Unser Sonnensystem

Total Page:16

File Type:pdf, Size:1020Kb

Unser Sonnensystem Deutsches Zentrum für Luft- und Raumfahrt e.V. Institut für Planetenforschung UNSER SONNENSYSTEM Kurzer Überblick über die Körper unseres Sonnensystems und deren Erkundung mit Raumsonden zusammengestellt von Susanne Pieth und Ulrich Köhler Regional Planetary Image Facility Direktor: Prof. Dr. Ralf Jaumann Datenmanager: Susanne Pieth 2017, 4., aktualisierte und erweiterte Auflage INHALT 3 Geleitwort 5 Exploration des Sonnensystems mit Raumsonden 11 Sonnensystem und vergleichende Planetologie 17 Sonne 21 Merkur 25 Venus 29 Erde-Mond-System 41 Mars 47 Asteroiden 55 Jupiter 61 Saturn 69 Uranus 73 Neptun 77 Kuipergürtel und Zwergplaneten 85 Kometen 93 Planetenentstehung und Leben 97 Extrasolare Planeten Anhang 100 Übersicht über die Missionen im Sonnensystem Impressum 119 Wie komme ich an Bilddaten? Herausgeber: Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR) Institut für Planetenforschung Regional Planetary Image Facility Die Texte entstanden unter Mitwirkung von Dr. Manfred Gaida, Anschrift: Dr. Christian Gritzner, Prof. Dr. Alan Harris, Ernst Hauber, Dr. Rutherfordstr. 2, 12489 Berlin Jörn Helbert, Prof. Dr. Harald Hiesinger, Dr. Hauke Hußmann, Telefon + 49 (030) 67055-333 Prof. Dr. Ralf Jaumann, Dr. Ekkehard Kührt, Dr. René Laufer, E-Mail [email protected] Dr. Stefano Mottola, Prof. Dr. Jürgen Oberst, Dr. Katharina DLR.de/rpif/ Otto, Dr. Ana-Catalina Plesa, Dr. Frank Sohl, Prof. Dr. Tilman Spohn, Dr. Alexander Stark, Dr. Katrin Stephan, Dr. Daniela Titelbild: DLR (CC-BY 3.0) Tirsch, Dr. Ruth Titz-Weider und Dr. Roland Wagner. Geleitwort GELEITWORT Eine Reise durch das Sonnensystem In der Natur von Forschung liegt es, dass mit jedem gelösten Rätsel neue Fragen aufgeworfen werden. Wie entstand das Leben auf der Im Jahr 1610 richtete Galileo Galilei zum ersten Mal den Blick durch Erde? Kommt es von einem anderen Himmelskörper oder wäre hö- ein Fernrohr auf die Gestirne – und entdeckte wahrlich „Revo- her entwickeltes Leben auf der Erde ohne den großen Mond denn lutionäres“. Was er sah und dann im Sidereus Nuncius zu Papier überhaupt möglich? Schließlich die Frage, die den Rahmen des brachte, zementierte das Weltbild des Nikolaus Kopernikus. Nun streng Wissenschaftlichen sprengt: Werden wir Leben auf einem an- stand nicht mehr länger die Erde im Zentrum des abendländischen deren Himmelskörper finden, diesseits und jenseits der Grenzen un- Universums, sondern die Sonne bildete den Mittelpunkt unseres seres Sonnensystems – und was bedeutet das für uns? Planetensystems. Kurz davor, 1609, formulierte Johannes Kepler in seiner Astronomia Nova die ersten beiden von drei Gesetzen, mit de- Wie keine andere Wissenschaft werden Astronomie und Planeten- nen die Bahnen der Planeten beschrieben werden konnten. Damit forschung erst durch Bilder begreifbar. Die Fotos, die von Raum- schuf er die Grundlage, auf der heute mit Raumsonden sämtliche sonden seit über 50 Jahren zur Erde gefunkt werden, eröffneten uns Körper des Sonnensystems mit hoher Präzision angesteuert werden. neue Welten, neue Perspektiven, neue Erkenntnisse. Die Plane- tologie, eine vergleichsweise junge Wissenschaft, ist weitgehend 1959 gelang es der Menschheit zum ersten Mal, mit einer Raum- Grundlagenforschung. Die Körper des Sonnensystems sind nun nicht sonde das Schwerefeld der Erde zu verlassen. Die sowjetische Sonde mehr länger nur Objekte astronomischer Beobachtungen, sondern Luna 1 flog zum Mond und war der Vorreiter einer ganzen Armada Körper, die unter geowissenschaftlichen Gesichtspunkten untersucht von Raumschiffen, die zur Erkundung der Planeten, ihrer Monde, werden. An den Erkenntnisgewinn ist aber auch eine Verpflichtung der Asteroiden und Kometen und nicht zuletzt der Sonne aufbra- geknüpft – nämlich der Öffentlichkeit die