Population Connectivity in Marine Macroalgae

Total Page:16

File Type:pdf, Size:1020Kb

Population Connectivity in Marine Macroalgae Population connectivity in marine macroalgae Halley Mary Stirling Durrant BSc (Hons), GradCertRes Submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy School of Biological Sciences University of Tasmania November 2015 Statements by the author Declaration of originality This thesis contains no material which has been accepted for a degree or diploma by the University or any other institution, except by way of background information and duly acknowledged in the thesis, and to the best of my knowledge and belief no material previously published or written by another person except where due acknowledgement is made in the text of the thesis, nor does the thesis contain any material that infringes copyright. Authority of access This thesis may be made available for loan and limited copying and communication in accordance with the Copyright Act 1968. Statement regarding published work contained in thesis The publishers of the papers comprising Chapters 2, 3 and 5 hold the copyright for that content, and access to the material should be sought from the respective journals. The remaining non-published content of the thesis may be made available for loan and limited copying and communication in accordance with the Copyright Act 1968. Signed Halley M.S. Durrant Date: 30th November 2015 i Statement of co-authorship The following people contributed to the publication of work undertaken as part of this thesis: Halley Durrant (Candidate), School of Biological Sciences, University of Tasmania, Hobart, Australia Christopher Burridge (Author 2), School of Biological Sciences University of Tasmania, Hobart, Australia Neville Barrett (Author 3), Institute of Marine & Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia Graham Edgar (Author 4), Institute of Marine & Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia Melinda Coleman (Author 5), Department of Primary Industries, NSW Fisheries, Coffs Harbour, New South Wales, Australia; and National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia Brendan Kelaher (Author 6), National Marine Science Centre and Centre for Coastal Biogeochemistry Research, School of Environment, Science and Engineering, Southern Cross University, Coffs Harbour, New South Wales, Australia Michael Gardner (Author 7), School of Biological Sciences, Flinders University, Adelaide, South Australia, Australia; and Evolutionary Biology Unit, South Australian Museum, Adelaide, South Australia, Australia. Chapter details and relative author contributions are listed below: Chapter 2 is published as: Durrant, H. M. S., Burridge, C. P., Kelaher, B. P., Barrett, N. S., Edgar, G. J. and Coleman, M. A. (2014). Implications of macroalgal isolation by distance for networks of Marine Protected Areas. Conservation Biology, 28: 438–445. The candidate was the primary author. The Candidate conducted data analysis in collaboration with author 6. The candidate and authors 2, 3, 4, 5 and 6 contributed to the development of main ideas and approach, as well as refining the text. ii Statement of co-authorship Chapter 3 is published as: Durrant H.M.S., Burridge C.P., and Gardner M.G. (2015). Isolation via next generation sequencing of microsatellites from the Tasmanian macroalgae Lessonia corrugata (Lessoniaceae). Applications in Plant Sciences, 3(7):1500042 The candidate was the primary author. Author 7 assisted with laboratory work. The candidate as well as authors 2 and 7 contributed to developing the main ideas, and approach as well as in refining the text. Chapter 4 is in preparation: Durrant, H.M.S., Barrett, N.S., Edgar, G.J. and Coleman, M.A., and Burridge, C.P. (in prep). The influence of habitat on population connectivity in the macroalgae Lessonia corrugata (Lessoniaceae) The candidate was the primary author and conducted all field and laboratory work. The candidate conducted all of the data analysis in collaboration with and assistance from author 2. The candidate as well as author 2 developed the main ideas and approach. The candidate and authors 2, 3, 4, and 5 assisted with refining the text. Chapter 5 is published as: Durrant, H.M.S., Barrett N.S., Edgar, G.J., Coleman M.A., and Burridge C.P. (2015). Shallow phylogeographic histories of key species in a biodiversity hotspot. Phycologia, 54 (6): 556–565. The candidate was the primary author and conducted all of the laboratory work. Authors 3 and 4 provided fieldwork assistance. The candidate conducted all of the data analysis with assistance from author 2. The candidate as well as author 2 developed the main ideas and approach. Authors 2, 3, 4 and 5 assisted with refining the text. iii Statement of co-authorship We the undersigned agree with the above stated “proportion of work undertaken” for each of the above published (or submitted) peer-reviewed manuscripts contributing to