Design and Optimization of a High-Time-Resolution Magnetic Plasma Analyzer (MPA)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Program Book Update
15th Annual International Astrophysics Conference Cape Coral, FL – April 3-8, 2016 AGENDA SUNDAY, APRIL 3 5:00 PM – 8:00 PM Registration – Tarpon Terrace 6:00 PM – 9:00 PM Welcome Reception - Tarpon Terrace MONDAY, APRIL 4 7:00 AM - 5:00 PM Registration – Grandville Ballroom 8:00 AM – 6:00 PM GENERAL SESSION – Grandville Ballroom CHAIR: Zank 7:45 AM - 8:00 AM GARY ZANK WELCOME 8:00 AM - 8:25 AM Chen, Bin Particle Acceleration by a Solar Flare Termination Shock 8:25 AM - 8:50 AM Bucik, Radoslav Large-scale Coronal Waves in 3He-rich Solar Energetic Particle Events Element Abundances and Source Plasma Temperatures of 8:50 AM - 9:15 AM Reames, Donald Solar Energetic Particles 9:15 AM - 9:40 AM Manchester, Ward Simulating CME-Driven Shocks and Implications for SEPs STEREO and ACE SEP Science- Transforming Space Weather 9:40 AM - 10:05 AM Luhmann, Janet Prospects 10:05 AM - 10:30 AM Morning Break - Ballroom Foyer CHAIR: Zirnstein 11 years of ENA imaging with Cassini/INCA and in-situ ion Voyager1 & 10:30 AM - 10:55 AM Krimigis, Stamatios 2/LECP measurements Investigating the Heliospheric Boundary at Energies down to 10eV with 10:55 AM - 11:20 AM Wurz, Peter Neutral Atom Imaging by IBEX. In-situ and Remote Sensing Studies of Solar Wind Origin and 11:20 AM - 11:45 AM Landi, Enrico Acceleration The Sun’s Dynamic Influence on the Outer Heliosphere, the Heliosheath, 11:45 AM - 12:10 PM Intriligator, Devrie and the Local Interstellar Medium 12:10 PM – 1:30 PM Lunch Break – Ballroom Foyer CHAIR: Fichtner 1:30 PM - 1:55 PM McNutt, Ralph Making Interstellar -
Spaceflight a British Interplanetary Society Publication
SpaceFlight A British Interplanetary Society publication Volume 61 No.2 February 2019 £5.25 Sun-skimmer phones home Rolex in space Skyrora soars ESA uploads 02> to the ISS 634089 From polar platform 770038 to free-flier 9 CONTENTS Features 18 Satellites, lightning trackers and space robots Space historian Gerard van de Haar FBIS has researched the plethora of European payloads carried to the International Space Station by SpaceX Dragon capsules. He describes the wide range of scientific and technical experiments 4 supporting a wide range of research initiatives. Letter from the Editor 24 In search of a role Without specific planning, this Former scientist and spacecraft engineer Dr Bob issue responds to an influx of Parkinson MBE, FBIS takes us back to the news about unmanned space vehicles departing, dying out and origins of the International Space Station and arriving at their intended explains his own role in helping to bring about a destinations. Pretty exciting stuff British contribution – only to see it migrate to an – except the dying bit because it unmanned environmental monitoring platform. appears that Opportunity, roving around Mars for more than 14 30 Shake, rattle and Rolex 18 years, has finally succumbed to a On the 100th anniversary of the company’s birth, global dust storm. Philip Corneille traces the international story Some 12 pages of this issue are behind a range of Rolex watches used by concerned with aspects of the astronauts and cosmonauts in training and in International Space Station, now well into its stride as a research space, plus one that made it to the Moon. -
(ISIS): Design of the Energetic Particle Investigation
