Highly Restricted Dispersal in Habitat-Forming Seaweed
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Congruence Between Fine-Scale Genetic Breaks and Dispersal
Congruence between fine-scale genetic breaks and dispersal potential in an estuarine seaweed across multiple transition zones Katy Nicastro, Jorge Assis, Ester Álvares Serrão, Gareth A. Pearson, João Neiva, Myriam Valero, Rita Jacinto, Gerardo Zardi To cite this version: Katy Nicastro, Jorge Assis, Ester Álvares Serrão, Gareth A. Pearson, João Neiva, et al.. Congruence between fine-scale genetic breaks and dispersal potential in an estuarine seaweed across multiple tran- sition zones. ICES Journal of Marine Science, Oxford University Press (OUP), 2019. hal-02406672 HAL Id: hal-02406672 https://hal.archives-ouvertes.fr/hal-02406672 Submitted on 12 Dec 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Manuscripts submitted to ICES Journal of Marine Science Congruence between fine-scale genetic breaks and dispersal potentialFor Reviewin an estuarine Onlyseaweed across multiple transition zones. Journal: ICES Journal of Marine Science Manuscript ID ICESJMS-2019-167.R2 Manuscript Types: Original Article Date Submitted by the 04-Sep-2019 Author: Complete List of Authors: Nicastro, Katy; CCMAR Assis, Jorge; CCMAR Serrão, Ester; University of Algarve, CCMAR- Centre of Marine Sciences Pearson, Gareth; CCMAR Neiva, Joao; CCMAR Jacinto, Rita; CCMAR Valero, Myriam; CNRS Zardi, Gerardo; Rhodes University, Dept Zoology and Entomology Keyword: Biogeography, physical modelling, gene flow, Fucus spp. -
Oxygenated Acyclic Diterpenes with Anticancer Activity from the Irish Brown Seaweed Bifurcaria Bifurcata
marine drugs Article Oxygenated Acyclic Diterpenes with Anticancer Activity from the Irish Brown Seaweed Bifurcaria bifurcata Vangelis Smyrniotopoulos 1, Christian Merten 2, Daria Firsova 1, Howard Fearnhead 3 and Deniz Tasdemir 1,4,5,* 1 School of Chemistry, National University of Ireland Galway, University Road, H91 TK33 Galway, Ireland; [email protected] (V.S.); dashafi[email protected] (D.F.) 2 Organische Chemie 2, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany; [email protected] 3 Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, University Road, H91 W2TY Galway, Ireland; [email protected] 4 GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Product Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany 5 Faculty of Mathematics and Natural Sciences, Kiel University, Christian-Albrechts-Platz 4, 24118 Kiel, Germany * Correspondence: [email protected]; Tel.: +49-431-600-4430 Received: 28 October 2020; Accepted: 19 November 2020; Published: 23 November 2020 Abstract: Brown alga Bifurcaria bifurcata is a prolific source of bioactive acyclic (linear) diterpenes with high structural diversity. In the continuation of our investigations on Irish brown algae, we undertook an in-depth chemical study on the n-hexanes and chloroform subextracts of B. bifurcata that led to isolation of six new (1–6) and two known (7–8) acyclic diterpenes. Chemical structures of the compounds were elucidated by a combination of 1D and 2D NMR, HRMS, FT-IR, [α]D and vibrational circular dichroism (VCD) spectroscopy. Compounds 1–8, as well as three additional linear diterpenes (9–11), which we isolated from the same seaweed before, were tested against the human breast cancer cell line (MDA-MB-231). -
Imported Food Risk Statement Hijiki Seaweed and Inorganic Arsenic