this thesis: Signed: Signed: Christopher Burridge Anthony Koutoulis Primary Supervisor Head of School School of Biological Sciences School of Biological Sciences University of Tasmania University of Tasmania 30th November 2015 30th November 2015 iv Acknowledgments I would first like to say an enormous thank you to my supervisors who have made this PhD an enjoyable learning experience, constantly taking the time to answer all of my questions and teach me at every opportunity. Your patience and support are thoroughly appreciated. Melinda Coleman who supervised me from afar and was always eager to offer assistance, despite the distance between us. Her understanding of macroalgae, locally and worldwide, has been of great benefit to the project. Neville Barrett who undertook many hours of fieldwork collecting my samples, and Graham Edgar for ARC support. Both Neville and Graham have imparted a great deal of local and scientific knowledge over the course of my project, acting as a fund of information. A particular mention to Chris Burridge my primary supervisor. Throughout my time as his student he never ceased to amaze me in regards to the time he puts into each and every one of his students. Thank you for always having your door open, calming me down when aspects of the project failed, and for taking the time to teach me new techniques and ideas at every available opportunity. I have learnt more than I thought possible, and will always be grateful for your patience and sense of humour. I am forever astounded and thankful for research collaboration. Sample collections would not have been possible if it were not for Liz Oh (IMAS), Rick Stuart-Smith (IMAS), Antonia Cooper (IMAS) Bryan Woods (Australian Marine Ecology), Steffan Howe (Parks Victoria), Dave Miller (DENR, SA), Alecia Belgrove (Deakin University) and Peter Unmack (University of Canberra) and Justin Hulls (IMAS). A Particular mention to Mailie Gall (Gouws et al.) for not only collecting samples for me, but for being a good friend and colleague. For practical laboratory skills I would like to thank Adam Smolenski, who is an absolute asset to the UTAS genetics lab. Thank you for all the times you stayed late to teach me a new technique. No question was ever too naieve, and I can honestly say I have enjoyed the many months I spent in the laboratory. For help with everything administrative I would also like to thank the patient team we have in the School of Biological Sciences: Felicity Wilkinson, Jodi Noble, Clancy Carver, Rose Pongratz and Barry Rumbold. v Acknowledgements For funding support I would like to thank the Holsworth Wildlife Research Endowment, for without this funding much of this research would not have been possible. Also to the Australian Research Council, University of Tasmania and the School of Biological Sciences. Throughout my PhD I was lucky enough to have a strong network of friends to keep me sane. To those at the University of Tasmania: Gini Andersen, Nick Fountain-Jones and Anna Brüniche-Olsen, just to name a few. A particular mention to Bronwyn Fancourt, who provided coffee when it was needed most, answers to many questions, and a friendly ear when I needed to talk. Thank you also for allowing me to volunteer on your own project and get out in the field when I needed a change of scenery. Those field trips and early morning starts were a welcome change and a great experience. To those outside of UTAS, you have been a breath of fresh air when I needed it most. Courtney Bell and Katie Caire, you’ve been absolutely fabulous. Joanne Steel, for our many phone calls and laughs. Dawn, Paul and Alexander Squire, for taking care of me and making me laugh. To all those mentioned here and more, I am so lucky to have found you along the way; I am surely a happier and better person for having you all in my life. Thanks also goes to my extended family, particularly my cousin Holly for the late nights spent listening to what must have been a substantial amount of rambling on my part; it was a great distraction and release. Included in this are my inlaws (Phill, Rosemarie, Amanda and Nathan), who provided help to me in so many ways. A special mention also goes to my furry study companions, Sammy and Clancy, for their calming influence and much needed entertainment throughout my whole time at university. To my mother Mary and father Les, if it were not for the both of you I would not have made it this far. Thank you for everything you do for me, your support and belief in me has been unwavering for as long as I can remember. It is truly a pleasure and a privilege to have you as my parents. One of my biggest thank yous goes to my husband Brad. Even whilst coping with his wifes PhD induced mood swings, he still managed to provide a calming influence to my life. His constant support and encouragement has helped me reach the end of this road, and I am vi Acknowledgements grateful to have had him to share it with.