Space Sci Rev (2016) 204:187–256 DOI 10.1007/s11214-014-0059-1 Integrated Science Investigation of the Sun (ISIS): Design of the Energetic Particle Investigation D.J. McComas · N. Alexander · N. Angold · S. Bale · C. Beebe · B. Birdwell · M. Boyle · J.M. Burgum · J.A. Burnham · E.R. Christian · W.R. Cook · S.A. Cooper · A.C. Cummings · A.J. Davis · M.I. Desai · J. Dickinson · G. Dirks · D.H. Do · N. Fox · J. Giacalone · R.E. Gold · R.S. Gurnee · J.R. Hayes · M.E. Hill · J.C. Kasper · B. Kecman · J. Klemic · S.M. Krimigis · A.W. Labrador · R.S. Layman · R.A. Leske · S. Livi · W.H. Matthaeus · R.L. McNutt Jr · R.A. Mewaldt · D.G. Mitchell · K.S. Nelson · C. Parker · J.S. Rankin · E.C. Roelof · N.A. Schwadron · H. Seifert · S. Shuman · M.R. Stokes · E.C. Stone · J.D. Vandegriff · M. Velli · T.T. von Rosenvinge · S.E. Weidner · M.E. Wiedenbeck · P. Wilson IV Received: 21 February 2014 / Accepted: 16 June 2014 / Published online: 5 July 2014 © The Author(s) 2014. This article is published with open access at Springerlink.com Abstract The Integrated Science Investigation of the Sun (ISIS) is a complete science in- vestigation on the Solar Probe Plus (SPP) mission, which flies to within nine solar radii of the Sun’s surface. ISIS comprises a two-instrument suite to measure energetic parti- D.J. McComas (B) · N. Alexander · N. Angold · C. Beebe · B. Birdwell · M.I. Desai · J. Dickinson · G. Dirks · S. Livi · S.E. Weidner · P. -
Unser Sonnensystem
Deutsches Zentrum für Luft- und Raumfahrt e.V. Institut für Planetenforschung UNSER SONNENSYSTEM Kurzer Überblick über die Körper unseres Sonnensystems und deren Erkundung mit Raumsonden zusammengestellt von Susanne Pieth und Ulrich Köhler Regional Planetary Image Facility Direktor: Prof. Dr. Ralf Jaumann Datenmanager: Susanne Pieth 2017, 4., aktualisierte und erweiterte Auflage INHALT 3 Geleitwort 5 Exploration des Sonnensystems mit Raumsonden 11 Sonnensystem und vergleichende Planetologie 17 Sonne 21 Merkur 25 Venus 29 Erde-Mond-System 41 Mars 47 Asteroiden 55 Jupiter 61 Saturn 69 Uranus 73 Neptun 77 Kuipergürtel und Zwergplaneten 85 Kometen 93 Planetenentstehung und Leben 97 Extrasolare Planeten Anhang 100 Übersicht über die Missionen im Sonnensystem Impressum 119 Wie komme ich an Bilddaten? Herausgeber: Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR) Institut für Planetenforschung Regional Planetary Image Facility Die Texte entstanden unter Mitwirkung von Dr. Manfred Gaida, Anschrift: Dr. Christian Gritzner, Prof. Dr. Alan Harris, Ernst Hauber, Dr. Rutherfordstr. 2, 12489 Berlin Jörn Helbert, Prof. Dr. Harald Hiesinger, Dr. Hauke Hußmann, Telefon + 49 (030) 67055-333 Prof. Dr. Ralf Jaumann, Dr. Ekkehard Kührt, Dr. René Laufer, E-Mail [email protected] Dr. Stefano Mottola, Prof. Dr. Jürgen Oberst, Dr. Katharina DLR.de/rpif/ Otto, Dr. Ana-Catalina Plesa, Dr. Frank Sohl, Prof. Dr. Tilman Spohn, Dr. Alexander Stark, Dr. Katrin Stephan, Dr. Daniela Titelbild: DLR (CC-BY 3.0) Tirsch, Dr. Ruth Titz-Weider und Dr. Roland Wagner. Geleitwort GELEITWORT Eine Reise durch das Sonnensystem In der Natur von Forschung liegt es, dass mit jedem gelösten Rätsel neue Fragen aufgeworfen werden. Wie entstand das Leben auf der Im Jahr 1610 richtete Galileo Galilei zum ersten Mal den Blick durch Erde? Kommt es von einem anderen Himmelskörper oder wäre hö- ein Fernrohr auf die Gestirne – und entdeckte wahrlich „Revo- her entwickeltes Leben auf der Erde ohne den großen Mond denn lutionäres“. -
Solar Probe Plus (SPP)