Ergebnisse dieser Wissen- chen. Schließlich folgte zehn Jahre später der berühmte riesengroße schaft zu vermitteln. Schritt, der für Neil Armstrong ja nur ein ganz kleiner war – in der Nacht vom 20. auf den 21. Juli 1969 betraten Menschen zum ersten Das Deutsche Zentrum für Luft- und Raumfahrt (DLR) kommt dieser Mal einen anderen Himmelskörper, den Mond. Der wissenschaftli- Verpflichtung auf vielfältige Art und Weise gerne nach. Um die che Erkenntnisgewinn dieses zunächst politisch motivierten Projekts spannenden, faszinierenden Ergebnisse der Planetenforschung sicht- der Apollo-Mondlandungen war enorm sowie horizonterweiternd bar zu machen, wurde am DLR-Institut für Planetenforschung in und hat eine neue technologisch-wissenschaftliche Ära der Ent- Berlin-Adlershof in Kooperation mit der NASA die Regional Planetary deckungen, Vermessung und Erkenntnis eingeleitet. Image Facility (RPIF) eingerichtet, eine planetare Bildbibliothek, die alle Bilddaten der vielen Raumsonden von NASA, ESA und anderer Der Wettlauf zum Mond führte auf allen Gebieten der jungen Raumfahrtorganisationen archiviert und der Öffentlichkeit zugäng- Raumfahrt zu beispiellosen technischen Fortschritten – was auch lich macht. Das kleine Werk „Unser Sonnensystem“, nun schon in zum Segen für die Forschung wurde. Nicht nur der Mond, auch die vierter Auflage, soll einen kurzen Überblick über den aktuellen Stand um ein Vielfaches weiter entfernten Planeten unseres Sonnensystems der Erkundung unserer unmittelbaren kosmischen Umgebung ge- waren nun mit robotischen Raumsonden erreichbar. Zunächst ging ben. Teilen Sie unsere Faszination und lassen Sie sich mitnehmen auf es zur Venus und zum Mars, dann zu Merkur, Jupiter, Saturn, eine Reise von der Erde in die Tiefen des Sonnensystems! Uranus, Neptun, zu einzelnen Asteroiden und Kometen und schließ- lich zu Pluto und noch weiter. Es gelangen unzählige faszinierende Eine spannende Lesezeit wünscht Ihnen und erhellende Beobachtungen, denn durch den Blick auf die ande- ren Planeten und Monde haben wir nicht nur unglaublich viel über Ralf Jaumann das Sonnensystem erfahren, sondern auch Wichtiges über die Frühzeit, Entwicklung und Funktion unserer Erde lernen können, die unter allen Planeten so einzigartig ist. Nach wie vor ist die Erde der Prof. Dr. Ralf Jaumann lehrt Planetengeologie einzige Ort im Universum, von dem wir wissen, dass er Leben her- an der Freien Universität Berlin. Er ist Leiter der Abteilung Planetengeologie des DLR-Insti- vorgebracht hat. Und nicht zuletzt erkannten wir, dass dieser „Blaue tuts für Planetenforschung und Direktor der Planet“ fragil ist, geschützt werden muss, weil es das beste aller NASA/DLR Regional Planetary Image Facility denkbaren Raumschiffe ist. am DLR-Institut für Planetenforschung. 3 4 Exploration des Sonnensystems mit Raumsonden EXPLORATION DES SONNENSYSTEMS MIT RAUMSONDEN Mit dem Start von Sputnik 1 durch die Sowjetunion am 4. Oktober Oberflächen dieser vielgestaltigen Körper oder, wie im Falle der gro- 1957 begann das Raumfahrtzeitalter. Schon kurz darauf gelang es ßen Gasplaneten, der äußersten Schichten ihrer Atmosphären. Dies der ehemaligen UdSSR und den USA, Raumsonden zum Mond sowie geschieht auf Raumsonden mit zunächst konventioneller, später di- zur Venus und zum Mars zu schicken, den beiden Nachbarplaneten gitaler und schließlich multispektraler Fotografie sowie mit der abbil- der Erde. Bereits in den 1970er-Jahren wurden weiter entfernte denden Spektroskopie, die auch kürzere und längere Wellenlängen Planeten angesteuert, und es beteiligten sich auch andere Nationen erfasst. Gestatten dichte Atmosphären keine unmittelbare Sicht auf an der Erforschung der Planeten, Monde, Asteroiden und Kometen die Oberfläche, wie bei dem Planeten Venus oder dem Saturnmond des Sonnensystems, der Sonne selbst und an der Untersuchung des