Recommended publications
  • Rock Lobster Hab Itat Assessment Figure 20. Nine Mile Reef Video
    36 Rock Lobster Habitat Assessment Figure 20. Nine Mile Reef video survey sites (see Table 4 for biota codes). a. NMR01a low profile reef, sessile invertebrates. d. NMR03a low profile reef, sessile invertebrates. b. NMR02a low profile reef, sessile invertebrates. e. NMR05a high profile reef, sessile invertebrates. c. NMR03a low profile reef, sessile invertebrates. f. NMR06a low profile reef, sessile invertebrates. Rock Lobster Habitat Assessment 37 g. NMR06a low profile reef, sessile invertebrates. i. NMR09a low profile reef, sessile invertebrates. h. NMR08a High profile reef, sessile j. NMR09a low profile reef. invertebrates. Figure 21. Nine Mile Reef video still images. Rock Lobster Habitat Assessment 38 Rock Lobster Habitat Assessment Figure 22. Torquay and Ocean Grove (western area) video survey sites (see Table 4 for biota codes). 39 40 Rock Lobster Habitat Assessment Figure 23. Torquay and Ocean Grove (eastern area) video survey sites (see Table 4 for biota codes). a. OGT05a low profile reef, sessile invertebrates. d. OGT12a patchy low profile reef, sessile invertebrates / E. radiata b. OGT06a patchy low profile reef. e. OGT16a low profile reef, E. radiata / Cystophora spp. c. OGT11a high profile reef, E. radiata. F. OGT17a sediment, A. antarctica. Rock Lobster Habitat Assessment 41 g. OGT18a patchy low profile reef, Cystophora j. OGT24a patchy low profile reef, sessile spp. invertebrates (Butterfly perch). h. OGT22a low profile reef, E. radiata / Cystophora k. OGT27a patchy low profile reef ‐ cobble. spp. i. OGT23a low profile reef, E. radiata. l. OGT30a patchy low profile reef, E. radiata. Rock Lobster Habitat Assessment 42 m. OGT32a low profile reef, Cystophora spp. p.
    [Show full text]
  • A Comprehensive Kelp Phylogeny Sheds Light on the Evolution of an T Ecosystem ⁎ Samuel Starkoa,B,C, , Marybel Soto Gomeza, Hayley Darbya, Kyle W
    Molecular Phylogenetics and Evolution 136 (2019) 138–150 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev A comprehensive kelp phylogeny sheds light on the evolution of an T ecosystem ⁎ Samuel Starkoa,b,c, , Marybel Soto Gomeza, Hayley Darbya, Kyle W. Demesd, Hiroshi Kawaie, Norishige Yotsukuraf, Sandra C. Lindstroma, Patrick J. Keelinga,d, Sean W. Grahama, Patrick T. Martonea,b,c a Department of Botany & Biodiversity Research Centre, The University of British Columbia, 6270 University Blvd., Vancouver V6T 1Z4, Canada b Bamfield Marine Sciences Centre, 100 Pachena Rd., Bamfield V0R 1B0, Canada c Hakai Institute, Heriot Bay, Quadra Island, Canada d Department of Zoology, The University of British Columbia, 6270 University Blvd., Vancouver V6T 1Z4, Canada e Department of Biology, Kobe University, Rokkodaicho 657-8501, Japan f Field Science Center for Northern Biosphere, Hokkaido University, Sapporo 060-0809, Japan ARTICLE INFO ABSTRACT Keywords: Reconstructing phylogenetic topologies and divergence times is essential for inferring the timing of radiations, Adaptive radiation the appearance of adaptations, and the historical biogeography of key lineages. In temperate marine ecosystems, Speciation kelps (Laminariales) drive productivity and form essential habitat but an incomplete understanding of their Kelp phylogeny has limited our ability to infer their evolutionary origins and the spatial and temporal patterns of their Laminariales diversification. Here, we
    [Show full text]
  • Division: Ochrophyta- 16,999 Species Order Laminariales: Class: Phaeophyceae – 2,060 Species 1
