EL) lamp 4.4 Gas discharge lamps 4.4.1 High-intensity discharge lamp 5. Other 1. Combustion •Fire 2. Natural 2.1 Celestial and atmospheric light • Astronomical objects – Sun (Sunlight (solar radiation)) – Starlight (Stars forming groups such as Star clusters and galaxies and indirectly lighting nebulae) • Lightning (Plasma) – Sprite (lightning) – Ball lightning – Upper-atmospheric lightning – Dry lightning • Aurorae • Cherenkov radiation (from cosmic rays hitting atmosphere) • 2.2 Terrestrial • Bioluminescence – Luciferase - found in glowworms, fireflies, and certain bacteria – Aequorea victoria (a type of jellyfish) – Antarctic krill – Parchment worm (Chaetopterus), which exhibits blue bioluminescence despite
    [Show full text]
  • Sam's F-Lamp FAQ Fluorescent Lamps, Ballasts, and Fixtures Principles of Operation, Circuits, Troubleshooting, Repair Version 1.90
    Fluorescent Lamps, Ballasts, and Fixtures Page 1 of 34 Sam's F-Lamp FAQ Fluorescent Lamps, Ballasts, and Fixtures Principles of Operation, Circuits, Troubleshooting, Repair Version 1.90 Copyright (C) 1994,1995,1996,1997,1999 Samuel M. Goldwasser --- All Rights Reserved --- Corrections or suggestions to: [email protected] Reproduction of this document in whole or in part is permitted if both of the following conditions are satisfied: 1. This notice is included in its entirety at the beginning. 2. There is no charge except to cover the costs of copying. Table of Contents Preface Author & Copyright DISCLAIMER Acknowledgements Introduction Fluorescent Lamp Basics Fluorescent Lamp Labeling Safely Working with Fluorescent Lamps and Fixtures Fluorescent Fixtures and Ballasts Fluorescent Fixtures Fluorescent Lamp Ballasts Types of Iron Ballasts Electronic Ballasts Fluorescent fixture wiring diagrams Wiring for Preheat Fluorescent Fixtures Fluorescent Starter Operation Wiring for Rapid Start and Trigger Start Fixtures http://members.misty.com/don/f-lamp.html 11/17/2005 Fluorescent Lamps, Ballasts, and Fixtures Page 2 of 34 Wiring Diagram for Single Tube Rapid or Trigger Start Ballast Wiring Diagram for Two Tube Rapid Start Ballast Schematic of Typical Rapid/Trigger Start Single Lamp Ballast Schematic for Rapid Start Ballast with Isolated Secondary Schematic of Rapid Start Dual Lamp Ballast Measurements of Dual Tube Rapid Start Ballasts Fluorescent Lamps in Series? Fluorescent Lamps in Parallel? Wiring Fluorescent
    [Show full text]
  • USB Plasma Ball Instruction Manual
    English USB Plasma Ball Instruction Manual Features Small plasma ball for your desk Electric discharge creates an amazing optical spectacle Power supply via USB cable (included) or 5 V DC adaptor (not included) Reacts to touches on the glass Visible rays of light come together where the glass ball is touched On/Off switch Included in the delivery Plasma ball USB cable (length: 0.95 m) Instruction manual How to get started 1. Remove the USB Plasma Ball from the packaging. 2. Position the USB Plasma Ball on a flat, solid surface. 3. Connect the USB cable with a free USB port on your computer. 4. Switch on the USB Plasma Ball. 5. Touch the glass ball with your hand or a conducting metal item e.g. a metal spoon. The rays of light come together where the glass ball is touched. 6. Make a noise (e.g. clap, sing or shout) and watch the spectacle inside the USB Plasma Ball as flashes of light are created to the sound. 7. If not being used, switch off the USB Plasma Ball. 1 English USB Plasma Ball Instruction Manual Additional information about the Plasma Ball The Plasma Ball or Plasma Lamp goes back to an invention by the physicist and electrical engineer Nikola Tesla in 1904. He called this invention an inert gas discharge tube. The Plasma Ball as we know it today is often demonstrated in school, universities or museums. It is found as a decorative accessory in many homes, too. However, it still functions in the same manner as Tesla’s discharge tube.