Pre-decisional – For NASA Internal Use Only Solar Probe Plus (SPP) Committee on Solar and Space Physics 5 October 2016 Joe Smith Program Executive NASA Headquarters 5 October 2016 1 Solar Probe Plus (SPP) Overview Using in-situ measurements made closer to the Sun than by any previous spacecraft, SPP will determine the mechanisms that produce the fast and slow solar winds, coronal heating, and the transport of energetic particles. Solar Probe Plus will fly to less than 10 solar radii (Rs) of the Sun, having “walked in” from 35 Rs over 24 orbits. Milestones • Sponsor: NASA/GSFC LWS Pre-Phase A: 07/2008 – 11/2009 • LWS Program Manager – Nick Chrissotimos GSFC • LWS Deputy Program Manager – Mark Goans, GSFC Phase A: 12/2009 – 01/2012 • Project Manager – Andy Driesman, APL Phase B: 02/2012 – 03/2014 • Project Scientist – Nicky Fox, APL Phase C/D: 03/2014 – 09/2018 • Spacecraft Development/Operations – APL LRD: 31 July 2018 • Investigations selected by AO: • FIELDS – University of California Phase E: 10/2018 – 09/2025 • ISIS – Princeton University/SwRI • SWEAP – Smithsonian Astrophysical Obs Management Commitment: $1,366M • WISPR – Naval Research Laboratory Category 1, Risk Classification B • HelioOrigins – Jet Propulsion Laboratory 5 October 2016 Solar Probe Plus CSSP 2 50 years into the space age and we still don’t understand the corona and solar wind . The concept for a “Solar Probe” dates back to “Simpson’s Committee” of the Space Science Board (National Academy of Sciences, 24 October 1958) ‒ The need for extraordinary knowledge of Sun from remote observations, theory, and modeling to answer the questions: – Why is the solar corona so much hotter than the photosphere? – How is the solar wind accelerated? . -
The New Heliophysics Division Template
NASA Heliophysics Division Update Heliophysics Advisory Committee October 1, 2019 Dr. Nicola J. Fox Director, Heliophysics Division Science Mission Directorate 1 The Dawn of a New Era for Heliophysics Heliophysics Division (HPD), in collaboration with its partners, is poised like never before to -- Explore uncharted territory from pockets of intense radiation near Earth, right to the Sun itself, and past the planets into interstellar space. Strategically combine research from a fleet of carefully-selected missions at key locations to better understand our entire space environment. Understand the interaction between Earth weather and space weather – protecting people and spacecraft. Coordinate with other agencies to fulfill its role for the Nation enabling advances in space weather knowledge and technologies Engage the public with research breakthroughs and citizen science Develop the next generation of heliophysicists 2 Decadal Survey 3 Alignment with Decadal Survey Recommendations NASA FY20 Presidential Budget Request R0.0 Complete the current program Extended operations of current operating missions as recommended by the 2017 Senior Review, planning for the next Senior Review Mar/Apr 2020; 3 recently launched and now in primary operations (GOLD, Parker, SET); and 2 missions currently in development (ICON, Solar Orbiter) R1.0 Implement DRIVE (Diversify, Realize, Implemented DRIVE initiative wedge in FY15; DRIVE initiative is now Integrate, Venture, Educate) part of the Heliophysics R&A baseline R2.0 Accelerate and expand Heliophysics Decadal recommendation of every 2-3 years; Explorer mission AO Explorer program released in 2016 and again in 2019. Notional mission cadence will continue to follow Decadal recommendation going forward. Increased frequency of Missions of Opportunity (MO), including rideshares on IMAP and Tech Demo MO. -