Titan, können Radarexperimente zur Charakterisierung der Ober- interplanetarem Raums und der kosmischen Umgebung. Trotz eini- flächen angewendet werden. ger Fehlschläge haben die vielen erfolgreichen Missionen zu den Körpern unseres Sonnensystems eine Vielzahl von Erkenntnissen über Für die planetare Fernerkundung werden neben Sensoren für das unsere nähere Umgebung im Weltall erbracht. Eine wesentliche Rolle sichtbare Licht, die in verschiedenen Kamerasystemen zum Einsatz bei der Erkundung des Sonnensystems spielt dabei die Erfassung der kommen, auch Detektoren für viele weitere Teile des elektromag- netischen Frequenzspektrums in Spektrometern eingesetzt. Bei die- sen Sensoren ist die Auflösung aber vielfach geringer. Allein deshalb bleiben viele Fragen ungeklärt und können nur durch zukünftige Raumfahrtmissionen geklärt werden. Vorgehensweise bei der Erforschung Der klassische Prozess der Erkundung anderer Himmelskörper be- steht aus den nachfolgend aufgeführten Stufen. Diese einzelnen Schritte stellen jeweils ein in Technik, Navigation, Kommunikation und Antriebsbedarf komplexeres Missionsszenario dar: - Start, ggf. kurzzeitiges „Parken“ in der Erdumlaufbahn, Einschuss in eine interplanetare Flugbahn - Vorbeiflug am Zielkörper - Harte Landung auf der Oberfläche und/oder Absetzen einer Atmosphärensonde - Umlaufbahn um den Himmelskörper - Weiche Landung auf der Oberfläche und Aktivierung einer Experimentalstation - Roboterfahrzeuge (Rover), Ballon- und Flugzeugsonden/Drohnen - Materialprobenrückführung - Astronautische Expedition Bild: Start von Rosetta an Bord einer Ariane-5-Rakete am 2. März 2004 von Kourou. (© ESA/CNES/ARIANE- SPACE-Service Optique CSG, 2004) Bild linke Seite: Künstlerische Darstellung der Raum- sonde Cassini über den Saturnringen. (© NASA/JPL) 5 Exploration des Sonnensystems mit Raumsonden Dieser Ablauf wird nicht immer in der hier aufgeführten Reihenfolge Die zweite Phase von 1968 bis 1972 ist von der Realisierung der ers- eingehalten. Oftmals
Recommended publications
  • Ira Sprague Bowen Papers, 1940-1973
    http://oac.cdlib.org/findaid/ark:/13030/tf2p300278 No online items Inventory of the Ira Sprague Bowen Papers, 1940-1973 Processed by Ronald S. Brashear; machine-readable finding aid created by Gabriela A. Montoya Manuscripts Department The Huntington Library 1151 Oxford Road San Marino, California 91108 Phone: (626) 405-2203 Fax: (626) 449-5720 Email: [email protected] URL: http://www.huntington.org/huntingtonlibrary.aspx?id=554 © 1998 The Huntington Library. All rights reserved. Observatories of the Carnegie Institution of Washington Collection Inventory of the Ira Sprague 1 Bowen Papers, 1940-1973 Observatories of the Carnegie Institution of Washington Collection Inventory of the Ira Sprague Bowen Paper, 1940-1973 The Huntington Library San Marino, California Contact Information Manuscripts Department The Huntington Library 1151 Oxford Road San Marino, California 91108 Phone: (626) 405-2203 Fax: (626) 449-5720 Email: [email protected] URL: http://www.huntington.org/huntingtonlibrary.aspx?id=554 Processed by: Ronald S. Brashear Encoded by: Gabriela A. Montoya © 1998 The Huntington Library. All rights reserved. Descriptive Summary Title: Ira Sprague Bowen Papers, Date (inclusive): 1940-1973 Creator: Bowen, Ira Sprague Extent: Approximately 29,000 pieces in 88 boxes Repository: The Huntington Library San Marino, California 91108 Language: English. Provenance Placed on permanent deposit in the Huntington Library by the Observatories of the Carnegie Institution of Washington Collection. This was done in 1989 as part of a letter of agreement (dated November 5, 1987) between the Huntington and the Carnegie Observatories. The papers have yet to be officially accessioned. Cataloging of the papers was completed in 1989 prior to their transfer to the Huntington.