    4/28/2015 Division: Ochrophyta- 16,999 species Order Laminariales: Class: Phaeophyceae – 2,060 species 1. Life History and Reproduction Order: 6. Laminariales- 148 species - Saxicolous - Sporangia always unilocular 2. Macrothallus Construction: - Most have sieve cells/elements - Pheromone released by female gametes lamoxirene Genus: Macrocystis 3. Growth Nereocystis Pterogophora Egregia Postelsia Alaria 2 14 Microscopic gametophytes Life History of Laminariales Diplohaplontic Alternation of Generations: organism having a separate multicellular diploid sporophyte and haploid gametophyte stage 3 4 1 4/28/2015 General Morphology: All baby kelps look alike 6 Intercalary growth Meristodermal growth Meristoderm/outer cortex – outermost cells (similar to cambia in land plants) Inner cortex – unpigmented cells Medulla – contains specialized cells (sieve elements/hyphae) Meristodermal growth gives thallus girth (mostly) “transition zone” Periclinal vs. Anticlinal cell division: • Periclinal = cell division parallel to the plane of the meristoderm girth •Anticlinal = cell division • Growth in both directions away from meristem • Usually between stipe and blade (or blade and pneumatocyst) perpendicular to the plane of the 7 meristoderm height 8 2 4/28/2015 Phaeophyceae Morphology of intercellular connections Anticlinal Pattern of cell division perpendicular to surface of algae. Only alga to transport sugar/photosynthate in sieve elements Periclinal Cell division parallel to surface of plant. Plasmodesmata = connections between adjacent cells,
    [Show full text]
  • Natural Products of Marine Macroalgae from South Eastern Australia, with Emphasis on the Port Phillip Bay and Heads Regions of Victoria
    marine drugs Review Natural Products of Marine Macroalgae from South Eastern Australia, with Emphasis on the Port Phillip Bay and Heads Regions of Victoria James Lever 1 , Robert Brkljaˇca 1,2 , Gerald Kraft 3,4 and Sylvia Urban 1,* 1 School of Science (Applied Chemistry and Environmental Science), RMIT University, GPO Box 2476V Melbourne, VIC 3001, Australia; [email protected] (J.L.); [email protected] (R.B.) 2 Monash Biomedical Imaging, Monash University, Clayton, VIC 3168, Australia 3 School of Biosciences, University of Melbourne, Parkville, Victoria 3010, Australia; [email protected] 4 Tasmanian Herbarium, College Road, Sandy Bay, Tasmania 7015, Australia * Correspondence: [email protected] Received: 29 January 2020; Accepted: 26 February 2020; Published: 28 February 2020 Abstract: Marine macroalgae occurring in the south eastern region of Victoria, Australia, consisting of Port Phillip Bay and the heads entering the bay, is the focus of this review. This area is home to approximately 200 different species of macroalgae, representing the three major phyla of the green algae (Chlorophyta), brown algae (Ochrophyta) and the red algae (Rhodophyta), respectively. Over almost 50 years, the species of macroalgae associated and occurring within this area have resulted in the identification of a number of different types of secondary metabolites including terpenoids, sterols/steroids, phenolic acids, phenols, lipids/polyenes, pheromones, xanthophylls and phloroglucinols. Many of these compounds have subsequently displayed a variety of bioactivities. A systematic description of the compound classes and their associated bioactivities from marine macroalgae found within this region is presented. Keywords: marine macroalgae; bioactivity; secondary metabolites 1.
    [Show full text]
  • Populations of a New Morphotype of Corrugate Lessonia Bory in the Beagle Channel, Sub-Antarctic Magellanic Ecoregion: a Possible Case of On-Going Speciation
    cryptogamie Algologie 2020 ● 41 ● 11 DIRECTEUR DE LA PUBLICATION / PUBLICATION DIRECTOR : Bruno DAVID Président du Muséum national d’Histoire naturelle RÉDACTRICE EN CHEF / EDITOR-IN-CHIEF : Line LE GALL Muséum national d’Histoire naturelle ASSISTANTE DE RÉDACTION / ASSISTANT EDITOR : Audrina NEVEU ([email protected]) MISE EN PAGE / PAGE LAYOUT : Audrina NEVEU RÉDACTEURS ASSOCIÉS / ASSOCIATE EDITORS Ecoevolutionary dynamics of algae in a changing world Stacy KRUEGER-HADFIELD Department of Biology, University of Alabama, 1300 University Blvd, Birmingham, AL 35294 (United States) Jana KULICHOVA Department of Botany, Charles University, Prague (Czech Repubwlic) Cecilia TOTTI Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona (Italy) Phylogenetic systematics, species delimitation & genetics of speciation Sylvain FAUGERON UMI3614 Evolutionary Biology and Ecology of Algae, Departamento de Ecología, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Av. Bernardo O’Higgins 340, Santiago (Chile) Marie-Laure GUILLEMIN Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia (Chile) Diana SARNO Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli (Italy) Comparative evolutionary genomics of algae Nicolas BLOUIN Department of Molecular Biology, University of Wyoming, Dept. 3944, 1000 E University Ave, Laramie, WY 82071 (United States) Heroen VERBRUGGEN School of BioSciences,
