Spaceflight a British Interplanetary Society Publication

Total Page:16

File Type:pdf, Size:1020Kb

Spaceflight a British Interplanetary Society Publication SpaceFlight A British Interplanetary Society publication Volume 61 No.2 February 2019 £5.25 Sun-skimmer phones home Rolex in space Skyrora soars ESA uploads 02> to the ISS 634089 From polar platform 770038 to free-flier 9 CONTENTS Features 18 Satellites, lightning trackers and space robots Space historian Gerard van de Haar FBIS has researched the plethora of European payloads carried to the International Space Station by SpaceX Dragon capsules. He describes the wide range of scientific and technical experiments 4 supporting a wide range of research initiatives. Letter from the Editor 24 In search of a role Without specific planning, this Former scientist and spacecraft engineer Dr Bob issue responds to an influx of Parkinson MBE, FBIS takes us back to the news about unmanned space vehicles departing, dying out and origins of the International Space Station and arriving at their intended explains his own role in helping to bring about a destinations. Pretty exciting stuff British contribution – only to see it migrate to an – except the dying bit because it unmanned environmental monitoring platform. appears that Opportunity, roving around Mars for more than 14 30 Shake, rattle and Rolex 18 years, has finally succumbed to a On the 100th anniversary of the company’s birth, global dust storm. Philip Corneille traces the international story Some 12 pages of this issue are behind a range of Rolex watches used by concerned with aspects of the astronauts and cosmonauts in training and in International Space Station, now well into its stride as a research space, plus one that made it to the Moon. facility, and a further six pages 34 Reach for the Skyrora reflect on how the UK got involved during the 1980s courtesy of a Ken MacTaggart FBIS tracks down the company former President of the BIS who building the first domestic UK satellite launcher was central to those in 50 years and explains how it can revolutionise developments. low-cost services for small satellites, as well as 24 Forward to the future again and igniting a resurgence in rocket development. a fascinating insight into a company based in Edinburgh that plans to put Britain back in the launcher business, this time Regulars sending small satellites into space. This is a long overdue feature of 4 Behind the news Britain’s resurgent presence in a Feeling the heat / …what now, Voyager? / broader spectrum of space Opportunity: is this really the end? industry activities. And who knows where they will end up! 10 Opinion 30 But there is much more and a 12 ISS Report lot besides as we move toward momentous celebrations in this, 9 November – 8 December 2018 the year of Apollo at 50! 36 Multi-media The latest space-related books, games, videos 38 Satellite Digest 553 – November 2018 David Baker 42 Letters to the Editor [email protected] The long wait / Impetus or inspiration? 44 Society news / Diary 34 COVER: PARKER SOLAR PROBE IMAGINED AS IT MIGHT APPEAR APPROACHING ITS CLOSE PASS OF THE SUN / NASA/APL OF CLOSE PASS ITS APPROACHING APPEAR MIGHT IT AS IMAGINED SOLAR PROBE PARKER COVER: What’s happened/ What’s coming up OUR MISSION STATEMENT Editor David Baker, PhD, BSc, FBIS, FRHS Sub Editor Ann Page Creative Consultant Andrée Wilson Design & Production MP3 Media Promotion Gillian Norman Advertising Tel: +44 (0)20 7735 3160 Email: [email protected] The British Interplanetary Society Distribution Warners Group Distribution, The Maltings, Manor Lane, Bourne, Lincolnshire PE10 9PH, England Tel: +44 (0)1778 promotes the exploration and 391 000 Fax: +44 (0)1778 393 668 SpaceFlight, Arthur C. Clarke House, 27-29 South Lambeth Road, London SW8 1SZ, use of space for the benefit England Tel: +44 (0)20 7735 3160 Email: [email protected] www.bis-space.com Published monthly by the British Interplanetary Society, SpaceFlight is a publication that promotes the mission of the British of humanity, connecting people Interplanetary Society. Opinions in signed articles are those of the contributors and do not necessarily reflect the views of to create, educate and inspire, the Editor or the Council of the British Interplanetary Society. Registered Company No: 402498. Registered charity No: and advance knowledge in 250556. The British Interplanetary Society is a company limited by guarantee. Printed in England by Latimer Trend & Co. © 2019 British Interplanetary Society 2017 ISSN 0038-6340. All rights reserved. No part of this magazine may be reproduced all aspects of astronautics. or transmitted in any form or by any means, electronic or mechanical, including photocopying or recording by any information storage or retrieval system without written permission for the Publishers. Photocopying permitted by license only. SpaceFlight Vol 61 February 2019 3 BEHIND THE NEWS Members of the Parker Solar Probe mission team at Johns