    [Show full text]
  • Ice& Stone 2020
    Ice & Stone 2020 WEEK 33: AUGUST 9-15 Presented by The Earthrise Institute # 33 Authored by Alan Hale About Ice And Stone 2020 It is my pleasure to welcome all educators, students, topics include: main-belt asteroids, near-Earth asteroids, and anybody else who might be interested, to Ice and “Great Comets,” spacecraft visits (both past and Stone 2020. This is an educational package I have put future), meteorites, and “small bodies” in popular together to cover the so-called “small bodies” of the literature and music. solar system, which in general means asteroids and comets, although this also includes the small moons of Throughout 2020 there will be various comets that are the various planets as well as meteors, meteorites, and visible in our skies and various asteroids passing by Earth interplanetary dust. Although these objects may be -- some of which are already known, some of which “small” compared to the planets of our solar system, will be discovered “in the act” -- and there will also be they are nevertheless of high interest and importance various asteroids of the main asteroid belt that are visible for several reasons, including: as well as “occultations” of stars by various asteroids visible from certain locations on Earth’s surface. Ice a) they are believed to be the “leftovers” from the and Stone 2020 will make note of these occasions and formation of the solar system, so studying them provides appearances as they take place. The “Comet Resource valuable insights into our origins, including Earth and of Center” at the Earthrise web site contains information life on Earth, including ourselves; about the brighter comets that are visible in the sky at any given time and, for those who are interested, I will b) we have learned that this process isn’t over yet, and also occasionally share information about the goings-on that there are still objects out there that can impact in my life as I observe these comets.
    [Show full text]
  • The New Heliophysics Division Template
    NASA Heliophysics Division Update Heliophysics Advisory Committee October 1, 2019 Dr. Nicola J. Fox Director, Heliophysics Division Science Mission Directorate 1 The Dawn of a New Era for Heliophysics Heliophysics Division (HPD), in collaboration with its partners, is poised like never before to -- Explore uncharted territory from pockets of intense radiation near Earth, right to the Sun itself, and past the planets into interstellar space. Strategically combine research from a fleet of carefully-selected missions at key locations to better understand our entire space environment. Understand the interaction between Earth weather and space weather – protecting people and spacecraft. Coordinate with other agencies to fulfill its role for the Nation enabling advances in space weather knowledge and technologies Engage the public with research breakthroughs and citizen science Develop the next generation of heliophysicists 2 Decadal Survey 3 Alignment with Decadal Survey Recommendations NASA FY20 Presidential Budget Request R0.0 Complete the current program Extended operations of current operating missions as recommended by the 2017 Senior Review, planning for the next Senior Review Mar/Apr 2020; 3 recently launched and now in primary operations (GOLD, Parker, SET); and 2 missions currently in development (ICON, Solar Orbiter) R1.0 Implement DRIVE (Diversify, Realize, Implemented DRIVE initiative wedge in FY15; DRIVE initiative is now Integrate, Venture, Educate) part of the Heliophysics R&A baseline R2.0 Accelerate and expand Heliophysics Decadal recommendation of every 2-3 years; Explorer mission AO Explorer program released in 2016 and again in 2019. Notional mission cadence will continue to follow Decadal recommendation going forward. Increased frequency of Missions of Opportunity (MO), including rideshares on IMAP and Tech Demo MO.