    [Show full text]
  • Macrocystis Integrifolia and Lessonia Trabeculata (Laminariales; Phaeophyceae) Kelp Habitat Structures and Associated Macrobenthic Community Ov Northern Chile
    Helgol Mar Res (2008) 62 (Suppl 1):S33–S43 DOI 10.1007/s10152-007-0096-1 ORIGINAL ARTICLE Macrocystis integrifolia and Lessonia trabeculata (Laminariales; Phaeophyceae) kelp habitat structures and associated macrobenthic community oV northern Chile Mario J. Villegas · Jürgen Laudien · Walter Sielfeld · Wolf E. Arntz Received: 6 June 2007 / Revised: 2 November 2007 / Accepted: 9 November 2007 / Published online: 20 December 2007 © Springer-Verlag and AWI 2007 Abstract Macrocystis integrifolia and Lessonia trabecu- present on barren ground are shorter and have more stipes lata form vast kelp beds providing a three-dimensional habi- compared with those in the dense L. trabeculata kelp bed. tat for a diverse invertebrate and Wsh fauna oV northern Thus, the habitats provide diVerent three-dimensional struc- Chile. Habitat modiWcations caused by the El Niño Southern tures. The associated macrobenthic communities show a Oscillation (ENSO) are likely to alter the inhabiting commu- variable degree of overlapping; however, key faunal assem- nities. The aim of this study was to reveal relationships blages were distinguished for each habitat. Our study pro- between distinct habitat structures of a M. integrifolia kelp vides evidence that habitat diversity drives species diversity, bed, a dense L. trabeculata kelp bed and L. trabeculata the more homogeneous, monospeciWcally composed kelp patches colonizing a barren ground, and the associated dom- bed habitats show comparatively low diversity, mainly inant macrobenthic key species. Seasonally 15 sampling caused by the dominance of the ascidian P. chilensis and T. units (10 m2 each) of any of the three habitats were moni- tridentata in the M. integrifolia bed, and the mussel A.
    [Show full text]
  • Highly Restricted Dispersal in Habitat-Forming Seaweed
    www.nature.com/scientificreports OPEN Highly restricted dispersal in habitat‑forming seaweed may impede natural recovery of disturbed populations Florentine Riquet1,2*, Christiane‑Arnilda De Kuyper3, Cécile Fauvelot1,2, Laura Airoldi4,5, Serge Planes6, Simonetta Fraschetti7,8,9, Vesna Mačić10, Nataliya Milchakova11, Luisa Mangialajo3,12 & Lorraine Bottin3,12 Cystoseira sensu lato (Class Phaeophyceae, Order Fucales, Family Sargassaceae) forests play a central role in marine Mediterranean ecosystems. Over the last decades, Cystoseira s.l. sufered from a severe loss as a result of multiple anthropogenic stressors. In particular, Gongolaria barbata has faced multiple human‑induced threats, and, despite its ecological importance in structuring rocky communities and hosting a large number of species, the natural recovery of G. barbata depleted populations is uncertain. Here, we used nine microsatellite loci specifcally developed for G. barbata to assess the genetic diversity of this species and its genetic connectivity among ffteen sites located in the Ionian, the Adriatic and the Black Seas. In line with strong and signifcant heterozygosity defciencies across loci, likely explained by Wahlund efect, high genetic structure was observed among the three seas (ENA corrected FST = 0.355, IC = [0.283, 0.440]), with an estimated dispersal distance per generation smaller than 600 m, both in the Adriatic and Black Sea. This strong genetic structure likely results from restricted gene fow driven by geographic distances and limited dispersal abilities, along with genetic drift within isolated populations. The presence of genetically disconnected populations at small spatial scales (< 10 km) has important implications for the identifcation of relevant conservation and management measures for G.