Hopkins APL celebrate on 7 November 2018, after receiving a beacon indicating the spacecraft is in good health following its first perihelion. FEELING THE HEAT Weeks after Parker Solar Probe made the closest-ever approach to a star, the data it returned is now falling into the hands of mission scientists. IT IS A MOMENT THAT many in the field have been associate administrator of NASA’s Science Mission anticipating for years, thinking about what they'll do Directorate. “Parker is the culmination of six decades with never-before-seen data that has the potential to of scientific progress. Now, we have realized shed new light on the physics of our star, the Sun. humanity’s first close visit to our star, which will have Engineers and controllers report that Parker Solar implications not just here on Earth, but for a deeper Probe is alive and well after skimming the Sun just understanding of our universe.” 24.8 million kilometres above the surface. This is far Mission controllers at the Johns Hopkins closer than any spacecraft has gone before – the University Applied Physics Lab (APL) received the previous record was set by Helios B in 1976 – and status beacon from the spacecraft at 4:46 pm EST has exposed Parker to intense heat and solar on 7 November 2018. The beacon indicates status "A" radiation in a complex solar wind environment. – the best of all the four possible status signals, “Parker Solar Probe was designed to take care of meaning that Parker Solar Probe was operating well itself and its precious payload during this close with all instruments running and collecting science approach, with no control from us on Earth — and data. If there were any minor issues, they were now we know it succeeded”, said Thomas Zurbuchen, resolved autonomously by the spacecraft. 4 Vol 61 February 2019 SpaceFlight BEHIND THE NEWS IMAGES: NASA/JOHNS HOPKINS APL (LEFT) / NASA/NAVAL RESEARCH LABORATORY (RIGHT) LABORATORY RESEARCH APL (LEFT) / NASA/NAVAL HOPKINS NASA/JOHNS IMAGES: This image, taken by Parker's WISPR instrument when the probe was about 16.9 million miles from the Sun's surface, shows a coronal streamer over the east limb of the Sun. The bright dot in the middle of the picture is Jupiter. At its closest approach on 5 November (perihelion) began downlinking to Earth. Parker Solar Probe reached a top speed of 213,200 At about 6:00 pm EST on Friday 16 November, km/hr, setting a new record for spacecraft speed. Parker is the mission controllers at the Johns Hopkins Applied Along with new records for the closest approach to Physics Lab in Laurel, Maryland, received the report the Sun, it will repeatedly break its own speed culmination of from the spacecraft, which also included information record as its orbit draws it closer, travelling faster and about the data collected by the four instrument faster at perihelion with each successive pass. six decades of suites during its first solar encounter. The solid state During its first pass, the intense sunlight heated scientific recorder indicated that the four suites had recorded a the Sun-facing side of Parker Solar Probe's heat significant amount of data as planned. This was shield to about 438 °C. This will climb up to around progress downloaded to Earth via the Deep Space Network 1,370º C as it makes even closer approaches – its over several weeks, starting on 7 December. instruments and systems protected all the while by In addition to helping scientists answer the heat shield, which keeps them at a relatively fundamental questions about the physics of our star, balmy 29 ºC. the data from the initial perihelion will help mission controllers calibrate Parker Solar Probe’s instruments ARRIVAL and plan future observations. Parker Solar Probe's first solar encounter phase “The team is extremely proud to confirm that we began on 31 October, and it continued collecting have a healthy spacecraft following perihelion”, said data until the end of the phase on 11 November. Five APL’s Nick Pinkine, mission operations manager for days later, the spacecraft reported that all systems Parker Solar Probe. “This is a big milestone, and were operating well in the first detailed performance we’re looking forward to some amazing science data and health update to be sent to Earth since the coming down in a few weeks.” encounter began. Even so, it took several weeks During the 11-day solar encounter, the spacecraft after the end of the phase before the science data executed only one autonomous “momentum SpaceFlight Vol 61 February 2019 5 BEHIND THE NEWS dump” – a procedure in which are waiting in the corona", she said. Briefing small thrusters are used to adjust Parker Solar Probe is named for the speed of Parker’s reaction Eugene Parker, the physicist who wheels. The wheels' rate of spin is first theorized the existence of the VIRGIN GALACTIC VIRGIN adjusted to maintain the desired solar wind – the Sun's constant orientation of the spacecraft relative outpouring of material – in 1958.