    [Show full text]
  • Water on the Moon, III. Volatiles & Activity
    Water on The Moon, III. Volatiles & Activity Arlin Crotts (Columbia University) For centuries some scientists have argued that there is activity on the Moon (or water, as recounted in Parts I & II), while others have thought the Moon is simply a dead, inactive world. [1] The question comes in several forms: is there a detectable atmosphere? Does the surface of the Moon change? What causes interior seismic activity? From a more modern viewpoint, we now know that as much carbon monoxide as water was excavated during the LCROSS impact, as detailed in Part I, and a comparable amount of other volatiles were found. At one time the Moon outgassed prodigious amounts of water and hydrogen in volcanic fire fountains, but released similar amounts of volatile sulfur (or SO2), and presumably large amounts of carbon dioxide or monoxide, if theory is to be believed. So water on the Moon is associated with other gases. Astronomers have agreed for centuries that there is no firm evidence for “weather” on the Moon visible from Earth, and little evidence of thick atmosphere. [2] How would one detect the Moon’s atmosphere from Earth? An obvious means is atmospheric refraction. As you watch the Sun set, its image is displaced by Earth’s atmospheric refraction at the horizon from the position it would have if there were no atmosphere, by roughly 0.6 degree (a bit more than the Sun’s angular diameter). On the Moon, any atmosphere would cause an analogous effect for a star passing behind the Moon during an occultation (multiplied by two since the light travels both into and out of the lunar atmosphere).
    [Show full text]
  • A Hybrid Electrostatic Retarding Potential Analyzer for the Measurement of Plasmas at Extremely High Energy Resolution
    A hybrid electrostatic retarding potential analyzer for the measurement of plasmas at extremely high energy resolution Cite as: Rev. Sci. Instrum. 89, 113306 (2018); https://doi.org/10.1063/1.5048926 Submitted: 18 July 2018 . Accepted: 25 October 2018 . Published Online: 20 November 2018 Glyn A. Collinson , Dennis J. Chornay, Alex Glocer, Nick Paschalidis, and Eftyhia Zesta ARTICLES YOU MAY BE INTERESTED IN Singly charged ion source designed using three-dimensional particle-in-cell method Review of Scientific Instruments 89, 113302 (2018); https://doi.org/10.1063/1.5049401 Using a direct current (DC) glow discharge electrode as a non-invasive impedance probe for measuring electron density Review of Scientific Instruments 89, 113505 (2018); https://doi.org/10.1063/1.5033329 A nozzle for high-density supersonic gas jets at elevated temperatures Review of Scientific Instruments 89, 113114 (2018); https://doi.org/10.1063/1.5051586 Rev. Sci. Instrum. 89, 113306 (2018); https://doi.org/10.1063/1.5048926 89, 113306 © 2018 Author(s). REVIEW OF SCIENTIFIC INSTRUMENTS 89, 113306 (2018) A hybrid electrostatic retarding potential analyzer for the measurement of plasmas at extremely high energy resolution Glyn A. Collinson,1,2,a) Dennis J. Chornay,1,3 Alex Glocer,1 Nick Paschalidis,1 and Eftyhia Zesta1 1Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, USA 2Institute for Astrophysics and Computational Sciences, The Catholic University of America, Washington, District of Columbia 20064, USA 3University of Maryland College Park, 7403 Hopkins Avenue, College Park, Maryland 20742, USA (Received 18 July 2018; accepted 25 October 2018; published online 20 November 2018) Many space plasmas (especially electrons generated in planetary ionospheres) exhibit fine-detailed structures that are challenging to fully resolve with the energy resolution of typical space plasma analyzers (10% ! 20%).