David J. Mccomas - Refereed Publications
David J. McComas - Refereed Publications 1982 1. McComas, D.J. and S.J. Bame, Radially Uniform Electron Source, Rev. of Sci. Instrum., 53, 1490-1491, 1982. 2. Feldman, W.C., S.J. Bame, S.P. Gary, J.T. Gosling, D.J. McComas, M.F. Thomsen, G. Paschmann, N. Sckopke, M.M. Hoppe, C.T. Russell, Electron Heating Within the Earth's Bowshock, Phys. Rev. Lett., 49, 199-201,1982. 1983 3. Feldman, W.C., R.C. Anderson, S.J. Bame, S.P. Gary, J.T. Gosling, D.J. McComas, M.F. Thomsen, G. Paschmann, M.M. Hoppe, Electron Velocity Distributions Near the Earth's Bowshock, J. Geophys. Res., 88, 96-110, 1983. 4. Bame, S.J., R.C. Anderson, J.R. Asbridge, D.N. Baker, W.C. Feldman, J.T. Gosling, E.W. Hones, Jr., D.J. McComas, R.D. Zwickl, Plasma Regimes in the Deep Geomagnetic Tail: ISEE-3, Geophys. Res. Lett., 10, 912-915, 1983. 1984 5. McComas, D.J. and S.J. Bame, Channel Multiplier Compatible MaterialsLifetime Tests, Rev. Sci. Inst., 55, 463-467, 1984. 6. Hones, Jr., E.W., D.N. Baker, S.J. Bame, W.C. Feldman, J.T. Gosling, D.J. McComas, R.D. Zwickl, J.A. Slavin., E.J. Smith, B.T. Tsurutani, Structure of the Magnetotail at 220RE its Response to Geomagnetic Activity, Geophys. Res. Lett., 11, 5-7, 1984. 7. Baker, D.N., S.J. Bame, W.C. Feldman, J.T. Gosling, P.R. Higbie, E.W. Hones, Jr., D.J. McComas, R.D. Zwickl, Correlated Dynamical Changes in the Near Earth and Distant Magnetotail Regions: ISEE-3, J. -
WISPR (Wide Field Imager for Solar Probe Plus)
WISPR (Wide Field Imager for Solar Probe Plus) V. Bothmer, R. A. Howard (WISPR PI), A. Vourlidas 22 May 2015 Solar Probe Plus A NASA Mission to Touch the Sun HELCATS First Annual Open Workshop What is Solar Probe Plus (SPP) . Goes to the last unexplored region of the solar system and enter the solar corona as close as 9.86 Rs . Will answer fundamental questions of Heliophysics: The heating of the solar corona The origin, structure and evolution of the solar wind Origin of solar energetic particles . Investigations: FIELDS: measurements of magnetic fields, AC/DC electric fields SWEAP: measurements of flux of electrons, protons and alphas ISIS: measurement of solar energetic particles WISPR: measurement of coronal structures Observatory Scientist HELCATS First Annual Open Workshop SPP Mission Scenario – Observations from 0.25 AU to 9.86 RS HELCATS First Annual Open Workshop 3 SPP Near Sun Perihel Passages Number of Perihel passages < 30 RS (0.14 AU): • First Perihel at 35 RS (0.16 AU) after 88 days • 24 Perihel-passages over the time periofd of 7 years after launch in July 2018 • 1000 hrs of measurements at distances < 20 RS Ref.: NASA STDT HELCATS First Annual Open Workshop 4 Solar Probe Plus Encounter Portion of the Orbit 9.86 Rs HELCATS First Annual Open Workshop Figure 4.2 – Encounter Pass Geometry and Timeline The Deep Space Network (DSN) will be used to communicate with the SPP observatory and collect data required for navigation. Mission operations will be conducted at APL from a single Mission Operations Center (MOC), located at the Johns Hopkins University Applied Physics Laboratory (JHU/APL) in Laurel, Maryland. -
Parker Solar Probe Project Scientist JHU/Applied Physics Laboratory Parker Solar Probe