Recommended publications
  • Program Book Update
    15th Annual International Astrophysics Conference Cape Coral, FL – April 3-8, 2016 AGENDA SUNDAY, APRIL 3 5:00 PM – 8:00 PM Registration – Tarpon Terrace 6:00 PM – 9:00 PM Welcome Reception - Tarpon Terrace MONDAY, APRIL 4 7:00 AM - 5:00 PM Registration – Grandville Ballroom 8:00 AM – 6:00 PM GENERAL SESSION – Grandville Ballroom CHAIR: Zank 7:45 AM - 8:00 AM GARY ZANK WELCOME 8:00 AM - 8:25 AM Chen, Bin Particle Acceleration by a Solar Flare Termination Shock 8:25 AM - 8:50 AM Bucik, Radoslav Large-scale Coronal Waves in 3He-rich Solar Energetic Particle Events Element Abundances and Source Plasma Temperatures of 8:50 AM - 9:15 AM Reames, Donald Solar Energetic Particles 9:15 AM - 9:40 AM Manchester, Ward Simulating CME-Driven Shocks and Implications for SEPs STEREO and ACE SEP Science- Transforming Space Weather 9:40 AM - 10:05 AM Luhmann, Janet Prospects 10:05 AM - 10:30 AM Morning Break - Ballroom Foyer CHAIR: Zirnstein 11 years of ENA imaging with Cassini/INCA and in-situ ion Voyager1 & 10:30 AM - 10:55 AM Krimigis, Stamatios 2/LECP measurements Investigating the Heliospheric Boundary at Energies down to 10eV with 10:55 AM - 11:20 AM Wurz, Peter Neutral Atom Imaging by IBEX. In-situ and Remote Sensing Studies of Solar Wind Origin and 11:20 AM - 11:45 AM Landi, Enrico Acceleration The Sun’s Dynamic Influence on the Outer Heliosphere, the Heliosheath, 11:45 AM - 12:10 PM Intriligator, Devrie and the Local Interstellar Medium 12:10 PM – 1:30 PM Lunch Break – Ballroom Foyer CHAIR: Fichtner 1:30 PM - 1:55 PM McNutt, Ralph Making Interstellar
    [Show full text]
  • APSCC Monthly E-Newsletter JUNE 2017
    APSCC Monthly e-Newsletter JUNE 2017 The Asia-Pacific Satellite Communications Council (APSCC) e-Newsletter is produced on a monthly basis as part of APSCC’s information services for members and professionals in the satellite industry. Subscribe to the APSCC monthly newsletter and be updated with the latest satellite industry news as well as APSCC activities! To renew your subscription, please visit www.apscc.or.kr/sub4_5.asp. To unsubscribe, send an email to [email protected] with a title “Unsubscribe.” News in this issue has been collected from 1 May to 31 May. INSIDE APSCC APSCC 2017 Satellite Conference & Exhibition, 10-12 October, Tokyo, Japan The APSCC Satellite Conference and Exhibition is Asia’s must-attend executive conference for the satellite and space industry, where business leaders come together to gain market insight, strike partnerships and conclude major deals. Celebrating its 20th annual event APSCC 2017 #SATECHexplorer will incorporate industry veterans and new players through the 3-day of in-depth conference program to reach out to a broader audience. Join APSCC 2017 and expand your business network while hearing from a broad range of thought-provoking panels and speakers representing visionary ideas and years of business experience in the industry. For more information, please visit www.apscc2017.com SATELLITE BUSINESS Comtech EF Data Announces Deployments Valued at $1.6 Million of Heights Networking Products in Asia May 1, 2017 - Comtech Telecommunications Corp. announced that three different customers of Comtech EF Data Corp., which is part of Comtech's Commercial Solutions segment, have installed, accepted and are now using the industry-leading Heights Networking Platform to support their business needs.