    [Show full text]
  • Index to JRASC Volumes 61-90 (PDF)
    THE ROYAL ASTRONOMICAL SOCIETY OF CANADA GENERAL INDEX to the JOURNAL 1967–1996 Volumes 61 to 90 inclusive (including the NATIONAL NEWSLETTER, NATIONAL NEWSLETTER/BULLETIN, and BULLETIN) Compiled by Beverly Miskolczi and David Turner* * Editor of the Journal 1994–2000 Layout and Production by David Lane Published by and Copyright 2002 by The Royal Astronomical Society of Canada 136 Dupont Street Toronto, Ontario, M5R 1V2 Canada www.rasc.ca — [email protected] Table of Contents Preface ....................................................................................2 Volume Number Reference ...................................................3 Subject Index Reference ........................................................4 Subject Index ..........................................................................7 Author Index ..................................................................... 121 Abstracts of Papers Presented at Annual Meetings of the National Committee for Canada of the I.A.U. (1967–1970) and Canadian Astronomical Society (1971–1996) .......................................................................168 Abstracts of Papers Presented at the Annual General Assembly of the Royal Astronomical Society of Canada (1969–1996) ...........................................................207 JRASC Index (1967-1996) Page 1 PREFACE The last cumulative Index to the Journal, published in 1971, was compiled by Ruth J. Northcott and assembled for publication by Helen Sawyer Hogg. It included all articles published in the Journal during the interval 1932–1966, Volumes 26–60. In the intervening years the Journal has undergone a variety of changes. In 1970 the National Newsletter was published along with the Journal, being bound with the regular pages of the Journal. In 1978 the National Newsletter was physically separated but still included with the Journal, and in 1989 it became simply the Newsletter/Bulletin and in 1991 the Bulletin. That continued until the eventual merger of the two publications into the new Journal in 1997.
    [Show full text]
  • Moore Et Al., 1977
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 98, NO. E2, PAGES 3413-3429, FEBRUARY 25, 1993 SOIL TEXTURE AND GRANULOMETRY AT THE SURFACE OF MARS Audouin Dollfus and Marc Deschamps Observatoire de Paris, Meudon, France James R. Zimbelman Center for Earth and Planetary Sciences, National Air and Space Museum Smithsonian Institution, Washington, D. C. The physical behavior of the Martian surface soil has been characterized remotely by both photopolarimetry and radiometry. The degree of linear polarization defines a coefficient b which is related to the top surface soil texture and is calibrated in terms of grain size, or as a fraction of the area exhibiting uncovered clean rocks. This coefficient b was recorded with the instrument VPM (Visual Polarimeter Mars) on board Soviet orbiter MARS 5 in 1974. The radiometric thermal inertia coefficient I is essentially a measurement of the soil compaction, or an effective average particle size in the soil texture, through the few decimeters below the top surface sensed by polarimetry. The instrument IBTM (Infra Bed Thermal Mapper) was used on board the Viking spacecraft between 1976 and 1982. The polarimetric scans raked a strip covering two contrasting regions, the dark-hued Mare Erythraeum and the light-hued Thaumasia. Over these wide areas, several smaller typical terrains were characterized by the three parameters A (albedo), b (related to top surface grain size) and I (underlaying compaction or block size). The large dark region Erythraeum is characterized everywhere by a uniform polarization response, despite the large geomorphological diversity of the surface. The values of A and b indicate a ubiquitous coating or mantling with small dark grains of albedo 12.7%, with a radius of 10 to 20 urn.