    [Show full text]
  • How Do Plasma Lamps Work
    Out of the Wood BY MIKE WOOD How do Plasma lamps work? I HAD SUCH A POSITIVE RESPONSE to my articles last year on where the similarities end. In fact, the current breed of LEP lamps how LEDs work that I thought I’d continue this as an occasional arguably have more in common with the high intensity discharge series and look at how light is produced in other sources. With the lamps we use in follow spots and automated lights. world’s push towards energy efficiency we have seen significant Note: I know of at least three current manufacturers of microwave R&D investment over the last few years in both the development energized high efficiency plasma lamps, Luxim, Tonanaga, and of new light sources, and in improvements to existing ones. LEDs, Ceravision. However, at the time of writing, it is Luxim who seem to of course, are the most prominent example, but there are other have made the largest inroads into the entertainment lighting industry new sources such as OLEDs and plasma lamps as well as notable in this country so much of this article is based around their technology. efficiency improvements to our old friends the incandescent and The main concern of the article is with general principles of operation HID lamps. “ only and, as I understand it, the basic theory behind the lamps from all three manufacturers is very similar. They differ in the specific construction, operation and the secret sauces embodied by their distinct . it’s the oldest form of lighting in existence . devices. There is no short name in common use for the technology at the moment so I’m using the initials LEP as a generic term referring to this particular technology and not to any particular manufacturer.
    [Show full text]
  • Outdoor Lighting, New Technologies
    Outdoor Lighting, New Technologies Eric Strandberg LC Presented to: Current state of the exterior lighting Dominated by HPS Why? What are the limitations of MH? What about other light sources? 2 1 At a crossroads of technology LED Induction Metal Halide High Pressure Sodium 3 Light source characteristics HPS Metal Plasma Induction Inc CFL LED Halide Lumens per watt Life Optics Lumen maintenance High CCT option CRI Controllability First cost 4 2 Light source efficacy (Lumens per Watt) for common exterior light sources HPS- 70 - 145 MH- 68- 120 Induction- 48- 75 Incandescent- 8- 13 Halogen- 10- 36(HIR) CFL- 50- 80 Plasma- 85- 110 LED- 100+ 5 Stuck on Lumens Lighting is about seeing …not just measured lumens Luminance, measured in candela/m sq. (footlamberts) Lamp output in lumens* Illuminance, measured in footcandles or lux 6 *With LED systems the “lamp lumens” and fixture output are the same. This is called absolute photometry. 3 Light source life for common exterior light sources HPS- 16K – 30K MH- 10K – 30K Induction- 60K - 100K Incandescent- 1K- 1.5K Halogen- 3K- 5K (HIR) CFL- 10K- 16K Plazma- 50K LED- 25K – 100K 7 Rated Lamp Life “The life value assigned to a particular type lamp. This is commonly a statistically determined estimate of average or of median operational life.” IESNA Other life definitions Reduced light output. Color shift. Efficacy reduction. Lamp starts to cycle. Lamp becomes unstable. Probability of failure increases. (Group re-lamping) 8 4 Lamp Lumen Depreciation “The fractional loss of lamp lumens at rated operating conditions that progressively occurs during lamp operation.” IESNA Mean Lumens T5 100 95 T8 (265 mA) 90 Incandescnt 85 T12 (430 mA) Lumens 80 75 HPS Percent of Initial 0 20406080100 Mercury Vapor Percent of Average Rated Life 9 Service life vs time to failure ~L92 L70 100 70 % light output 0 50KTime in ~85K Failure Hours L70 is the point in time when the light source (LED) has lost 30% of its light.
    [Show full text]