    [Show full text]
  • Letter to Dr. Nicola Fox, Heliophysics Division Director of NASA
    Michael W. Liemohn • Professor July 30, 2020 Dr. Nicola Fox, Heliophysics Division Director National Aeronautics and Space Administration Heliophysics Division 300 E Street, SW Washington, DC 20546-0001 Dear Dr. Fox: The Heliophysics Advisory Committee (HPAC), an advisory committee to the Heliophysics Division (HPD) of the National Aeronautics and Space Administration (NASA), convened on 30 June through 1 July 2020, virtually through Webex. The undersigned served as Chair for the meeting with the support of Dr. Janet Kozyra, HPAC Designated Federal Officer (DFO), of NASA-HPD. This letter summarizes the meeting outcomes, including our findings and recommendations. All of the members of HPAC participated. Specifically, the membership of HPAC is as follows: Vassilis Angelopoulos (University of California, Los Angeles), Rebecca Bishop (The Aerospace Corporation), Paul Cassak (West Virginia University), Darko Filipi (BizTek International LLC), Lindsay Glesener (University of Minnesota), Larisa Goncharenko (Massachusetts Institute of Technology (MIT) Haystack Observatory), George Ho (Johns Hopkins University Applied Physics Laboratory), Lynn Kistler (University of New Hampshire), James Klimchuk (NASA Goddard Space Flight Center), Tomoko Matsuo (University of Colorado Boulder), William H. Matthaeus (University of Delaware), Mari Paz Miralles (Smithsonian Astrophysical Observatory), Cora Randall (University of Colorado, Boulder), and me. The meeting opened with you giving an overview of the state of HPD. We were pleased to hear about HPD’s successful recent launch of Solar Orbiter and the healthy status of all of the Heliophysics division missions. This includes the HERMES payload on the Gateway and plans for a request for information regarding community input for instrumentation and spacecraft related to NASA’s return to the moon.
    [Show full text]
  • (ISIS): Design of the Energetic Particle Investigation
    Space Sci Rev (2016) 204:187–256 DOI 10.1007/s11214-014-0059-1 Integrated Science Investigation of the Sun (ISIS): Design of the Energetic Particle Investigation D.J. McComas · N. Alexander · N. Angold · S. Bale · C. Beebe · B. Birdwell · M. Boyle · J.M. Burgum · J.A. Burnham · E.R. Christian · W.R. Cook · S.A. Cooper · A.C. Cummings · A.J. Davis · M.I. Desai · J. Dickinson · G. Dirks · D.H. Do · N. Fox · J. Giacalone · R.E. Gold · R.S. Gurnee · J.R. Hayes · M.E. Hill · J.C. Kasper · B. Kecman · J. Klemic · S.M. Krimigis · A.W. Labrador · R.S. Layman · R.A. Leske · S. Livi · W.H. Matthaeus · R.L. McNutt Jr · R.A. Mewaldt · D.G. Mitchell · K.S. Nelson · C. Parker · J.S. Rankin · E.C. Roelof · N.A. Schwadron · H. Seifert · S. Shuman · M.R. Stokes · E.C. Stone · J.D. Vandegriff · M. Velli · T.T. von Rosenvinge · S.E. Weidner · M.E. Wiedenbeck · P. Wilson IV Received: 21 February 2014 / Accepted: 16 June 2014 / Published online: 5 July 2014 © The Author(s) 2014. This article is published with open access at Springerlink.com Abstract The Integrated Science Investigation of the Sun (ISIS) is a complete science in- vestigation on the Solar Probe Plus (SPP) mission, which flies to within nine solar radii of the Sun’s surface. ISIS comprises a two-instrument suite to measure energetic parti- D.J. McComas (B) · N. Alexander · N. Angold · C. Beebe · B. Birdwell · M.I. Desai · J. Dickinson · G. Dirks · S. Livi · S.E. Weidner · P.