    [Show full text]
  • Communications in Observations
    ISSN 0917-7388 COMMUNICATIONS IN CMO Since 1986 MARS No.378 25 November 2010 OBSERVATIONS No.04 PublishedbytheInternational Society of the Mars Observers Audouin Charles DOLLFUS, 1924-2010 By Richard McKIM ith the death of Audouin Dollfus W(Figure 1), a few weeks prior to his 86th birthday, planetary astronomy has lost one of its greatest exponents. He was born in Paris on 1924 November 12, son of famous balloonist and airship pilot Charles Dollfus. Later, Audouin would set several world records for balloon flights. At age 14 he made himself a small refractor, and by 1943 a 20 cm Newtonian reflector. Despite few meters stood Gabrielle Flammarion, E‐M. wartime restrictions he was also able to ob‐ Antoniadi, F. Baldet, A. Danjon, G. de serve with the instruments of the observatory Vaucouleurs and many other planetary ob‐ of the Société astronomique de France at the servers whose names have passed into histo‐ Sorbonne, where his mentor was Romanian ry. Within a year the German occupation amateur and fellow University student Jean would be over. Fifty years later I stood in the Dragesco. same spot with Dollfus and Juvisy’s curator One day in the summer of 1943 there as‐ Jacques Pernet when we inspected the prepa‐ sembled a galaxy of French astronomers at rations being made to preserve this famous the graveside of SAF founder Camille butbythenrun‐down estate. During his Flammarion, for the annual celebration of the Presidency of the SAF in the 1980s, Dollfus life of that great populariser. Dollfus was in had started the restoration ball rolling, and goodcompanyatJuvisythatday:withina this year Flammarion’s famous telescope will Ser3-0049 CMO No.
    [Show full text]
  • Cassini Mission Science Report – ISS
    Volume 1: Cassini Mission Science Report – ISS Carolyn Porco, Robert West, John Barbara, Nicolas Cooper, Anthony Del Genio, Tilmann Denk, Luke Dones, Michael Evans, Matthew Hedman, Paul Helfenstein, Andrew Ingersoll, Robert Jacobson, Alfred McEwen, Carl Murray, Jason Perry, Thomas Roatsch, Peter Thomas, Matthew Tiscareno, Elizabeth Turtle Table of Contents Executive Summary ……………………………………………………………………………………….. 1 1 ISS Instrument Summary …………………………………………………………………………… 2 2 Key Objectives for ISS Instrument ……………………………………………………………… 4 3 ISS Science Assessment …………………………………………………………………………….. 6 4 ISS Saturn System Science Results …………………………………………………………….. 9 4.1 Titan ………………………………………………………………………………………………………………………... 9 4.2 Enceladus ………………………………………………………………………………………………………………… 11 4 3 Main Icy Satellites ……………………………………………………………………………………………………. 16 4.4 Satellite Orbits & Orbital Evolution…………………………………………………….……………………. 21 4.5 Small Satellites ……………………………………………………………………………………………………….. 22 4.6 Phoebe and the Irregular Satellites ………………………………………………………………………… 23 4.7 Saturn ……………………………………………………………………………………………………………………. 25 4.8 Rings ………………………………………………………………………………………………………………………. 28 4.9 Open Questions for Saturn System Science ……………………………………………………………… 33 5 ISS Non-Saturn Science Results …………………………………………………………………. 41 5.1 Jupiter Atmosphere and Rings………………………………………………………………………………… 41 5.2 Jupiter/Exoplanet Studies ………………………………………………………………………………………. 43 5.3 Jupiter Satellites………………………………………………………………………………………………………. 43 5.4 Open Questions for Non-Saturn Science ………………………………………………………………….
    [Show full text]
  • Design and Optimization of a High-Time-Resolution Magnetic Plasma Analyzer (MPA)
    applied sciences Article Design and Optimization of a High-Time-Resolution Magnetic Plasma Analyzer (MPA) Benjamin Criton 1,*,† , Georgios Nicolaou 1,2 and Daniel Verscharen 1,3 1 Mullard Space Science Laboratory, Department of Space and Climate Physics, University College London, Dorking, Surrey RH5 6NT, UK; [email protected] (G.N.); [email protected] (D.V.) 2 Southwest Research Institute, San Antonio, TX 78238, USA 3 Space Science Center, University of New Hampshire, Durham, NH 03824, USA * Correspondence: [email protected] † Current address: IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France. Received: 3 November 2020; Accepted: 24 November 2020; Published: 27 November 2020 Featured Application: This instrument concept is designed to analyze plasma onboard scientific spacecraft. Its measurements allow the construction of the velocity distribution functions of protons and a-particles with high cadence to understand the small-scale kinetic processes in space plasmas. Abstract: In-situ measurements of space plasma throughout the solar system require high time resolution to understand the plasma’s kinetic fine structure and evolution. In this context, research is conducted to design instruments with the capability to acquire the plasma velocity distribution and its moments with high cadence. We study a new instrument design, using a constant magnetic field generated by two permanent magnets, to analyze solar wind protons and a-particles with high time resolution. We determine the optimal configuration of the instrument in terms of aperture size, sensor position, pixel size and magnetic field strength. We conduct this analysis based on analytical calculations and SIMION simulations of the particle trajectories in our instrument.