Imported food risk statement Hijiki seaweed and inorganic arsenic Commodity: Hijiki seaweed Alternative names used for Hijiki include: Sargassum fusiforme (formerly Hizikia fusiforme, Hizikia fusiformis, Crystophyllum fusiforme, Turbinaria fusiformis), Hizikia, Hiziki, Cystophyllum fusiforme, deer-tail grass, sheep- nest grass, chiau tsai, gulfweed, gulf weed ,hai ti tun, hai toe din, hai tsao, hai tso, hai zao, Hijiki, me-hijiki, mehijiki, hijaki, naga-hijiki, hoi tsou, nongmichae. Analyte: Inorganic arsenic Recommendation and rationale Is inorganic arsenic in Hijiki seaweed a medium or high risk to public health? Yes No Uncertain, further scientific assessment required Rationale: Inorganic arsenic is genotoxic and is known to be carcinogenic in humans. Acute toxicity can result from high dietary exposure to inorganic arsenic. General description Nature of the analyte: Arsenic is a metalloid that occurs in inorganic and organic forms. It is routinely found in the environment as a result of natural occurrence and anthropogenic (human) activity (WHO 2011a). While individuals are often exposed to organic and inorganic arsenic through the diet, it is the inorganic species (which include arsenate V and arsenite III) that are more toxic to humans. Only inorganic arsenic is known to be carcinogenic in humans (WHO 2011a). Inorganic arsenic contamination of groundwater is common in certain parts of the world. Dietary exposure to inorganic arsenic occurs predominantly from groundwater derived drinking-water, groundwater used in cooking and commonly consumed foods such as rice and other cereal grains and their flours (EFSA 2009; WHO 2011a; WHO 2011b). However fruits and vegetables have also been found to contain levels of inorganic arsenic in the range of parts per billion (FSA 2012). -
Rock Lobster Hab Itat Assessment Figure 20. Nine Mile Reef Video
36 Rock Lobster Habitat Assessment Figure 20. Nine Mile Reef video survey sites (see Table 4 for biota codes). a. NMR01a low profile reef, sessile invertebrates. d. NMR03a low profile reef, sessile invertebrates. b. NMR02a low profile reef, sessile invertebrates. e. NMR05a high profile reef, sessile invertebrates. c. NMR03a low profile reef, sessile invertebrates. f. NMR06a low profile reef, sessile invertebrates. Rock Lobster Habitat Assessment 37 g. NMR06a low profile reef, sessile invertebrates. i. NMR09a low profile reef, sessile invertebrates. h. NMR08a High profile reef, sessile j. NMR09a low profile reef. invertebrates. Figure 21. Nine Mile Reef video still images. Rock Lobster Habitat Assessment 38 Rock Lobster Habitat Assessment Figure 22. Torquay and Ocean Grove (western area) video survey sites (see Table 4 for biota codes). 39 40 Rock Lobster Habitat Assessment Figure 23. Torquay and Ocean Grove (eastern area) video survey sites (see Table 4 for biota codes). a. OGT05a low profile reef, sessile invertebrates. d. OGT12a patchy low profile reef, sessile invertebrates / E. radiata b. OGT06a patchy low profile reef. e. OGT16a low profile reef, E. radiata / Cystophora spp. c. OGT11a high profile reef, E. radiata. F. OGT17a sediment, A. antarctica. Rock Lobster Habitat Assessment 41 g. OGT18a patchy low profile reef, Cystophora j. OGT24a patchy low profile reef, sessile spp. invertebrates (Butterfly perch). h. OGT22a low profile reef, E. radiata / Cystophora k. OGT27a patchy low profile reef ‐ cobble. spp. i. OGT23a low profile reef, E. radiata. l. OGT30a patchy low profile reef, E. radiata. Rock Lobster Habitat Assessment 42 m. OGT32a low profile reef, Cystophora spp. p. -
Sunscreen, Antioxidant, and Bactericide Capacities of Phlorotannins from the Brown Macroalga Halidrys Siliquosa
