A Hybrid Electrostatic Retarding Potential Analyzer for the Measurement of Plasmas at Extremely High Energy Resolution
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Unser Sonnensystem
Deutsches Zentrum für Luft- und Raumfahrt e.V. Institut für Planetenforschung UNSER SONNENSYSTEM Kurzer Überblick über die Körper unseres Sonnensystems und deren Erkundung mit Raumsonden zusammengestellt von Susanne Pieth und Ulrich Köhler Regional Planetary Image Facility Direktor: Prof. Dr. Ralf Jaumann Datenmanager: Susanne Pieth 2017, 4., aktualisierte und erweiterte Auflage INHALT 3 Geleitwort 5 Exploration des Sonnensystems mit Raumsonden 11 Sonnensystem und vergleichende Planetologie 17 Sonne 21 Merkur 25 Venus 29 Erde-Mond-System 41 Mars 47 Asteroiden 55 Jupiter 61 Saturn 69 Uranus 73 Neptun 77 Kuipergürtel und Zwergplaneten 85 Kometen 93 Planetenentstehung und Leben 97 Extrasolare Planeten Anhang 100 Übersicht über die Missionen im Sonnensystem Impressum 119 Wie komme ich an Bilddaten? Herausgeber: Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR) Institut für Planetenforschung Regional Planetary Image Facility Die Texte entstanden unter Mitwirkung von Dr. Manfred Gaida, Anschrift: Dr. Christian Gritzner, Prof. Dr. Alan Harris, Ernst Hauber, Dr. Rutherfordstr. 2, 12489 Berlin Jörn Helbert, Prof. Dr. Harald Hiesinger, Dr. Hauke Hußmann, Telefon + 49 (030) 67055-333 Prof. Dr. Ralf Jaumann, Dr. Ekkehard Kührt, Dr. René Laufer, E-Mail [email protected] Dr. Stefano Mottola, Prof. Dr. Jürgen Oberst, Dr. Katharina DLR.de/rpif/ Otto, Dr. Ana-Catalina Plesa, Dr. Frank Sohl, Prof. Dr. Tilman Spohn, Dr. Alexander Stark, Dr. Katrin Stephan, Dr. Daniela Titelbild: DLR (CC-BY 3.0) Tirsch, Dr. Ruth Titz-Weider und Dr. Roland Wagner. Geleitwort GELEITWORT Eine Reise durch das Sonnensystem In der Natur von Forschung liegt es, dass mit jedem gelösten Rätsel neue Fragen aufgeworfen werden. Wie entstand das Leben auf der Im Jahr 1610 richtete Galileo Galilei zum ersten Mal den Blick durch Erde? Kommt es von einem anderen Himmelskörper oder wäre hö- ein Fernrohr auf die Gestirne – und entdeckte wahrlich „Revo- her entwickeltes Leben auf der Erde ohne den großen Mond denn lutionäres“. -
The New Heliophysics Division Template
NASA Heliophysics Division Update Heliophysics Advisory Committee October 1, 2019 Dr. Nicola J. Fox Director, Heliophysics Division Science Mission Directorate 1 The Dawn of a New Era for Heliophysics Heliophysics Division (HPD), in collaboration with its partners, is poised like never before to -- Explore uncharted territory from pockets of intense radiation near Earth, right to the Sun itself, and past the planets into interstellar space. Strategically combine research from a fleet of carefully-selected missions at key locations to better understand our entire space environment. Understand the interaction between Earth weather and space weather – protecting people and spacecraft. Coordinate with other agencies to fulfill its role for the Nation enabling advances in space weather knowledge and technologies Engage the public with research breakthroughs and citizen science Develop the next generation of heliophysicists 2 Decadal Survey 3 Alignment with Decadal Survey Recommendations NASA FY20 Presidential Budget Request R0.0 Complete the current program Extended operations of current operating missions as recommended by the 2017 Senior Review, planning for the next Senior Review Mar/Apr 2020; 3 recently launched and now in primary operations (GOLD, Parker, SET); and 2 missions currently in development (ICON, Solar Orbiter) R1.0 Implement DRIVE (Diversify, Realize, Implemented DRIVE initiative wedge in FY15; DRIVE initiative is now Integrate, Venture, Educate) part of the Heliophysics R&A baseline R2.0 Accelerate and expand Heliophysics Decadal recommendation of every 2-3 years; Explorer mission AO Explorer program released in 2016 and again in 2019. Notional mission cadence will continue to follow Decadal recommendation going forward. Increased frequency of Missions of Opportunity (MO), including rideshares on IMAP and Tech Demo MO. -
Design and Optimization of a High-Time-Resolution Magnetic Plasma Analyzer (MPA)