    [Show full text]
  • Theory and Application of the Negative Branch of Polarization For
    THEORY AND APPLICATION OF THE NEGATIVE BRANCH OF POLARIZATION FOR AIRLESS PLANETARY OBJECTS, Audouin Dollfus, Observatoire de Paris, 92190 Meudon, FRANCE, and Milo Wolff, Technotran, 1600 Nelson Avenue, Manhattan Beach, CA. 90266, USA. The light which is reflected at the rough or powdered surface of a solid body emerges partially ~olarized.The polarization curve versus phase angle display towards the small phase angles a negative branch which characterizes the rough surface, because the negative polarization mechanism involves multiple reflection between the particles. Varying the phase angle causes both the singly-ref lected and the doubly-ref lected light paths to probe the intricacies of the three-dimensional particle surface. Accordingly, the shape of the negative branch is a result of the structure of the surface material. The theory developed by M. Wolff (1975) (1980) accounts for the polariza- tion produced as a function of phase angle, in terms of simple physical processes; it involves three parameters which are the two refractive indexes MR and MI and the fraction EXT of the surface which produces a directly reflected light. The theory is compared with laboratory measurements on a large variety of terrestrial, meteoritic, lunar and artificial samples (cf. Dollfus and Geake, 1975) . a) A computation of the minimum polarization Pmin versus reflectance R shows a double valued function of the imaginary index MI. When MI is large, the "region of metallic reflection" describes in principle metallic powders; it is approximatively matched by Aluminium powders produced by filings; the other metallic powders measured have an albedo lower than computed, however. When MI is small, a "region of diffuse reflection" is occupied by silicates, glasses, chondrites and other semi-transparent materials; it is also occupied by most asteroids, moons and airless planets.
    [Show full text]
  • De 1999 À 2020 L'astronomie Volume 114 - Année 1999 Index Par Auteurs
    INDEX de 1999 à 2020 L'Astronomie volume 114 - Année 1999 index par auteurs AUTEURS TITRE N° Page Agati JL, Mauroy P Commission des étoiles doubles : réunion du 7/3/1998 1 26 Alhalel T Le mouvement lunaire 6 172 Arioli H Observation de l'éclipse à Amasya (Turquie) 12 360 Artzner G Le soleil en relief 12 377 Bacchus P Visite à la REOSC 1 28 Baudin F, Koutchmy S L'éclipse du 11 août 1999 et la couronne 12 326 Commission des étoiles doubles, Strasbourg 29 et 30 Bonneau D, Morlet G, Salaman M 6 194 08/1998 Borra EF Télescopes à miroir liquide 7 212 Boust D L'éclipse totale au Cap de la Hague 12 362 Chapelet M L'essaim des Léonides en Novembre 1999 10 270 Chappelet J Un cadran solaire scolaire 10 260 Coué P Les sondes japonaises dans le système solaire 3 46 Coué P Retour sur la Lune 7 220 Coué P Le 50 ème Congrès de l'IAF 11 293 Courdurié C, Thiot A Commission du Soleil : réunion du 21 novembre 1998 5 152 Davoust E L'oeuvre de Jean Rösch au Pic-du-Midi 11 312 Dawidowicz G Cartographie de Mars : La phase complète a commencé 3 42 Dawidowicz G Eclipses de Soleil sur Mars 11 278 Debackere, Martel, Lancelot Ils ont vécu l'éclipse ...Ils la racontent 2 12 345 Débarbat S Cassini et ses découvertes dans le système de Saturne 10 248 Débarbat S Eclipses totales de Soleil en Europe depuis le XV ème s 5 128 Delahaye F Expérience radioastronomique 12 356 Dollfus A Observation de Mars avec la Grande Lunette de Meudon 7 230 Dumont R La France, les femmes et l'astronomie 1 22 Dumont S, Dumont R Anniversaires astronomiques 1 2 ESA Mission Cassini-Huygens ..dernières
    [Show full text]