1 Journal Of Applied Phycology Achimer December 2016, Volume 28 Issue 6 Pages 3547-3559 http://dx.doi.org/10.1007/s10811-016-0853-0 http://archimer.ifremer.fr http://archimer.ifremer.fr/doc/00366/47682/ © Springer Science+Business Media Dordrecht 2016 Sunscreen, antioxidant, and bactericide capacities of phlorotannins from the brown macroalga Halidrys siliquosa Le Lann Klervi 1, *, Surget Gwladys 1, Couteau Celine 2, Coiffard Laurence 2, Cerantola Stephane 3, Gaillard Fanny 4, Larnicol Maud 5, Zubia Mayalen 6, Guerard Fabienne 1, Poupart Nathalie 1, Stiger-Pouvreau Valerie 1 1 UBO, European Inst Marine Studies IUEM, LEMAR UMR UBO CNRS Ifremer IRD 6539, Technopole Brest Iroise, F-29280 Plouzane, France. 2 Nantes Atlant Univ, Univ Nantes, Fac Pharm, LPiC,MMS,EA2160, 9 Rue Bias,BP 53508, F-44000 Nantes, France. 3 UBO, RMN RPE MS, 6 Ave,Victor Le Gorgeu CS93837, F-29238 Brest 3, France. 4 CNRS, Plateforme Spectrometrie Masse MetaboMER, FR2424, Stn Biol, Pl Georges Teissier,BP 74, F-29682 Roscoff, France. 5 Venelle Carros, Labs Sci & Mer, CS 70002, F-29480 Le Relecq Kerhuon, France. 6 Univ Polynesie Francaise, EIO UMR 244, LabEx CORAIL, BP 6570, Faaa 98702, Tahiti, Fr Polynesia. * Corresponding author : Klervi Le Lann, email address : [email protected] Abstract : The present study focused on a brown macroalga (Halidrys siliquosa), with a particular emphasis on polyphenols and their associated biological activities. Two fractions were obtained by liquid/liquid purification from a crude hydroethanolic extract: (i) an ethyl acetate fraction and (ii) an aqueous fraction. Total phenolic contents and antioxidant activities of extract and both fractions were assessed by in vitro tests (Folin–Ciocalteu test, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, reducing power assay, superoxide anion scavenging assay, and β-carotene–linoleic acid system). -
The Valorisation of Sargassum from Beach Inundations
Journal of Marine Science and Engineering Review Golden Tides: Problem or Golden Opportunity? The Valorisation of Sargassum from Beach Inundations John J. Milledge * and Patricia J. Harvey Algae Biotechnology Research Group, School of Science, University of Greenwich, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK; [email protected] * Correspondence: [email protected]; Tel.: +44-0208-331-8871 Academic Editor: Magnus Wahlberg Received: 12 August 2016; Accepted: 7 September 2016; Published: 13 September 2016 Abstract: In recent years there have been massive inundations of pelagic Sargassum, known as golden tides, on the beaches of the Caribbean, Gulf of Mexico, and West Africa, causing considerable damage to the local economy and environment. Commercial exploration of this biomass for food, fuel, and pharmaceutical products could fund clean-up and offset the economic impact of these golden tides. This paper reviews the potential uses and obstacles for exploitation of pelagic Sargassum. Although Sargassum has considerable potential as a source of biochemicals, feed, food, fertiliser, and fuel, variable and undefined composition together with the possible presence of marine pollutants may make golden tides unsuitable for food, nutraceuticals, and pharmaceuticals and limit their use in feed and fertilisers. Discontinuous and unreliable supply of Sargassum also presents considerable challenges. Low-cost methods of preservation such as solar drying and ensiling may address the problem of discontinuity. The use of processes that can handle a variety of biological and waste feedstocks in addition to Sargassum is a solution to unreliable supply, and anaerobic digestion for the production of biogas is one such process. -
Typification of Sargassum Filipendula C. Agardh (Phaeophyceae, Fucales, Sargassaceae) and the Names of Two Varieties