    [Show full text]
  • Solar Probe Plus (SPP)
    Pre-decisional – For NASA Internal Use Only Solar Probe Plus (SPP) Committee on Solar and Space Physics 5 October 2016 Joe Smith Program Executive NASA Headquarters 5 October 2016 1 Solar Probe Plus (SPP) Overview Using in-situ measurements made closer to the Sun than by any previous spacecraft, SPP will determine the mechanisms that produce the fast and slow solar winds, coronal heating, and the transport of energetic particles. Solar Probe Plus will fly to less than 10 solar radii (Rs) of the Sun, having “walked in” from 35 Rs over 24 orbits. Milestones • Sponsor: NASA/GSFC LWS Pre-Phase A: 07/2008 – 11/2009 • LWS Program Manager – Nick Chrissotimos GSFC • LWS Deputy Program Manager – Mark Goans, GSFC Phase A: 12/2009 – 01/2012 • Project Manager – Andy Driesman, APL Phase B: 02/2012 – 03/2014 • Project Scientist – Nicky Fox, APL Phase C/D: 03/2014 – 09/2018 • Spacecraft Development/Operations – APL LRD: 31 July 2018 • Investigations selected by AO: • FIELDS – University of California Phase E: 10/2018 – 09/2025 • ISIS – Princeton University/SwRI • SWEAP – Smithsonian Astrophysical Obs Management Commitment: $1,366M • WISPR – Naval Research Laboratory Category 1, Risk Classification B • HelioOrigins – Jet Propulsion Laboratory 5 October 2016 Solar Probe Plus CSSP 2 50 years into the space age and we still don’t understand the corona and solar wind . The concept for a “Solar Probe” dates back to “Simpson’s Committee” of the Space Science Board (National Academy of Sciences, 24 October 1958) ‒ The need for extraordinary knowledge of Sun from remote observations, theory, and modeling to answer the questions: – Why is the solar corona so much hotter than the photosphere? – How is the solar wind accelerated? .
    [Show full text]
  • Radiation Belt Storm Probes Launch
    National Aeronautics and Space Administration PRESS KIT | AUGUST 2012 Radiation Belt Storm Probes Launch www.nasa.gov Table of Contents Radiation Belt Storm Probes Launch ....................................................................................................................... 1 Media Contacts ........................................................................................................................................................ 4 Media Services Information ..................................................................................................................................... 5 NASA’s Radiation Belt Storm Probes ...................................................................................................................... 6 Mission Quick Facts ................................................................................................................................................. 7 Spacecraft Quick Facts ............................................................................................................................................ 8 Spacecraft Details ...................................................................................................................................................10 Mission Overview ...................................................................................................................................................11 RBSP General Science Objectives ........................................................................................................................12
    [Show full text]
  • Analysis, Optimization & Construction of a Micro-Satellite for the Study Of
    University of Patras School of Engineering Mechanical Engineering & Aeronautics Department Applied Mechanics and Vibrations Laboratory Ph.D. Dissertation Design, Analysis and Optimization of a Micro-Satellite for the Study of Lower Thermosphere and Re-Entry conditions Andreas G. Ampatzoglou Dipl. Ing. Mechanical & Aeronautics Patras, 2017 Page 1 Ph.D. Dissertation Andreas G. Ampatzoglou This page has been left blank intentionally Page 1 Ph.D. Dissertation Andreas G. Ampatzoglou This thesis is dedicated to my father Sky is not the limit, when there are footprints on the moon! Paul Brandt Page 2 Ph.D. Dissertation Andreas G. Ampatzoglou This page has been left blank intentionally Page 3 Ph.D. Dissertation Andreas G. Ampatzoglou Examination Committee 1. Professor Vassilis Kostopoulos (Thesis supervisor) Mechanical Engineering and Aeronautics Department, University of Patras, Greece 2. Professor Dimosthenis Polyzos (Thesis advisor) Mechanical Engineering and Aeronautics Department, University of Patras, Greece 3. Professor Nick Anifantis (Thesis advisor) Mechanical Engineering and Aeronautics Department, University of Patras, Greece 4. Professor Antonis Tsourdos School of Aerospace, Transport and Manufacturing, Cranfield University, UK 5. Professor Theodoros Loutas Mechanical Engineering and Aeronautics Department, University of Patras, Greece 6. Professor Antonis Tzes Electrical and Computer Engineering Department, University of Patras, Greece 7. Professor Ioannis Daglis Physics Department, National and Kapodistrian University of Athens, Greece Page 4 Ph.D. Dissertation Andreas G. Ampatzoglou Page 5 Ph.D. Dissertation Andreas G. Ampatzoglou Acknowledgements As this thesis is a collection of works of a collection of people contributing to this final manuscript, I would like to talk a little about all these different people and their role in making this possible.