The Coolest, Hottest Mission under the Sun!! Dr. Nicola J. Fox Parker Solar Probe Project Scientist JHU/Applied Physics Laboratory Parker Solar Probe A NASA Mission to Touch the Sun We are PARKER SOLAR PROBE! Parker, meet Parker December 12, 2017 Parker Solar Probe– Fall AGU 2017 Why haven’t we gone to the Sun yet? It took the same technological leap from a rotary phone to an iPhone X for Parker Solar Probe to become a reality December 12, 2017 Parker Solar Probe– Fall AGU 2017 Parker Solar Probe Science . To determine the structure and dynamics of the Sun’s coronal magnetic field, understand how the solar corona and wind are heated and accelerated, and determine what mechanisms accelerate and transport energetic particles. Detailed Science Objectives • Trace the flow of energy that heats and accelerates the solar corona and solar wind. • Determine the structure and dynamics of the plasma and magnetic fields at the sources of the solar wind. • Explore mechanisms that accelerate and transport energetic particles. November 16, 2017 Parker Solar Probe Mission Briefing Modeling: Providing the missing piece . In-situ data from within 0.25 AU will be available Manchester 2014 shortly after each orbit for ingestion into the coronal, solar wind and global heliospheric models . PSP would also benefit invaluably from knowing the mapping between the spacecraft and the solar surface though each orbit . Global simulations of CMEs would provide critical context when we fly through CMEs . Contact [email protected] or [email protected] Baker -
Parker Solar Probe Through the First Two Solar Orbits
30th Annual Thermal & Fluids Analysis Workshop TFAWS 2019, 26-30 August 2019 Newport News, VA Post-Launch and Early Mission Thermal Performance of Parker Solar Probe through the First Two Solar Orbits TFAWS19-AT-07 Carl J Ercol [email protected] G. Allan Holtzman Parker Solar Probe [email protected] A NASA Mission to Touch the Sun 30th Annual Thermal & Fluids Analysis Workshop 26-30 August 2019, Newport News, VA Parker Solar Probe Mission Summary Overview Using in-situ measurements made closer to the Sun than by any previous spacecraft, Parker Solar Probe (PSP) will determine the mechanisms that produce the fast and slow solar winds, coronal heating, and the transport of energetic particles. PSP will fly to 9.86 solar radii (Rs) of the Sun, having “walked in” from 35.7 Rs over 24 orbits, two of which have been completed to date. Sponsor: NASA SMD/Heliophysics Div Preliminary Mission Milestones • Program Office – GSFC/LWS • Project Scientist - APL Pre-Phase A: 07/2008 – 11/2009 • Project Management - APL Phase A: 12/2009 – 01/2012 • S/C Development & Operations – APL Phase B: 02/2012 – 03/2014 • Science Investigations selected by AO: Phase C/D: 03/2014 – 12/2018 • SWEAP - Smithsonian Astrophysical Observatory • FIELDS - UC Berkeley Phase E: 01/2019 – 09/2025 • WISPR - Naval Research Laboratory Launched: August 12, 2018, 07:31 UTC • ISʘIS – Southwest Research Institute 30th Annual Thermal & Fluids Analysis Workshop 26-30 August 2019, Newport News, VA Trajectory: 9.86Rs Minimum Perihelion . Launch 13-day launch period from Aug 11 to Aug 23, 2018 Maximum launch C3 of 154 km2/s2 S/C wet mass 685 kg Launch system: Delta-IVH Class + Star48 BV . -
MULTI-SCALE THERMAL and STRUCTURAL CHARACTERIZATION of CARBON FOAM for the PARKER SOLAR PROBE THERMAL PROTECTION SYSTEM by Eliza