FAU Institutional Repository http://purl.fcla.edu/fau/fauir This paper was submitted by the faculty of FAU’s Harbor Branch Oceanographic Institute. Notice: ©1990 International Association for Plant Taxonomy. This manuscript is an author version with the final publication available and may be cited as: Hanisak, M. D., & Kilar, J. A. (1990). Typification of Sargassum Filipendula C. Agardh (Phaeophyceae, Fucales, Sargassaceae) and the names of two varieties. Taxon, 39(1), 94-98. doi: 10.2307/1223194 Made in United States ofAmerica Reprinted from TAXON Vol. 39, No.1, February 1990 Copyright © 1990 by the International Association for Plant Taxonomy TYPIFICATION OF SARGASSUM FlLIPENDULA C. AGARDH (PHAEOPHYCEAE, FUCALES, SARGASSACEAE) AND THE NAMES OF TWO VARIETIES M. Dennis Hanisak' and John A. Kilar-? Summary Lectotype specimens are designated for the brown alga, Sargassum filipcndula C. Agardh var. ftlipendula. and two of its varieties, S ..filitrcndulo var. laxum J. Agardh and S. filipendula var. con tractum J. Agardh. Introduction Sargassum C. Agardh (1820: I) is one of the largest, most morphologically complex genera in the Phaeophyta and occurs in temperate to tropical areas throughout the world (Nizamuddin, 1970). The Marine Botany Department. Harbor Branch Oceanographic Institution. 5600 Old Dixie Highway, Fort Pierce, FL 34946, U.S.A. Mote Marine Laboratory. 1600 City Island Park. Sarasota, FL 33577, U.S.A. FEBRUARY 1990 95 Fig. 1. Lectotype ofSargassumfilipendula C. Agardh ver.filipendula (Agardh Herbarium specimen number 3253. LD). existence ofconsiderable morphological variability in taxonomically important features renders specific determinations difficult. Causes of this morphological variability have been attributed to environ mental or phenotypic plasticity (e.g., Taylor, 1960; Soe-Htun and Yoshida, 1986), ontogenetic forms (Critchley, 1983a, b; Kilar and Hanisak, 1988), polymorphism within individual populations (Kilar and Hanisak, in press), and hybridization between taxa (Taylor, 1960; Paula and Oliveira, 1982). -
BROWN ALGAE [147 Species] (
CHECKLIST of the SEAWEEDS OF IRELAND: BROWN ALGAE [147 species] (http://seaweed.ucg.ie/Ireland/Check-listPhIre.html) PHAEOPHYTA: PHAEOPHYCEAE ECTOCARPALES Ectocarpaceae Acinetospora Bornet Acinetospora crinita (Carmichael ex Harvey) Kornmann Dichosporangium Hauck Dichosporangium chordariae Wollny Ectocarpus Lyngbye Ectocarpus fasciculatus Harvey Ectocarpus siliculosus (Dillwyn) Lyngbye Feldmannia Hamel Feldmannia globifera (Kützing) Hamel Feldmannia simplex (P Crouan et H Crouan) Hamel Hincksia J E Gray - Formerly Giffordia; see Silva in Silva et al. (1987) Hincksia granulosa (J E Smith) P C Silva - Synonym: Giffordia granulosa (J E Smith) Hamel Hincksia hincksiae (Harvey) P C Silva - Synonym: Giffordia hincksiae (Harvey) Hamel Hincksia mitchelliae (Harvey) P C Silva - Synonym: Giffordia mitchelliae (Harvey) Hamel Hincksia ovata (Kjellman) P C Silva - Synonym: Giffordia ovata (Kjellman) Kylin - See Morton (1994, p.32) Hincksia sandriana (Zanardini) P C Silva - Synonym: Giffordia sandriana (Zanardini) Hamel - Only known from Co. Down; see Morton (1994, p.32) Hincksia secunda (Kützing) P C Silva - Synonym: Giffordia secunda (Kützing) Batters Herponema J Agardh Herponema solitarium (Sauvageau) Hamel Herponema velutinum (Greville) J Agardh Kuetzingiella Kornmann Kuetzingiella battersii (Bornet) Kornmann Kuetzingiella holmesii (Batters) Russell Laminariocolax Kylin Laminariocolax tomentosoides (Farlow) Kylin Mikrosyphar Kuckuck Mikrosyphar polysiphoniae Kuckuck Mikrosyphar porphyrae Kuckuck Phaeostroma Kuckuck Phaeostroma pustulosum Kuckuck -
Investigating the Genetic Origin of Three Fucus Morphotypes Using Microsatellite Analysis