    [Show full text]
  • David J. Mccomas - Refereed Publications
    David J. McComas - Refereed Publications 1982 1. McComas, D.J. and S.J. Bame, Radially Uniform Electron Source, Rev. of Sci. Instrum., 53, 1490-1491, 1982. 2. Feldman, W.C., S.J. Bame, S.P. Gary, J.T. Gosling, D.J. McComas, M.F. Thomsen, G. Paschmann, N. Sckopke, M.M. Hoppe, C.T. Russell, Electron Heating Within the Earth's Bowshock, Phys. Rev. Lett., 49, 199-201,1982. 1983 3. Feldman, W.C., R.C. Anderson, S.J. Bame, S.P. Gary, J.T. Gosling, D.J. McComas, M.F. Thomsen, G. Paschmann, M.M. Hoppe, Electron Velocity Distributions Near the Earth's Bowshock, J. Geophys. Res., 88, 96-110, 1983. 4. Bame, S.J., R.C. Anderson, J.R. Asbridge, D.N. Baker, W.C. Feldman, J.T. Gosling, E.W. Hones, Jr., D.J. McComas, R.D. Zwickl, Plasma Regimes in the Deep Geomagnetic Tail: ISEE-3, Geophys. Res. Lett., 10, 912-915, 1983. 1984 5. McComas, D.J. and S.J. Bame, Channel Multiplier Compatible MaterialsLifetime Tests, Rev. Sci. Inst., 55, 463-467, 1984. 6. Hones, Jr., E.W., D.N. Baker, S.J. Bame, W.C. Feldman, J.T. Gosling, D.J. McComas, R.D. Zwickl, J.A. Slavin., E.J. Smith, B.T. Tsurutani, Structure of the Magnetotail at 220RE its Response to Geomagnetic Activity, Geophys. Res. Lett., 11, 5-7, 1984. 7. Baker, D.N., S.J. Bame, W.C. Feldman, J.T. Gosling, P.R. Higbie, E.W. Hones, Jr., D.J. McComas, R.D. Zwickl, Correlated Dynamical Changes in the Near Earth and Distant Magnetotail Regions: ISEE-3, J.
    [Show full text]
  • Spaceflight Affects Neuronal Morphology and Alters Transcellular Degradation of Neuronal Debris in Adult Caenorhabditis Elegans
    SPACEFLIGHT AFFECTS NEURONAL MORPHOLOGY AND ALTERS TRANSCELLULAR DEGRADATION OF NEURONAL DEBRIS IN ADULT CAENORHABDITIS ELEGANS The Texas Tech community has made this publication openly available. Please share how this access benefits you. Your story matters to us. Citation Ricardo Laranjeiro, Girish Harinath, Amelia K. Pollard, Christopher J. Gaffney, Colleen S. Deane, Siva A. Vanapalli, Timothy Etheridge, Nathaniel J. Szewczyk, Monica Driscoll, Spaceflight affects neuronal morphology and alters transcellular degradation of neuronal debris in adult Caenorhabditis elegans, iScience, Volume 24, Issue 2, 2021, https://doi.org/10.1016/j.isci.2021.102105. Citable Link https://hdl.handle.net/2346/87737 Terms of Use CC BY 4.0 Title page template design credit to Harvard DASH. iScience ll OPEN ACCESS Article Spaceflight affects neuronal morphology and alters transcellular degradation of neuronal debris in adult Caenorhabditis elegans Ricardo Laranjeiro, Girish Harinath, Amelia K. Pollard, ..., Timothy Etheridge, Nathaniel J. Szewczyk, Monica Driscoll ricardo_laranjeiro@hotmail. com HIGHLIGHTS Spaceflight induces morphological remodeling of adult neurons in C. elegans Hyperbranching is a common response of adult neurons to spaceflight Neuronal debris accumulates in the hypodermis of proteo- stressed space-flown animals Laranjeiro et al., iScience 24, 102105 February 19, 2021 ª 2021 The Author(s). https://doi.org/10.1016/ j.isci.2021.102105 iScience ll OPEN ACCESS Article Spaceflight affects neuronal morphology and alters transcellular degradation of neuronal debris in adult Caenorhabditis elegans Ricardo Laranjeiro,1,7,* Girish Harinath,1 Amelia K. Pollard,2 Christopher J. Gaffney,3,4 Colleen S. Deane,3 Siva A. Vanapalli,5 Timothy Etheridge,3 Nathaniel J. Szewczyk,2,6 and Monica Driscoll1 SUMMARY Extended space travel is a goal of government space agencies and private com- panies.