    [Show full text]
  • Effect of Sewage Effluents on Germination of Three Marine Brown Algal Macrophytes
    Mar: Freshwater Rex, 1996, 47, 1009-14 Effect of Sewage Effluents on Germination of Three Marine Brown Algal Macrophytes T. R. ~urrid~e*,T. portelliA and P. ~shton~ *~epartmentof Environmental Management, Kctoria University of Technology, PO Box 14428, MCMC, Vic. 3001, Australia. B~nvironmentaland Scient@c Consulting Services, Suite 1/10 Moorabool St, Geelong, Kc. 3220, Australia. Abstract. Inhibition of germination of zygotes of the fucoid macroalgae Hormosira banksii and Phyllospora comosa and zoospores of the laminarian Macrocystis angustifolia was used as an end-point to assess the toxicity of three sewage effluents of differing quality. For each species, between-assay variation was low and results of tests with the reference toxicant 2,4-dichlorophenoxyacetic acid suggested that results are reproducible, especially in R comosa. Each species showed a greater sensitivity to primary-treated effluent than to secondary-treated effluent, and higher variability in response to the primary effluent. High variation in response for each species when exposed to the primary effluent (compared with that for the secondary effluent) is presumably indicative of variation in quality of the primary effluent. The capacity to reproduce these assays, the sensitivity of species employed, and the ecological relevance of germination as a toxicological end-point suggest that germination tests of this nature may be useful in biological testing of effluent quality at discharge sites in south-eastem Australia. Introduction This laboratory study assesses the
    [Show full text]
  • Of the Kelp Lessonia Trabeculata in Northern and Central Chile
    MARINE ECOLOGY PROGRESS SERIES Vol. 90: 193-200, 1992 Published December 22 Mar. Ecol. Prog. Ser. Scale-dependent variability of density estimates and morphometric relationships in subtidal stands of the kelp Lessonia trabeculata in northern and central Chile Patricio A. Camus, F. Patricio Ojeda Departamento de Ecologia, Facultad de Ciencias Biologicas, P. Universidad Catolica de Chile, Casilla 114-D, Santiago, Chile ABSTRACT: Several morphological parameters, and estimates of density and evenness per depth, were analyzed for stands of the subtidal kelp Lessonia trabeculata Villouta et Santelices from 2 zones, central and northern Chile. Two sites in each zone were sampled for 2 yr, and variability patterns were statistically described using site or zone as classification factors. Bathymetric profiles of density showed a strong qualitative and quantitat~vevariation among sites, contrasting with the high evenness in spatial distribution of plants per depth interval, despite intervals of varylng length. Relationships among morphometric parameters changed markedly across spatial scales, producing a high variance in biomass predictions. In most cases, strong site- and zone-specific components were identified, which account for the variability in morphology at both spatial scales. Zone effects may mirror water motion and temperature regimes, among other factors, and site effects may be related to specific habitat configurations. These results show that extrapolation from structural features of single stands for characterizing species may result In misleading inferences. The detection of scale-dependent patterns proved to be a useful starting point for comparative studies of population structure, and necessary before attempting generalizations. INTRODUCTION ments. However, these studies were done only in 1 or 2 localities in central Chile under similar low-exposure The kelp Lessonia trabeculata Villouta et Santelices conditions.
    [Show full text]
  • Seasonal Photoacclimation and Vulnerability Patterns in the Brown Macroalga Lessonia Spicata (Ochrophyta)
    water Article Seasonal Photoacclimation and Vulnerability Patterns in the Brown Macroalga Lessonia spicata (Ochrophyta) Antonio Zúñiga 1,2,† , Claudio A. Sáez 1,2,† , Andrés Trabal 1,3 ,Félix L. Figueroa 4 , Diego Pardo 1,2, Camilo Navarrete 1,2, Fernanda Rodríguez-Rojas 1,2, Fabiola Moenne 1,2 and Paula S. M. Celis-Plá 1,2,* 1 Centre of Advanced Studies, Laboratory of Aquatic Environmental Research (LACER), Playa Ancha University, Calle Traslaviña 450, 2581782 Viña del Mar, Chile; [email protected] (A.Z.); [email protected] (C.A.S.); [email protected] (A.T.); [email protected] (D.P.); [email protected] (C.N.); [email protected] (F.R.-R.); [email protected] (F.M.) 2 HUB-AMBIENTAL UPLA, Playa Ancha University, 2340000 Valparaíso, Chile 3 Escuela de Ciencias Agrarias y Veterinarias, Universidad de Viña del Mar, 2580022 Viña del Mar, Chile 4 Ecology Department, Faculty of Sciences, Institute of Blue Biotechnology and Development (IBYDA), Malaga University, Campus Universitario de Teatinos s/n, E-29071 Malaga, Spain; [email protected] * Correspondence: [email protected] † These authors contributed equally to the investigation. Abstract: Fluctuations in solar radiation are one of the key factors affecting productivity and survival in habitat forming coastal macroalgae, in this regard, photoacclimation has a direct impact on the vulnerability and the capacity of seaweed to withstand, for instance, radiation excess. Here, we study ecophysiological responses through photosynthetic activity measurements under time-dependent (one year) fluctuations in solar radiation in the brown macroalga L. spicata. The responses pre- sented seasonal patterns, with an increase in photosynthetic capacity during summer, expressed in greater maximal electron transport rate (ETRmax) and diminished thermal dissipation (NPQmax).