MULTI-SCALE THERMAL AND STRUCTURAL CHARACTERIZATION OF CARBON FOAM FOR THE PARKER SOLAR PROBE THERMAL PROTECTION SYSTEM by Elizabeth Ann Congdon A dissertation submitted to the Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland February 2021 ABSTRACT Since the founding of the National Aeronautics and Space Administration (NASA), a top mission priority has been to study the Sun in situ. For sixty years, this mission remained just an aspiration of heliophysicists due to the inherent limitations of the engineering technology required to make the mission possible. One critical spacecraft element is the thermal protection system (TPS) or heat shield, a low mass self- supporting structure that required implementation of a structurally integral insulation sandwich panel. For this multifunctional sandwich panel approach to be successful, the thermal and structural properties of the main insulative core, carbon foam, needed to be understood to validate that the TPS could survive the launch loading and the extreme temperatures at its perihelion. An extensive test program including coupon, subscale and full-scale evaluation was undertaken to determine the properties of this low-density lattice and to compliment full-scale modeling. Candidate foams, ranging from 3% to 10% relative density, were evaluated using both the guarded hot plate method and thermal diffusivity methods for effective thermal conductivity. The effective thermal conductivity was primarily driven by solid conductivity around room temperature and shown to follow simple Gibson and Ashby predictions. At temperatures beyond 900°C, radiation was much more important and the test data diverged from the model. -
A Hybrid Electrostatic Retarding Potential Analyzer for the Measurement of Plasmas at Extremely High Energy Resolution
A hybrid electrostatic retarding potential analyzer for the measurement of plasmas at extremely high energy resolution Cite as: Rev. Sci. Instrum. 89, 113306 (2018); https://doi.org/10.1063/1.5048926 Submitted: 18 July 2018 . Accepted: 25 October 2018 . Published Online: 20 November 2018 Glyn A. Collinson , Dennis J. Chornay, Alex Glocer, Nick Paschalidis, and Eftyhia Zesta ARTICLES YOU MAY BE INTERESTED IN Singly charged ion source designed using three-dimensional particle-in-cell method Review of Scientific Instruments 89, 113302 (2018); https://doi.org/10.1063/1.5049401 Using a direct current (DC) glow discharge electrode as a non-invasive impedance probe for measuring electron density Review of Scientific Instruments 89, 113505 (2018); https://doi.org/10.1063/1.5033329 A nozzle for high-density supersonic gas jets at elevated temperatures Review of Scientific Instruments 89, 113114 (2018); https://doi.org/10.1063/1.5051586 Rev. Sci. Instrum. 89, 113306 (2018); https://doi.org/10.1063/1.5048926 89, 113306 © 2018 Author(s). REVIEW OF SCIENTIFIC INSTRUMENTS 89, 113306 (2018) A hybrid electrostatic retarding potential analyzer for the measurement of plasmas at extremely high energy resolution Glyn A. Collinson,1,2,a) Dennis J. Chornay,1,3 Alex Glocer,1 Nick Paschalidis,1 and Eftyhia Zesta1 1Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, USA 2Institute for Astrophysics and Computational Sciences, The Catholic University of America, Washington, District of Columbia 20064, USA 3University of Maryland College Park, 7403 Hopkins Avenue, College Park, Maryland 20742, USA (Received 18 July 2018; accepted 25 October 2018; published online 20 November 2018) Many space plasmas (especially electrons generated in planetary ionospheres) exhibit fine-detailed structures that are challenging to fully resolve with the energy resolution of typical space plasma analyzers (10% ! 20%).