Investigating the genetic origin of three Fucus morphotypes using microsatellite analysis Frida Catharina Skovereng Knoop Master of Marine Biology, June 2021 Supervisors: Inga Kjersti Sjøtun, Pedro Miguel de Azevedo Ribeiro, Geir Dahle Department of Biological Sciences, University of Bergen 1 Acknowledgements First, I would like to say thank you Kjersti, for shaping the thesis and for giving me the opportunity to participate in this project. Without exception, you have been so kind and supportive throughout the whole process. Although I only got to explore a small part of the vast world of algae, it surely has been an inspirational and interesting journey full of new learnings. Thank you for your guidance and patience in the field, the lab, and for always answering my questions. I could not ask for a better supervisor, and it has been a pleasure to work with you. Pedro, thank you for being an excellent co-supervisor. During this thesis, I very much appreciated your positive attitude and patience. Thank you for taking your time to explain the processes behind the molecular work and for guiding me through the statistical part, which I found particularly challenging. During stressful times, your support kept me calm and made sure I did not lose focus. Also, your feedback was very much appreciated. A special thank you to co-supervisor Geir Dahle at the Institute of Marine Science (IMR) for taking your time to help with the genetic analysis, the ABI Machine, and allele scoring, which was only possible at IMR. I also want to thank you for sharing your knowledge regarding microsatellite analysis, being helpful with the statistics, and providing good feedback. -
Natural Products of Marine Macroalgae from South Eastern Australia, with Emphasis on the Port Phillip Bay and Heads Regions of Victoria
marine drugs Review Natural Products of Marine Macroalgae from South Eastern Australia, with Emphasis on the Port Phillip Bay and Heads Regions of Victoria James Lever 1 , Robert Brkljaˇca 1,2 , Gerald Kraft 3,4 and Sylvia Urban 1,* 1 School of Science (Applied Chemistry and Environmental Science), RMIT University, GPO Box 2476V Melbourne, VIC 3001, Australia; [email protected] (J.L.); [email protected] (R.B.) 2 Monash Biomedical Imaging, Monash University, Clayton, VIC 3168, Australia 3 School of Biosciences, University of Melbourne, Parkville, Victoria 3010, Australia; [email protected] 4 Tasmanian Herbarium, College Road, Sandy Bay, Tasmania 7015, Australia * Correspondence: [email protected] Received: 29 January 2020; Accepted: 26 February 2020; Published: 28 February 2020 Abstract: Marine macroalgae occurring in the south eastern region of Victoria, Australia, consisting of Port Phillip Bay and the heads entering the bay, is the focus of this review. This area is home to approximately 200 different species of macroalgae, representing the three major phyla of the green algae (Chlorophyta), brown algae (Ochrophyta) and the red algae (Rhodophyta), respectively. Over almost 50 years, the species of macroalgae associated and occurring within this area have resulted in the identification of a number of different types of secondary metabolites including terpenoids, sterols/steroids, phenolic acids, phenols, lipids/polyenes, pheromones, xanthophylls and phloroglucinols. Many of these compounds have subsequently displayed a variety of bioactivities. A systematic description of the compound classes and their associated bioactivities from marine macroalgae found within this region is presented. Keywords: marine macroalgae; bioactivity; secondary metabolites 1. -
Antioxidant Contents of Fucus Vesiculosus L., in Response to Environmental Parameters