    [Show full text]
  • Polysaccharide Content and Growth Rate of Lessonia
    POLYSACCHARIDE CONTENT AND GROWTH RATE OF LESSONIA VARIEGATA J. AGARDH: INVESTIGATING ITS POTENTIAL AS A COMMERCIAL SPECIES. By Lynaire Jane Abbott A Thesis Submitted to the Victoria University of Wellington In Partial Fulfilment of the Requirements for the Degree of Master of Science in Marine Biology Victoria University of Wellington 2011 Abstract The endemic brown alga Lessonia variegata has recently been shown to be four separate lineages. To determine differences between the four morphologically similar lineages, the economically valuable polysaccharides alginate and fucoidan were extracted and yields from each of the lineages were compared. In order to determine seasonal patterns in the yield of alginate and fucoidan, and the growth rate within L.variegata, polysaccharides were extracted and the growth rate measured on a monthly basis from March 2010 until February 2011 on plants from the Wellington lineage. The alginate and fucoidan yields were obtained via stepwise extraction with dilute acid and sodium carbonate as per the previously published methods of Usov et al. (1985). The growth rate of L. variegata from the Wellington lineage was assayed using the hole punch technique first described by Parke (1948). The yield of alginate within the Wellington lineage of L. variegata fluctuated seasonally with the highest percent occurring in spring and summer 2010. The yield of fucoidan in the Wellington lineage was at its highest in mid-autumn and late spring 2010. Two different growth rates were detected for the Wellington lineage of L. variegata. There was a period of significantly high growth from late winter 2010 until late summer 2011.The Wellington lineage had the lowest yield of alginate and the highest yield of fucoidan compared to the Northern lineage, the Kaikoura lineage and the Southern lineage.
    [Show full text]
  • Assessment of Antioxidant Activity in Victorian Marine Algal Extracts Using High Performance Thin-Layer Chromatography and Multivariate Analysis
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Cherry - Repository of the Faculty of Chemistry; University of Belgrade Accepted Manuscript Title: Assessment of antioxidant activity in Victorian marine algal extracts using high performance thin-layer chromatography and multivariate analysis Author: Snezana Agatonovic-Kustrin David W. Morton Petar Ristivojevic´ PII: S0021-9673(16)31257-2 DOI: http://dx.doi.org/doi:10.1016/j.chroma.2016.09.041 Reference: CHROMA 357913 To appear in: Journal of Chromatography A Received date: 6-8-2016 Revised date: 17-9-2016 Accepted date: 20-9-2016 Please cite this article as: Snezana Agatonovic-Kustrin, David W.Morton, Petar Ristivojevic,´ Assessment of antioxidant activity in Victorian marine algal extracts using high performance thin-layer chromatography and multivariate analysis, Journal of Chromatography A http://dx.doi.org/10.1016/j.chroma.2016.09.041 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Assessment of antioxidant activity in Victorian marine algal extracts using high performance thin-layer chromatography and multivariate analysis Snezana Agatonovic-Kustrina, David W. Mortonb*, Petar Ristivojevićc aFaculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam Campus, Bandar Puncak Alam, Selangor, 42300, Malaysia bSchool of Pharmacy and Applied Science, La Trobe Institute for Molecular Sciences, La Trobe University, Edwards Rd, Bendigo, 3550, Australia cInnovation Center of the Faculty of Chemistry Ltd, Studentski trg 12-16, 11000 Belgrade, Serbia *Corresponding author.
    [Show full text]