applied sciences Article Design and Optimization of a High-Time-Resolution Magnetic Plasma Analyzer (MPA) Benjamin Criton 1,*,† , Georgios Nicolaou 1,2 and Daniel Verscharen 1,3 1 Mullard Space Science Laboratory, Department of Space and Climate Physics, University College London, Dorking, Surrey RH5 6NT, UK; [email protected] (G.N.); [email protected] (D.V.) 2 Southwest Research Institute, San Antonio, TX 78238, USA 3 Space Science Center, University of New Hampshire, Durham, NH 03824, USA * Correspondence: [email protected] † Current address: IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France. Received: 3 November 2020; Accepted: 24 November 2020; Published: 27 November 2020 Featured Application: This instrument concept is designed to analyze plasma onboard scientific spacecraft. Its measurements allow the construction of the velocity distribution functions of protons and a-particles with high cadence to understand the small-scale kinetic processes in space plasmas. Abstract: In-situ measurements of space plasma throughout the solar system require high time resolution to understand the plasma’s kinetic fine structure and evolution. In this context, research is conducted to design instruments with the capability to acquire the plasma velocity distribution and its moments with high cadence. We study a new instrument design, using a constant magnetic field generated by two permanent magnets, to analyze solar wind protons and a-particles with high time resolution. We determine the optimal configuration of the instrument in terms of aperture size, sensor position, pixel size and magnetic field strength. We conduct this analysis based on analytical calculations and SIMION simulations of the particle trajectories in our instrument. -
Beyond Earth a CHRONICLE of DEEP SPACE EXPLORATION, 1958–2016
Beyond Earth A CHRONICLE OF DEEP SPACE EXPLORATION, 1958–2016 Asif A. Siddiqi Beyond Earth A CHRONICLE OF DEEP SPACE EXPLORATION, 1958–2016 by Asif A. Siddiqi NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Office of Communications NASA History Division Washington, DC 20546 NASA SP-2018-4041 Library of Congress Cataloging-in-Publication Data Names: Siddiqi, Asif A., 1966– author. | United States. NASA History Division, issuing body. | United States. NASA History Program Office, publisher. Title: Beyond Earth : a chronicle of deep space exploration, 1958–2016 / by Asif A. Siddiqi. Other titles: Deep space chronicle Description: Second edition. | Washington, DC : National Aeronautics and Space Administration, Office of Communications, NASA History Division, [2018] | Series: NASA SP ; 2018-4041 | Series: The NASA history series | Includes bibliographical references and index. Identifiers: LCCN 2017058675 (print) | LCCN 2017059404 (ebook) | ISBN 9781626830424 | ISBN 9781626830431 | ISBN 9781626830431?q(paperback) Subjects: LCSH: Space flight—History. | Planets—Exploration—History. Classification: LCC TL790 (ebook) | LCC TL790 .S53 2018 (print) | DDC 629.43/509—dc23 | SUDOC NAS 1.21:2018-4041 LC record available at https://lccn.loc.gov/2017058675 Original Cover Artwork provided by Ariel Waldman The artwork titled Spaceprob.es is a companion piece to the Web site that catalogs the active human-made machines that freckle our solar system. Each space probe’s silhouette has been paired with its distance from Earth via the Deep Space Network or its last known coordinates. This publication is available as a free download at http://www.nasa.gov/ebooks. ISBN 978-1-62683-043-1 90000 9 781626 830431 For my beloved father Dr. -
Electrostatic Analyzers with Application to Electric Propulsion Testing
Electrostatic Analyzers with Application to Electric Propulsion Testing IEPC-2013-300 Presented at the 33rd International Electric Propulsion Conference, The George Washington University • Washington, D.C. • USA October 6 – 10, 2013 Casey C. Farnell1 and Cody C. Farnell2 Colorado State University, Fort Collins, CO 80523, USA Plasma Controls, LLC, Fort Collins, CO 80526, USA Shawn C. Farnell3 Kenyon College, Gambier, OH 43022, USA Plasma Controls, LLC, Fort Collins, CO 80526, USA and John D. Williams4 Colorado State University, Fort Collins, CO 80523, USA Plasma Controls, LLC, Fort Collins, CO 80526, USA Abstract: Electrostatic analyzers (ESAs) are used in electric propulsion to measure the energy per unit charge ⁄ distribution of ion and electron beams, in the downstream region of thrusters for example. This paper serves to give an overview of the most fundamental, yet most widely used, types of ESA designs. Analyzers are grouped into two classifications: (1) mirror-type analyzers and (2) deflector-type analyzers. Common mirror- type analyzers are the parallel-plate mirror analyzer (PMA) and the cylindrical mirror analyzer (CMA). For deflector type analyzers, a generalized toroidal type is first described and the commonly used cylindrical deflector (CDA) and spherical deflector (SDA) analyzers are discussed as special cases. The procedure for energy resolution calculations of ESAs is described, which is a common way of comparing analyzers. Finally, we present ion energy distributions from a SDA, comparing variations in particle energy, particle angle, entrance and exit geometry, and sector angle using both numerical calculation and particle simulation. 1 Research Scientist, Dept. of Mechanical Engineering, [email protected] 2 Research Scientist, Dept.