MADALENA CARIA MENDES Antioxidant Contents of Fucus vesiculosus L., in Response to Environmental Parameters UNIVERSIDADE DO ALGARVE Faculdade de Ciências e Tecnologia 2017 MADALENA CARIA MENDES Antioxidant Contents of Fucus vesiculosus L., in Response to Environmental Parameters Mestrado em Aquacultura e Pescas Trabalho efetuado sob a orientação de: Susan L. Holdt1 Ester A. Serrão2 1 DTU Fødevareinstituttet, Technical University of Denmark, Kemitorvet, Bygning 202, DK-2800 Kgs Lyngby, Denmark. 2 Universidade do Algarve, CCMAR, Campus de Gambelas, P-8005-139 Faro, Portugal. UNIVERSIDADE DO ALGARVE Faculdade de Ciências e Tecnologia 2017 Declaração de Autoria Declaro ser a autora deste trabalho, que é original e inédito. Autores e trabalhos consultados estão devidamente citados no texto e constam da listagem de referências incluída. i Copyright Madalena Caria Mendes A Universidade do Algarve reserva para si o direito, em conformidade com o disposto no Código do Direito de Autor e dos Direitos Conexos, de arquivar, reproduzir e publicar a obra, independentemente do meio utilizado, bem como de a divulgar através de repositórios científicos e de admitir a sua cópia e distribuição para fins meramente educacionais ou de investigação e não comerciais, conquanto seja dado o devido crédito ao autor e editor respetivos. ii Acknowledgements This thesis entitled Antioxidant contents of Fucus vesiculosus L., in response to environmental parameters was conducted at the Research Group for Bioactives, analysis and applications, at the National Food Institute, Technical University of Denmark, under the Erasmus + traineeship program. I would like to thank my dear supervisors, for their great supervision, guidance and seaweed knowledge, Professors Susan L. Holdt and Ester A. -
Cryptic Diversity, Geographical Endemism and Allopolyploidy in NE Pacific Seaweeds João Neiva1*† , Ester A
Neiva et al. BMC Evolutionary Biology (2017) 17:30 DOI 10.1186/s12862-017-0878-2 RESEARCH ARTICLE Open Access Cryptic diversity, geographical endemism and allopolyploidy in NE Pacific seaweeds João Neiva1*† , Ester A. Serrão1†, Laura Anderson2, Peter T. Raimondi2, Neusa Martins1, Licínia Gouveia1, Cristina Paulino1, Nelson C. Coelho1, Kathy Ann Miller3, Daniel C. Reed4, Lydia B. Ladah5 and Gareth A. Pearson1 Abstract Background: Molecular markers are revealing a much more diverse and evolutionarily complex picture of marine biodiversity than previously anticipated. Cryptic and/or endemic marine species are continually being found throughout the world oceans, predominantly in inconspicuous tropical groups but also in larger, canopy-forming taxa from well studied temperate regions. Interspecific hybridization has also been found to be prevalent in many marine groups, for instance within dense congeneric assemblages, with introgressive gene-flow being the most common outcome. Here, using a congeneric phylogeographic approach, we investigated two monotypic and geographically complementary sister genera of north-east Pacific intertidal seaweeds (Hesperophycus and Pelvetiopsis), for which preliminary molecular tests revealed unexpected conflicts consistent with unrecognized cryptic diversity and hybridization. Results: The three recovered mtDNA clades did not match a priori species delimitations. H. californicus was congruent, whereas widespread P. limitata encompassed two additional narrow-endemic species from California - P. arborescens (here genetically confirmed) and P. hybrida sp. nov. The congruence between the genotypic clusters and the mtDNA clades was absolute. Fixed heterozygosity was apparent in a high proportion of loci in P. limitata and P. hybrida,with genetic analyses showing that the latter was composed of both H. californicus and P.