    [Show full text]
  • New Scientist's
    PHOTO ESSAY MISSION ICARUS The Parker Solar Probe is about to take us closer to the sun than ever before. It’s an audacious mission that will test technology – and the nerves of the scientists behind it – to the limit Interviews by Richard Webb. Photos by Michael Soluri 31 March 2018 | NewScientist | 37 180331_F_Probe_roughcm.indd 37 03/04/2018 16:08 PHOTO ESSAY PHOTO ESSAY Our sun is no serene orb. Every now particles were moving very freely Previous page: The Parker Solar Above: A silver blanket covering the The solar wind doesn’t just break front surface, and we had to make and then its fiery surface turns from sun to Earth. Around the same Probe being tested at the Goddard probe will protect its instruments away from the sun, it carries the sun’s sure there would only be 30 watts explosive, sending matter, energy time, astronomers were noting that Space Flight Center in Maryland from the sun. One of its two solar magnetic field with it somehow. on the back side. There are some and magnetism whirling into the comet tails always pointed away panels will attach to the pair of Whatever state the field is in, whatever high-temperature metals that could surrounding vacuum. from the sun, and that, too, was very Above: A mock-up of the mounts at the bottom of the shot direction, however strong it is, it is make the protective shield, but they In 1859, a particularly violent difficult to explain. instrument that will observe frozen into the solar wind. That’s what are too heavy to launch.
    [Show full text]
  • A Laboratory Model for the Parker Spiral and Magnetized Stellar Winds
    ARTICLES https://doi.org/10.1038/s41567-019-0592-7 A laboratory model for the Parker spiral and magnetized stellar winds Ethan E. Peterson 1*, Douglass A. Endrizzi 1, Matthew Beidler2,3, Kyle J. Bunkers 1, Michael Clark1, Jan Egedal1, Ken Flanagan 1, Karsten J. McCollam1, Jason Milhone 1, Joseph Olson 1, Carl R. Sovinec 2, Roger Waleffe 1, John Wallace1 and Cary B. Forest1 Many rotating stars have magnetic fields that interact with the winds they produce. The Sun is no exception. The interaction between the Sun’s magnetic field and the solar wind gives rise to the heliospheric magnetic field—a spiralling magnetic struc- ture, known as the Parker spiral, which pervades the Solar System. This magnetic field is critical for governing plasma processes that source the solar wind. Here, we report the creation of a laboratory model of the Parker spiral system based on a rapidly rotating plasma magnetosphere and the measurement of its global structure and dynamic behaviour. This laboratory system exhibits regions where the plasma flows evolve in a similar manner to many magnetized stellar winds. We observe the advec- tion of the magnetic field into an Archimedean spiral and the ejection of quasi-periodic plasma blobs into the stellar outflow, which mimics the observed plasmoids that fuel the slow solar wind. This process involves magnetic reconnection and can be modelled numerically by the inclusion of two-fluid effects in the simulation. The Parker spiral system mimicked in the labora- tory can be used for studying solar wind dynamics in a complementary fashion to conventional space missions such as NASA’s Parker Solar Probe mission.
    [Show full text]
  • Debris Mitigation, Assembly, Integration, and Test, in the Context of the Istsat-1 Project
    Debris Mitigation, Assembly, Integration, and Test, in the context of the ISTsat-1 project Paulo Luís Granja Macedo Thesis to obtain the Master of Science Degree in Aerospace Engineering Supervisors: Prof. Paulo Jorge Soares Gil Prof. Agostinho Rui Alves da Fonseca Examination Committee Chairperson: Prof. José Fernando Alves da Silva Supervisor: Prof. Paulo Jorge Soares Gil Member of the Committee: Prof. Elsa Maria Pires Henriques November 2018 ii Dedicado ao meu Pai, Mae˜ e Irma˜ iii iv Acknowledgments I want to thank my supervisors, Professor Paulo Gil and Professor Agostinho Fonseca, for guiding me thorough the project. I also want to thank the ISTsat-1 team members, both professors and students, for giving me the opportunity to be part of such a great project and for the availability they had for my questions. The project would not happen if we did not have the University help and the ESA initiative Fly Your Satellite. I want to thank both organizations, that provided and will keep providing financial support, development rooms, test facilities and expertise in Space related matters. I want to thank all the other people that helped me through this phase, my fiends and girlfriend, thank you. Tambem´ quero agradecer aos meus pais e irma,˜ que me ajudaram em tudo o que foi preciso para chegar a este dia, sem eles nao˜ seria poss´ıvel. Obrigado. v vi Resumo O ISTsat-1 e´ um CubeSat desenvolvido por estudantes e professores do Instituto Superior Tecnico´ (IST), com a ajuda de um programa da ESA chamado Fly Your Satellite (FYS). O objectivo principal e´ educar estudantes em cienciaˆ e tecnologia espacial.
    [Show full text]